Pub Date : 2023-04-01DOI: 10.46604/ijeti.2023.11203
Do-Hyun Kim, Hyo-Seok Chang, Woong-Yi Kim
A runway strip is defined as the surface surrounding a runway established or suitable for reducing the risk of damage to aircraft in the event of a runway excursion. This study aims to implement the RSARA and LRSARA models at an airport not meeting the runway strip dimension criteria required by standards for aerodrome physical characteristics. The airport is considering alternatives to secure the runway strip criteria such as the displaced threshold and runway length extension, which is predicted to reduce the runway excursion probability. As the results of this study, it was discovered that the risk probability increases with the increases of the displaced runway distance due to relatively reduced runway length. Therefore, a reduced runway length to meet runway strip criteria may not be the most effective risk mitigation alternative, and it should be acknowledged that such a strategy can harm aviation Safety.
{"title":"A Study on the Risk Probability of Risk Mitigation Alternatives at Non-Compliance Airport with Runway Strip Criteria","authors":"Do-Hyun Kim, Hyo-Seok Chang, Woong-Yi Kim","doi":"10.46604/ijeti.2023.11203","DOIUrl":"https://doi.org/10.46604/ijeti.2023.11203","url":null,"abstract":"A runway strip is defined as the surface surrounding a runway established or suitable for reducing the risk of damage to aircraft in the event of a runway excursion. This study aims to implement the RSARA and LRSARA models at an airport not meeting the runway strip dimension criteria required by standards for aerodrome physical characteristics. The airport is considering alternatives to secure the runway strip criteria such as the displaced threshold and runway length extension, which is predicted to reduce the runway excursion probability. As the results of this study, it was discovered that the risk probability increases with the increases of the displaced runway distance due to relatively reduced runway length. Therefore, a reduced runway length to meet runway strip criteria may not be the most effective risk mitigation alternative, and it should be acknowledged that such a strategy can harm aviation Safety.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45016613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to propose a novel deep learning framework, i.e., efficient DenseNet, for identifying diabetic retinopathy severity levels in retinal images. Diabetic retinopathy is an eye condition that damages blood vessels in the retina. Detecting diabetic retinopathy at the early stage can avoid retinal detachment and effects leading to blindness in diabetic adults. A thin-layered efficient DenseNet model has been proposed with fewer training learnable parameters, leading to higher classification accuracy than the other deep learning models. The proposed deep learning framework for diabetic retinopathy severity level detection has an inbuilt automatic pre-processing module. Afterward, the efficient DenseNet model and classifier will provide data augmentation and higher-level feature extraction. The proposed efficient DenseNet framework is trained and tested using 13000 retinal fundus images within the diabetic retinopathy database and combined with the k-nearest neighbor classifier demonstrating the best classification accuracy of 98.40%.
{"title":"An Efficient DenseNet for Diabetic Retinopathy Screening","authors":"Sheena Christabel Pravin, Sindhu Priya Kanaga Sabapathy, Suganthi Selvakumar, Saranya Jayaraman, Selvakumar Varadharajan Subramani","doi":"10.46604/ijeti.2023.10045","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10045","url":null,"abstract":"This study aims to propose a novel deep learning framework, i.e., efficient DenseNet, for identifying diabetic retinopathy severity levels in retinal images. Diabetic retinopathy is an eye condition that damages blood vessels in the retina. Detecting diabetic retinopathy at the early stage can avoid retinal detachment and effects leading to blindness in diabetic adults. A thin-layered efficient DenseNet model has been proposed with fewer training learnable parameters, leading to higher classification accuracy than the other deep learning models. The proposed deep learning framework for diabetic retinopathy severity level detection has an inbuilt automatic pre-processing module. Afterward, the efficient DenseNet model and classifier will provide data augmentation and higher-level feature extraction. The proposed efficient DenseNet framework is trained and tested using 13000 retinal fundus images within the diabetic retinopathy database and combined with the k-nearest neighbor classifier demonstrating the best classification accuracy of 98.40%.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41509580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.46604/ijeti.2023.10685
Uma Maheswari Kaliyaperumal, Mary Saira Bhanu Somasundaram, Nickolas Savarimuthu
With the increasing popularity of the internet of things (IoT), fog computing has emerged as a unique cutting-edge approach along with cloud computing. This study proposes an approach for data integrity verification in fog computing that does not require metadata stored on the user side and can handle big data efficiently. In the proposed work, fuzzy clustering is used to cluster IoT data; dynamic keys are used to encrypt the clusters; and dynamic permutation is used to distribute encrypted clusters among fog nodes. During the process of data retrieval, fuzzy clustering and message authentication code (MAC) are used to verify the data integrity. Fuzzy clustering and dynamic primitives make the proposed approach more secure. The security analysis indicates that the proposed approach is resilient to various security attacks. Moreover, the performance analysis shows that the computation time of the proposed work is 50 times better than the existing tag regeneration scheme.
{"title":"Partitioning-Based Data Sharing Approach for Data Integrity Verification in Distributed Fog Computing","authors":"Uma Maheswari Kaliyaperumal, Mary Saira Bhanu Somasundaram, Nickolas Savarimuthu","doi":"10.46604/ijeti.2023.10685","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10685","url":null,"abstract":"With the increasing popularity of the internet of things (IoT), fog computing has emerged as a unique cutting-edge approach along with cloud computing. This study proposes an approach for data integrity verification in fog computing that does not require metadata stored on the user side and can handle big data efficiently. In the proposed work, fuzzy clustering is used to cluster IoT data; dynamic keys are used to encrypt the clusters; and dynamic permutation is used to distribute encrypted clusters among fog nodes. During the process of data retrieval, fuzzy clustering and message authentication code (MAC) are used to verify the data integrity. Fuzzy clustering and dynamic primitives make the proposed approach more secure. The security analysis indicates that the proposed approach is resilient to various security attacks. Moreover, the performance analysis shows that the computation time of the proposed work is 50 times better than the existing tag regeneration scheme.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48841965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.46604/ijeti.2023.10247
Cheng-Hsiu Li
The integration of teaching materials with virtual reality (VR) technology is a common method for improving student interaction in courses, providing students with experience related to real-life spatial environments in class. This study developed a cost-effective and portable device that offers an immersive VR experience for learning the identification of computer hardware components. This device enables teachers to train technicians in computer hardware fabrication. The experimental group comprised 12 participants. According to the results of the learning satisfaction analysis, the students highly enjoyed the immersive learning experience. Descriptive statistics and the Wilcoxon matched-pairs signed-rank test are used for statistical analysis. Analysis of cognitive learning outcomes indicated that all students accurately identified all computer components after the intervention. By using the immersion teaching method, teachers could considerably improve the learning outcomes of students related to their cognition of computer hardware components.
{"title":"Instructional Design, Learning Satisfaction, and Learning Outcome in a Virtual Reality Learning Environment Aimed at Improving the Cognition of Computer Hardware Components","authors":"Cheng-Hsiu Li","doi":"10.46604/ijeti.2023.10247","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10247","url":null,"abstract":"The integration of teaching materials with virtual reality (VR) technology is a common method for improving student interaction in courses, providing students with experience related to real-life spatial environments in class. This study developed a cost-effective and portable device that offers an immersive VR experience for learning the identification of computer hardware components. This device enables teachers to train technicians in computer hardware fabrication. The experimental group comprised 12 participants. According to the results of the learning satisfaction analysis, the students highly enjoyed the immersive learning experience. Descriptive statistics and the Wilcoxon matched-pairs signed-rank test are used for statistical analysis. Analysis of cognitive learning outcomes indicated that all students accurately identified all computer components after the intervention. By using the immersion teaching method, teachers could considerably improve the learning outcomes of students related to their cognition of computer hardware components.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48654076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to investigate, the effect of organic loading rates (OLRs), nutrient ratio addition, and sludge retention time (SRT) on treating dairy wastewater in a sequencing batch reactor (SBR) system. This investigation is verified by experiments conducted in 3 phases at 3 different OLRs (1.8, 1.2, and 0.9 kg/m3d, respectively). Urea ((NH2)2CO) is added to make a suitable (COD:N:P) ratio of (100:5:1) in dairy wastewater. The SRT is adjusted from 50 days to an appropriate value of 18 days. The obtained results show that the COD, TN, and TP removal efficiencies are increased with decreasing OLRs. Sludge concentration in the SBR tank is stable at 1100 mg/L after adding (NH2)2CO. In addition, the SBR operated at a suitable SRT (i.e. 18 days) helps the biomass stably, resulting in enhancement of COD, TN, and TP removal. The results are helpful to the design of SBR for treating dairy wastewater.
{"title":"Effect of Organic Loading Rates on Performance of Treating Dairy Wastewater in a Lab-Scale Sequencing Batch Reactor","authors":"Khac-Uan Do, Thuy-Ngan Thi Bui, Hung-Thuan Tran, Xuan-Quang Chu","doi":"10.46604/ijeti.2023.10763","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10763","url":null,"abstract":"This study aims to investigate, the effect of organic loading rates (OLRs), nutrient ratio addition, and sludge retention time (SRT) on treating dairy wastewater in a sequencing batch reactor (SBR) system. This investigation is verified by experiments conducted in 3 phases at 3 different OLRs (1.8, 1.2, and 0.9 kg/m3d, respectively). Urea ((NH2)2CO) is added to make a suitable (COD:N:P) ratio of (100:5:1) in dairy wastewater. The SRT is adjusted from 50 days to an appropriate value of 18 days. The obtained results show that the COD, TN, and TP removal efficiencies are increased with decreasing OLRs. Sludge concentration in the SBR tank is stable at 1100 mg/L after adding (NH2)2CO. In addition, the SBR operated at a suitable SRT (i.e. 18 days) helps the biomass stably, resulting in enhancement of COD, TN, and TP removal. The results are helpful to the design of SBR for treating dairy wastewater.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46854797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The multiphase sinusoidal oscillator (MSO) is useful for various electrical and electronic applications. This study aims to design an MSO employing voltage differencing differential input buffered amplifiers (VD-DIBAs). The design procedure is based on cascading the first-order low-pass filter. Each phase consists of a VD-DIBA, two resistors, and a grounded capacitor. An odd-phase system without requiring an additional amplifier. The frequency is electronically controlled through the bias current without affecting the condition. The sinewave amplitudes and the phase difference between each waveform are identical. The proposed MSO is designed to obtain three-phase waveforms (n = 3). PSPICE simulation demonstrates the performance of the proposed oscillator with 0.18 μm TSMC CMOS parameters with ±0.9 V power supply. The feasibility of the proposed MSO is also verified with experiments using the VD-DIBA constructed from commercial integrated circuits (ICs) with a ±5 V power supply. The simulated and experimental results align with theoretical predictions.
{"title":"Electronically Tunable Voltage-Mode Multiphase Sinusoidal Oscillator with Low Output Impedance Nodes Employing VD-DIBAs","authors":"Danupat Duangmalai, Thosapol Manasri, Adisorn Kwawsibsam, Winai Jaikla","doi":"10.46604/ijeti.2023.10461","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10461","url":null,"abstract":"The multiphase sinusoidal oscillator (MSO) is useful for various electrical and electronic applications. This study aims to design an MSO employing voltage differencing differential input buffered amplifiers (VD-DIBAs). The design procedure is based on cascading the first-order low-pass filter. Each phase consists of a VD-DIBA, two resistors, and a grounded capacitor. An odd-phase system without requiring an additional amplifier. The frequency is electronically controlled through the bias current without affecting the condition. The sinewave amplitudes and the phase difference between each waveform are identical. The proposed MSO is designed to obtain three-phase waveforms (n = 3). PSPICE simulation demonstrates the performance of the proposed oscillator with 0.18 μm TSMC CMOS parameters with ±0.9 V power supply. The feasibility of the proposed MSO is also verified with experiments using the VD-DIBA constructed from commercial integrated circuits (ICs) with a ±5 V power supply. The simulated and experimental results align with theoretical predictions.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45717699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.46604/ijeti.2023.9710
Yavuz Çapkan, H. Altun, C. Fidan
Edge detection is a fundamental process, and therefore there are still demands to improve its efficiency and computational complexity. This study proposes a knowledge-based edge detection method to meet this requirement by introducing a set of knowledge-based rules. The methodology to derive the rules is based on the observed continuity properties and the neighborhood characteristics of the edge pixels, which are expressed as simple arithmetical operations to improve computational complexity. The results show that the method has an advantage over the gradient-based methods in terms of performance and computational load. It is appropriately four times faster than Canny method and shows superior performance compared to the gradient-based methods in general. Furthermore, the proposed method provides robustness to effectively identify edges at the corners. Due to its light computational requirement and inherent parallelization properties, the method would be also suitable for hardware implementation on field-programmable gate arrays (FPGA).
{"title":"Edge Detection Method Driven by Knowledge-Based Neighborhood Rules","authors":"Yavuz Çapkan, H. Altun, C. Fidan","doi":"10.46604/ijeti.2023.9710","DOIUrl":"https://doi.org/10.46604/ijeti.2023.9710","url":null,"abstract":"Edge detection is a fundamental process, and therefore there are still demands to improve its efficiency and computational complexity. This study proposes a knowledge-based edge detection method to meet this requirement by introducing a set of knowledge-based rules. The methodology to derive the rules is based on the observed continuity properties and the neighborhood characteristics of the edge pixels, which are expressed as simple arithmetical operations to improve computational complexity. The results show that the method has an advantage over the gradient-based methods in terms of performance and computational load. It is appropriately four times faster than Canny method and shows superior performance compared to the gradient-based methods in general. Furthermore, the proposed method provides robustness to effectively identify edges at the corners. Due to its light computational requirement and inherent parallelization properties, the method would be also suitable for hardware implementation on field-programmable gate arrays (FPGA).","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49021206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to identify the outer race bearing needed to protect an induction motor from severe damage. Faults are diagnosed using a non-invasive technique through the sound signal from an induction motor. The diagnosis aims to assess the damage to the bearings on the fan or main shaft. Moreover, this study discusses the type of damage, loading variations, and the diagnostic accuracy with the damage to the outer race bearing placed on the fan or main shaft rotor. The disturbance detection approach is used to analyze the sound spectrum to identify the harmonic components near the disturbance frequency. The damage frequency characteristics are also calculated to determine the sound spectrum peak value. The results show that the detection is slightly affected by the damage severity and the incorrect placement of the bearings on the rotor shaft. The lowest detection accuracy in testing the outer race bearing damage on the fan shaft is 91.66%. However, the accuracy percentage is 100% with the outer race bearing damage on the main shaft.
{"title":"Analysis of Outer Race Bearing Damage by Calculation of Sound Signal Frequency Based on the FFT Method","authors":"Iradiratu Diah Prahmana Karyatanti, Ananda Noersena, Firsyaldo Rizky Purnomo, Rafli Setiawan Zulkifli, Ardik Wijayanto","doi":"10.46604/ijeti.2023.9411","DOIUrl":"https://doi.org/10.46604/ijeti.2023.9411","url":null,"abstract":"This study aims to identify the outer race bearing needed to protect an induction motor from severe damage. Faults are diagnosed using a non-invasive technique through the sound signal from an induction motor. The diagnosis aims to assess the damage to the bearings on the fan or main shaft. Moreover, this study discusses the type of damage, loading variations, and the diagnostic accuracy with the damage to the outer race bearing placed on the fan or main shaft rotor. The disturbance detection approach is used to analyze the sound spectrum to identify the harmonic components near the disturbance frequency. The damage frequency characteristics are also calculated to determine the sound spectrum peak value. The results show that the detection is slightly affected by the damage severity and the incorrect placement of the bearings on the rotor shaft. The lowest detection accuracy in testing the outer race bearing damage on the fan shaft is 91.66%. However, the accuracy percentage is 100% with the outer race bearing damage on the main shaft.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70565028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.46604/ijeti.2023.10229
Rahmat Hadi Suwarno, Arief Sabdo Yuwono, Erizal
Coal is a commonly used fuel by coal power plants that produce coal fly ash and coal bottom ash (coal FABA) as byproducts. The latest regulation in Indonesia changes coal FABA classification to non-toxic waste, which opens up its utilization possibility. This paper analyses the coal FABA potential from Suralaya Coal Power Plant as concrete material and its environmental impact. To determine coal FABA potential, the methods used in this paper are slump test, compressive strength test, flexural strength test, and carbon footprint calculation. This paper shows that concrete mixture with coal FABA content has a lower slump value, lower compressive strength, and generally lower flexural strength. Furthermore, the carbon footprint calculation result shows that concrete mixture with coal FABA content has lower CO2 emissions than conventional concrete. Finally, the result shows that concrete with coal FABA could be used as non-structural concrete.
{"title":"On the Performance Analysis and Environmental Impact of Concrete with Coal Fly Ash and Bottom Ash","authors":"Rahmat Hadi Suwarno, Arief Sabdo Yuwono, Erizal","doi":"10.46604/ijeti.2023.10229","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10229","url":null,"abstract":"Coal is a commonly used fuel by coal power plants that produce coal fly ash and coal bottom ash (coal FABA) as byproducts. The latest regulation in Indonesia changes coal FABA classification to non-toxic waste, which opens up its utilization possibility. This paper analyses the coal FABA potential from Suralaya Coal Power Plant as concrete material and its environmental impact. To determine coal FABA potential, the methods used in this paper are slump test, compressive strength test, flexural strength test, and carbon footprint calculation. This paper shows that concrete mixture with coal FABA content has a lower slump value, lower compressive strength, and generally lower flexural strength. Furthermore, the carbon footprint calculation result shows that concrete mixture with coal FABA content has lower CO2 emissions than conventional concrete. Finally, the result shows that concrete with coal FABA could be used as non-structural concrete.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43677987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.46604/ijeti.2023.10005
Hari Kumar Raveendran Pillai, Mayadevi Nanappan, Mini Valiyakulam Prabhakaran, Shenil Pushpangadan Sathyabhama
Detection, diagnosis, and localization of switching faults in electric drives are extremely important for operating a large number of induction motors in parallel. This study aims to present the design and development of switching fault detection, diagnosis, and localization strategy for the induction motor drive system (IMDS) by using a novel diagnostic variable that is derived from discrete wavelet transform (DWT) coefficients. The distinctiveness of the proposed algorithm is that it can identify single/multiple switch open and short faults and locate the defective switches using a single mathematical computation. The proposed algorithm is tested by simulation in MATLAB/Simulink and experimentally validated using the LabVIEW hardware-in-the-loop platform. The results demonstrate the robustness and effectiveness of the proposed technique in identifying and locating faults.
{"title":"A Robust Technique for Detection, Diagnosis, and Localization of Switching Faults in Electric Drives Using Discrete Wavelet Transform","authors":"Hari Kumar Raveendran Pillai, Mayadevi Nanappan, Mini Valiyakulam Prabhakaran, Shenil Pushpangadan Sathyabhama","doi":"10.46604/ijeti.2023.10005","DOIUrl":"https://doi.org/10.46604/ijeti.2023.10005","url":null,"abstract":"Detection, diagnosis, and localization of switching faults in electric drives are extremely important for operating a large number of induction motors in parallel. This study aims to present the design and development of switching fault detection, diagnosis, and localization strategy for the induction motor drive system (IMDS) by using a novel diagnostic variable that is derived from discrete wavelet transform (DWT) coefficients. The distinctiveness of the proposed algorithm is that it can identify single/multiple switch open and short faults and locate the defective switches using a single mathematical computation. The proposed algorithm is tested by simulation in MATLAB/Simulink and experimentally validated using the LabVIEW hardware-in-the-loop platform. The results demonstrate the robustness and effectiveness of the proposed technique in identifying and locating faults.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45211470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}