Pub Date : 2025-04-22DOI: 10.1016/j.watres.2025.123699
Fang-Zhou Gao , Li-Xin Hu , You-Sheng Liu , Hai-Yan Yang , Liang-Ying He , Hong Bai , Feng Liu , Xiao-Wei Jin , Guang-Guo Ying
Heavy metals can drive antibiotic resistance through co-selection mechanisms. Current knowledge predominantly focuses on relationships between metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) at the river reach scale. It remains unclear the links between MRGs and ARGs at the large river basin scale, as does the role of MRG-ARG colocalization in resistance dissemination. This study employed metagenomics to investigate the prevalence of MRGs in the Xiangjiang River, a historically heavy metal-contaminated river, and their connections with ARGs by combining resistome profiling with colocalization analyses. Results revealed the significant prevalence of MRGs in the river compared to nationwide rivers, but it showed weak correlations with metal concentrations in either water or sediment. The prevalence of MRGs in water was weakly driven by abiotic parameters, but was strongly influenced by microbial composition. The proportion of water MRGs attributable to sewage sources was tightly positively correlated with MRG abundances, suggesting the significant contribution of external waste input. Plasmid-originated MRGs were more abundant in water, while chromosomal MRGs dominated in sediment, indicating medium-specific transfer dynamics. The profile of MRGs were strongly correlated with that of ARGs in both media, encompassing several clinically high-risk ARGs. However, MRG-ARG colocalization events were rarely detected (eight instances in total), consistent with low frequencies in nationwide rivers (3.5 % in sediment; 2.0 % in water), implying their limited roles in resistance dissemination. Overall, the findings enhance our understanding of riverine metal resistome and its associations with antibiotic resistome, while emphasize the rare presence of MRG-ARG colocalization in riverine environments.
{"title":"Unveiling the prevalence of metal resistance genes and their associations with antibiotic resistance genes in heavy metal-contaminated rivers","authors":"Fang-Zhou Gao , Li-Xin Hu , You-Sheng Liu , Hai-Yan Yang , Liang-Ying He , Hong Bai , Feng Liu , Xiao-Wei Jin , Guang-Guo Ying","doi":"10.1016/j.watres.2025.123699","DOIUrl":"10.1016/j.watres.2025.123699","url":null,"abstract":"<div><div>Heavy metals can drive antibiotic resistance through co-selection mechanisms. Current knowledge predominantly focuses on relationships between metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) at the river reach scale. It remains unclear the links between MRGs and ARGs at the large river basin scale, as does the role of MRG-ARG colocalization in resistance dissemination. This study employed metagenomics to investigate the prevalence of MRGs in the Xiangjiang River, a historically heavy metal-contaminated river, and their connections with ARGs by combining resistome profiling with colocalization analyses. Results revealed the significant prevalence of MRGs in the river compared to nationwide rivers, but it showed weak correlations with metal concentrations in either water or sediment. The prevalence of MRGs in water was weakly driven by abiotic parameters, but was strongly influenced by microbial composition. The proportion of water MRGs attributable to sewage sources was tightly positively correlated with MRG abundances, suggesting the significant contribution of external waste input. Plasmid-originated MRGs were more abundant in water, while chromosomal MRGs dominated in sediment, indicating medium-specific transfer dynamics. The profile of MRGs were strongly correlated with that of ARGs in both media, encompassing several clinically high-risk ARGs. However, MRG-ARG colocalization events were rarely detected (eight instances in total), consistent with low frequencies in nationwide rivers (3.5 % in sediment; 2.0 % in water), implying their limited roles in resistance dissemination. Overall, the findings enhance our understanding of riverine metal resistome and its associations with antibiotic resistome, while emphasize the rare presence of MRG-ARG colocalization in riverine environments.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123699"},"PeriodicalIF":11.4,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.watres.2025.123687
Xingqi Zhu, Lu Jiang, Yechao Tian, Leyi Wang, Yang Pan, Wentao Li, Aimin Li
Anion exchange resins are widely employed in wastewater and drinking water treatment plants to remove dissolved organic matter (DOM). However, the degradation of resin performance necessitates the discontinuation of these treatment projects, resulting in the idling of underperforming resins, referred to as waste anion exchange resins (WAER). Given the substantial investment in operational costs, determining how to economically utilize WAER is essential for restarting the treatment projects. Therefore, this study proposed a strategy for repurposing WAER to construct a biofilter for DOM removal. A biofilter, termed biological anion exchange resin (BAER), was developed using WAER and compared with two conventional biofilters: biological activated carbon (BAC) and sand filter. After the acclimatization period, the BAER biofilter achieved a removal of up to 21.42% of dissolved organic carbon (DOC), which is 5.8 times greater than the removal rate of the sand filter and comparable to the BAC. Notably, BAER exhibited the highest removal rate of aromatics, achieving 41.04% UV254 removal, which are precursors to disinfection byproducts (DBPs). Consequently, BAER demonstrated superior control of DBPs, with a removal efficiency of 39.59%. Additionally, BAER demonstrated effective removal of humic substances due to the bioregeneration of its adsorption sites, which led to significant differences in both the structural composition and functional expression of the biological community in BAER compared to other biofilters. This study also revealed that the bioregenerated adsorption sites primarily capture DOM through electrostatic attraction rather than ion exchange. Overall, these findings confirm the promising application of the BAER biofilter constructed with WAER and offer valuable insights into the associated removal processes.
{"title":"Strategy for repurposing waste anion exchange resins to construct a biofilter for removing dissolved organic matter: performance and mechanism","authors":"Xingqi Zhu, Lu Jiang, Yechao Tian, Leyi Wang, Yang Pan, Wentao Li, Aimin Li","doi":"10.1016/j.watres.2025.123687","DOIUrl":"https://doi.org/10.1016/j.watres.2025.123687","url":null,"abstract":"Anion exchange resins are widely employed in wastewater and drinking water treatment plants to remove dissolved organic matter (DOM). However, the degradation of resin performance necessitates the discontinuation of these treatment projects, resulting in the idling of underperforming resins, referred to as waste anion exchange resins (WAER). Given the substantial investment in operational costs, determining how to economically utilize WAER is essential for restarting the treatment projects. Therefore, this study proposed a strategy for repurposing WAER to construct a biofilter for DOM removal. A biofilter, termed biological anion exchange resin (BAER), was developed using WAER and compared with two conventional biofilters: biological activated carbon (BAC) and sand filter. After the acclimatization period, the BAER biofilter achieved a removal of up to 21.42% of dissolved organic carbon (DOC), which is 5.8 times greater than the removal rate of the sand filter and comparable to the BAC. Notably, BAER exhibited the highest removal rate of aromatics, achieving 41.04% UV<sub>254</sub> removal, which are precursors to disinfection byproducts (DBPs). Consequently, BAER demonstrated superior control of DBPs, with a removal efficiency of 39.59%. Additionally, BAER demonstrated effective removal of humic substances due to the bioregeneration of its adsorption sites, which led to significant differences in both the structural composition and functional expression of the biological community in BAER compared to other biofilters. This study also revealed that the bioregenerated adsorption sites primarily capture DOM through electrostatic attraction rather than ion exchange. Overall, these findings confirm the promising application of the BAER biofilter constructed with WAER and offer valuable insights into the associated removal processes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"68 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-21DOI: 10.1016/j.watres.2025.123696
Run Zhou , Kecheng Zhu , Zhuo Gao , Xuemin Feng , Qian Hu , Lingyan Zhu
The high occurrence of microplastics (MPs) in water treatment facilities may complicate the source-control of disinfection by-products. Herein, we reported that the carcinogenic N-nitrosamines, such as N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), were generated during monochloramine disinfection of water in which nitrogen-containing microplastics (N-MPs, such as polyamide and polyacrylonitrile) were present. The precursors of NDMA and NDEA were mainly derived from the dissolved organic matter released from N-MPs (N-MP-DOM), which were characteristic of a significantly higher proportion of polar and non-cationic fractions, favouring the N-nitrosamine formation. The results of excitation-emission-matrix spectra and orbitrap-mass spectrometry indicated that the polar components were mainly CHON and highly hydrogen-saturated molecules (H/C ≥ 1.5) (such as protein-like substrates), which are potential precursors of N-nitrosamines. Further mass difference network analysis revealed that the reactions of amine and nitro/nitroso groups in the precursors made predominant contribution to the generation of N-nitrosamines. Two potent NDMA precursors bearing a (CH3)2N–R structure were identified based on the diagnostic fragments (e.g., 45.0578 Da and m/z 58.0651) and in silico fragmentation tool (MetFrag 2.2) in MS2 spectra. Our findings provide valuable insights into understanding the potential risks of N-MPs due to monochloramine disinfection in water treatment systems.
{"title":"Formation mechanisms of carcinogenic N-nitrosamines from dissolved organic matter derived from nitrogen-containing microplastics during chloramine disinfection","authors":"Run Zhou , Kecheng Zhu , Zhuo Gao , Xuemin Feng , Qian Hu , Lingyan Zhu","doi":"10.1016/j.watres.2025.123696","DOIUrl":"10.1016/j.watres.2025.123696","url":null,"abstract":"<div><div>The high occurrence of microplastics (MPs) in water treatment facilities may complicate the source-control of disinfection by-products. Herein, we reported that the carcinogenic N-nitrosamines, such as N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), were generated during monochloramine disinfection of water in which nitrogen-containing microplastics (N-MPs, such as polyamide and polyacrylonitrile) were present. The precursors of NDMA and NDEA were mainly derived from the dissolved organic matter released from N-MPs (N-MP-DOM), which were characteristic of a significantly higher proportion of polar and non-cationic fractions, favouring the N-nitrosamine formation. The results of excitation-emission-matrix spectra and orbitrap-mass spectrometry indicated that the polar components were mainly CHON and highly hydrogen-saturated molecules (H/<em>C</em> ≥ 1.5) (such as protein-like substrates), which are potential precursors of N-nitrosamines. Further mass difference network analysis revealed that the reactions of amine and nitro/nitroso groups in the precursors made predominant contribution to the generation of N-nitrosamines. Two potent NDMA precursors bearing a (CH<sub>3</sub>)<sub>2</sub>N–R structure were identified based on the diagnostic fragments (e.g., 45.0578 Da and <em>m/z</em> 58.0651) and <em>in silico</em> fragmentation tool (MetFrag 2.2) in MS<sup>2</sup> spectra. Our findings provide valuable insights into understanding the potential risks of N-MPs due to monochloramine disinfection in water treatment systems.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123696"},"PeriodicalIF":11.4,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anaerobic membrane distillation bioreactor (AnMDBR), which possesses several distinctive advantages such as high-quality water production, desalination and methanogenesis, shows enormous potential in saline organic wastewater (SAOW) treatment. However, salt accumulation in the reactor may deactivate anaerobic organisms and impede methanogenesis. In this work, effects of salt accumulation were comprehensively investigated regarding pollutant removal performance and methanogenesis in AnMDBRs over a 30-d operation. The investigative influent salinity was in the range of 0.0% - 2.0%. The results demonstrated that AnMDBR achieved excellent chemical oxygen demand (COD) rejection (> 97%) in the stabilization phase regardless of influent salinity. Moreover, the methane production was as high as 267 mL/gCOD, when the influent salinity did not exceed 1.0%. When the influent salinity increased to 2.0%, the methane production was significantly restricted, because salt stress altered the microbial community, resulting in a more sensitive and fragile ecosystem. Thermophilic and halophilic bacteria genera (Bacillus and Caproiciproducens) were selectively enriched in AnMDBR, promoting short-chain fatty acids generation. Meanwhile, these bacteria severely suppressed methanogenic archaea Methanosarcina, leading to an 80% reduction in species abundance compared to a robust reactor. Furthermore, the salt stress inactivated key enzymes (mtr and mcr), disrupting methanogenic metabolism.
{"title":"Anaerobic Membrane Distillation Bioreactors for saline organic wastewater treatment: Impacts of Salt Accumulation on Methanogenesis and Microbial Community","authors":"Zhimeng Yang, Linjiang Jiang, Haiyang Yang, Haiqing Chang, Yuxuan Wan, Huarong Yu, Hongwei Rong, Fangshu Qu","doi":"10.1016/j.watres.2025.123695","DOIUrl":"https://doi.org/10.1016/j.watres.2025.123695","url":null,"abstract":"Anaerobic membrane distillation bioreactor (AnMDBR), which possesses several distinctive advantages such as high-quality water production, desalination and methanogenesis, shows enormous potential in saline organic wastewater (SAOW) treatment. However, salt accumulation in the reactor may deactivate anaerobic organisms and impede methanogenesis. In this work, effects of salt accumulation were comprehensively investigated regarding pollutant removal performance and methanogenesis in AnMDBRs over a 30-d operation. The investigative influent salinity was in the range of 0.0% - 2.0%. The results demonstrated that AnMDBR achieved excellent chemical oxygen demand (COD) rejection (> 97%) in the stabilization phase regardless of influent salinity. Moreover, the methane production was as high as 267 mL/gCOD, when the influent salinity did not exceed 1.0%. When the influent salinity increased to 2.0%, the methane production was significantly restricted, because salt stress altered the microbial community, resulting in a more sensitive and fragile ecosystem. Thermophilic and halophilic bacteria genera (<em>Bacillus</em> and <em>Caproiciproducens</em>) were selectively enriched in AnMDBR, promoting short-chain fatty acids generation. Meanwhile, these bacteria severely suppressed methanogenic archaea <em>Methanosarcina</em>, leading to an 80% reduction in species abundance compared to a robust reactor. Furthermore, the salt stress inactivated key enzymes (<em>mtr</em> and <em>mcr</em>), disrupting methanogenic metabolism.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"43 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143858137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pervasive contamination of aquatic ecosystems by microplastics represented a critical environmental challenge. While algal-bacterial symbiosis systems demonstrated potential for microplastic aggregation via extracellular polymeric substances (EPS), prior studies have focused on temporal dynamics rather than spatial heterogeneity in phycosphere. This study systematically investigated the adsorption mechanisms of Polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyethylene (PE) and polystyrene (PS) across stratified EPS fractions, tightly bound (TB-EPS), loosely bound (LB-EPS), and soluble (S-EPS), in phycosphere. Combining controlled aggregation assays with multimodal characterization, we revealed a hierarchical spatial framework governing EPS-microplastic interactions. Adsorption efficiency governed by polymer-specific interfacial energies and EPS organic composition. EPS at distinct hierarchical levels exhibited material-specific adsorption preferences for microplastics. PVC and PET demonstrated higher affinities for hydrocarbon components, while PE and PS were preferentially captured through interactions with polysaccharides and amide I groups, respectively. The adsorption and aggregation behaviors between EPS and microplastics in the phycosphere promoted eco-corona formation and induced the Trojan horse effect. However, the energy barrier of interaction forces and EPS spatial configurations jointly governed the hierarchical stabilization of polymer-specific microplastics. PVC and PET primarily colonized the outermost S-EPS layer, PS preferentially accumulated in the intermediate LB-EPS layer, and PE penetrated into the innermost TB-EPS layer. These findings addressed a key knowledge gap by delineating the ecological niche-specific distribution of EPS-microplastic binding, offering novel insights for optimizing bioremediation strategies and informing regulatory measures targeting particulate plastic pollution in hydrologic systems.
{"title":"Spatial heterogeneity of EPS-mediated microplastic aggregation in phycosphere shapes polymer-specific Trojan horse effects","authors":"Xuan Fan, Chen Wang, Lingyu Kong, Jingyi Wang, Yixiao Tan, Zhuodong Yu, Xiangyang Xu, Liang Zhu","doi":"10.1016/j.watres.2025.123686","DOIUrl":"https://doi.org/10.1016/j.watres.2025.123686","url":null,"abstract":"The pervasive contamination of aquatic ecosystems by microplastics represented a critical environmental challenge. While algal-bacterial symbiosis systems demonstrated potential for microplastic aggregation via extracellular polymeric substances (EPS), prior studies have focused on temporal dynamics rather than spatial heterogeneity in phycosphere. This study systematically investigated the adsorption mechanisms of Polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyethylene (PE) and polystyrene (PS) across stratified EPS fractions, tightly bound (TB-EPS), loosely bound (LB-EPS), and soluble (S-EPS), in phycosphere. Combining controlled aggregation assays with multimodal characterization, we revealed a hierarchical spatial framework governing EPS-microplastic interactions. Adsorption efficiency governed by polymer-specific interfacial energies and EPS organic composition. EPS at distinct hierarchical levels exhibited material-specific adsorption preferences for microplastics. PVC and PET demonstrated higher affinities for hydrocarbon components, while PE and PS were preferentially captured through interactions with polysaccharides and amide I groups, respectively. The adsorption and aggregation behaviors between EPS and microplastics in the phycosphere promoted eco-corona formation and induced the Trojan horse effect. However, the energy barrier of interaction forces and EPS spatial configurations jointly governed the hierarchical stabilization of polymer-specific microplastics. PVC and PET primarily colonized the outermost S-EPS layer, PS preferentially accumulated in the intermediate LB-EPS layer, and PE penetrated into the innermost TB-EPS layer. These findings addressed a key knowledge gap by delineating the ecological niche-specific distribution of EPS-microplastic binding, offering novel insights for optimizing bioremediation strategies and informing regulatory measures targeting particulate plastic pollution in hydrologic systems.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"91 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-19DOI: 10.1016/j.watres.2025.123679
Karla V.L. Lima, Raquel F. Pupo Nogueira, Érika M.L. Sousa, Mário M.Q. Simões, Diana L.D. Lima, Vânia Calisto
A pulp and paper industry waste-based powder activated carbon combined with Fe nanoparticles (PAC-Fe) was obtained through a simple one-step synthesis for application in heterogeneous photo-Fenton treatment. PAC-Fe was characterized and applied for the removal of sulfamethoxazole (SMX) and trimethoprim (TMP) from water at circumneutral pH and under simulated solar irradiation. The contribution of the different processes involved in the overall removal of the contaminants (adsorption, Fenton and photo-Fenton) was evaluated. Degradation in both Fenton and photo-Fenton processes were fitted to the pseudo first-order and BMG kinetic models. Photo-Fenton resulted in the complete removal of SMX and TMP from water within 20 min. In contrast, in the absence of the material (H2O2 + UV), only 49 % and 59 % of SMX and TMP were removed, respectively, after the same time. The synthesis procedure allowed to obtain a PAC-Fe with a satisfactory saturation magnetization (21.14 emu g-1) and stability without any detectable leaching of iron during its application. The magnetic properties of PAC-Fe allowed for easy separation from the treated water, with degradation percentage above 50 % and 70 %, for SMX and TMP, respectively, after five consecutive cycles. The removal mechanisms involved a combination of different processes, with heterogeneous photo-Fenton and Fenton proving to be the most significant, followed by adsorption and photo-assisted peroxidation to a smaller extent. Eight transformation products of SMX were identified and fourteen for TMP, which were formed mainly by hydroxylation. The results achieved at pH close to neutral show that the PAC-Fe can be relevant for application in wastewater treatment.
{"title":"Magnetic activated carbon for improving the removal of antibiotics by heterogeneous solar photo-Fenton at circumneutral pH","authors":"Karla V.L. Lima, Raquel F. Pupo Nogueira, Érika M.L. Sousa, Mário M.Q. Simões, Diana L.D. Lima, Vânia Calisto","doi":"10.1016/j.watres.2025.123679","DOIUrl":"https://doi.org/10.1016/j.watres.2025.123679","url":null,"abstract":"A pulp and paper industry waste-based powder activated carbon combined with Fe nanoparticles (PAC-Fe) was obtained through a simple one-step synthesis for application in heterogeneous photo-Fenton treatment. PAC-Fe was characterized and applied for the removal of sulfamethoxazole (SMX) and trimethoprim (TMP) from water at circumneutral pH and under simulated solar irradiation. The contribution of the different processes involved in the overall removal of the contaminants (adsorption, Fenton and photo-Fenton) was evaluated. Degradation in both Fenton and photo-Fenton processes were fitted to the pseudo first-order and BMG kinetic models. Photo-Fenton resulted in the complete removal of SMX and TMP from water within 20 min. In contrast, in the absence of the material (H<sub>2</sub>O<sub>2</sub> + UV), only 49 % and 59 % of SMX and TMP were removed, respectively, after the same time. The synthesis procedure allowed to obtain a PAC-Fe with a satisfactory saturation magnetization (21.14 emu g<sup>-1</sup>) and stability without any detectable leaching of iron during its application. The magnetic properties of PAC-Fe allowed for easy separation from the treated water, with degradation percentage above 50 % and 70 %, for SMX and TMP, respectively, after five consecutive cycles. The removal mechanisms involved a combination of different processes, with heterogeneous photo-Fenton and Fenton proving to be the most significant, followed by adsorption and photo-assisted peroxidation to a smaller extent. Eight transformation products of SMX were identified and fourteen for TMP, which were formed mainly by hydroxylation. The results achieved at pH close to neutral show that the PAC-Fe can be relevant for application in wastewater treatment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"41 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-19DOI: 10.1016/j.watres.2025.123670
Jinming Han , Bohao Lv , Jin Wang, Lei Lei, Yanzheng Liu, Shangzhen Li, Kexin Wang, Jihao Liu, Zhiyan Liu, Lei Wang
The discharge of industrial wastewater has surged to unprecedented levels due to rapid industrialization. Developing effective strategies for the concurrent recovery of resources and energy from wastewater presents a promising pathway toward sustainable development. In this study, a composite nanochannel membrane with light-boosted ion separation capabilities was designed for the concurrent recovery of acid and salinity gradient energy from metallurgical industrial wastewater. The membrane demonstrated remarkable photothermal conversion efficiency, utilizing the synergy between localized surface plasmon resonance of Ti3C2Tx component and molecular vibration of Cu-TCPP component to achieve rapid temperature rise from room temperature to 139.5 °C within 60 s under illumination. This photothermal effect created an effective temperature gradient within nanochannels, enhancing the separation efficiency for both H⁺/Cl⁻ and H⁺/Fe2+ pairs by amplifying the differences in diffusion energy barriers. When applied to acidic wastewater, the membrane achieved an outstanding salinity gradient energy conversion power density of 7.31 W/m2 over an expanded testing area, along with a H+/Fe2+ selectivity of 64.18 for acid recovery. Both energy harvesting and acid recovery performance surpass those of state-of-the-art membranes under identical testing conditions. This work presents a critical strategy for energy conversion and resource recovery from wastewater, contributing to sustainable solutions for energy, environmental, and resource challenges.
{"title":"Light-boosted simultaneous acid and salinity gradient energy recovery from wastewater via a nanochannel membrane with multi-objective ion separation ability","authors":"Jinming Han , Bohao Lv , Jin Wang, Lei Lei, Yanzheng Liu, Shangzhen Li, Kexin Wang, Jihao Liu, Zhiyan Liu, Lei Wang","doi":"10.1016/j.watres.2025.123670","DOIUrl":"10.1016/j.watres.2025.123670","url":null,"abstract":"<div><div>The discharge of industrial wastewater has surged to unprecedented levels due to rapid industrialization. Developing effective strategies for the concurrent recovery of resources and energy from wastewater presents a promising pathway toward sustainable development. In this study, a composite nanochannel membrane with light-boosted ion separation capabilities was designed for the concurrent recovery of acid and salinity gradient energy from metallurgical industrial wastewater. The membrane demonstrated remarkable photothermal conversion efficiency, utilizing the synergy between localized surface plasmon resonance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> component and molecular vibration of Cu-TCPP component to achieve rapid temperature rise from room temperature to 139.5 °C within 60 s under illumination. This photothermal effect created an effective temperature gradient within nanochannels, enhancing the separation efficiency for both H⁺/Cl⁻ and H⁺/Fe<sup>2+</sup> pairs by amplifying the differences in diffusion energy barriers. When applied to acidic wastewater, the membrane achieved an outstanding salinity gradient energy conversion power density of 7.31 W/m<sup>2</sup> over an expanded testing area, along with a H<sup>+</sup>/Fe<sup>2+</sup> selectivity of 64.18 for acid recovery. Both energy harvesting and acid recovery performance surpass those of state-of-the-art membranes under identical testing conditions. This work presents a critical strategy for energy conversion and resource recovery from wastewater, contributing to sustainable solutions for energy, environmental, and resource challenges.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123670"},"PeriodicalIF":11.4,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-19DOI: 10.1016/j.watres.2025.123684
Fabien Cholet, Marta Vignola, Dominic Quinn, Umer Z. Ijaz, William T. Sloan, Cindy J. Smith
Biofiltration, a sustainable water treatment technology relying on microbial processes to remove contaminants, offers a promising approach to achieving the United Nations Sustainable Goal 6 of universal access to clean water and sanitation by 2030. However, a key barrier to optimising biofiltration is the incomplete understanding of the biological mechanisms governing its performance. Despite numerous studies examining how engineering decisions impact biofilter performance and the associated microbiome, the significant influence of geographical location on microbial communities raises the question of whether these findings are universally applicable or location-specific. To address this, we conducted a meta-analysis of 15 biofilter microbiomes using 16S rRNA high-throughput sequencing (HTS) data, mainly originating from rapid gravity and/or granular activated carbon (GAC) filters. Despite different types and scales, results highlight geographical location as the major contributor to microbiome dissimilarity in biofilter samples (Top and Bottom) (R2∼ 0.5; p-value<0.001). The same was observed for influent waters (PERMANOVA R2= 0.76; p-value<0.001), indicating location-specific microbiomes as opposed to differences driven by different biofilter operating parameters. Irrespective of location, the higher percentage of the microbiome was assembled through deterministic processes (∼55 %) compared to stochastic processes (∼45 %). Finally, our findings suggest that the depth stratification of biofilter microbiomes may be associated with the enrichment of taxa capable of metabolising more complex organic carbon in deeper filter layers (10 enriched pathways in biofilter Bottom layers compared to 3 at the Top). These insights provide a broader understanding of biofiltration microbiomes and offer possible research avenues for targeted and effective biofilter design strategies.
{"title":"Microbial ecology of drinking water biofiltration based on 16S rRNA sequencing: A meta-analysis","authors":"Fabien Cholet, Marta Vignola, Dominic Quinn, Umer Z. Ijaz, William T. Sloan, Cindy J. Smith","doi":"10.1016/j.watres.2025.123684","DOIUrl":"10.1016/j.watres.2025.123684","url":null,"abstract":"<div><div>Biofiltration, a sustainable water treatment technology relying on microbial processes to remove contaminants, offers a promising approach to achieving the United Nations Sustainable Goal 6 of universal access to clean water and sanitation by 2030. However, a key barrier to optimising biofiltration is the incomplete understanding of the biological mechanisms governing its performance. Despite numerous studies examining how engineering decisions impact biofilter performance and the associated microbiome, the significant influence of geographical location on microbial communities raises the question of whether these findings are universally applicable or location-specific. To address this, we conducted a meta-analysis of 15 biofilter microbiomes using <em>16S rRNA</em> high-throughput sequencing (HTS) data, mainly originating from rapid gravity and/or granular activated carbon (GAC) filters. Despite different types and scales, results highlight geographical location as the major contributor to microbiome dissimilarity in biofilter samples (Top and Bottom) (R<sup>2</sup>∼ 0.5; <em>p-</em>value<0.001). The same was observed for influent waters (PERMANOVA R<sup>2</sup>= 0.76; <em>p-</em>value<0.001), indicating location-specific microbiomes as opposed to differences driven by different biofilter operating parameters. Irrespective of location, the higher percentage of the microbiome was assembled through deterministic processes (∼55 %) compared to stochastic processes (∼45 %). Finally, our findings suggest that the depth stratification of biofilter microbiomes may be associated with the enrichment of taxa capable of metabolising more complex organic carbon in deeper filter layers (10 enriched pathways in biofilter Bottom layers compared to 3 at the Top). These insights provide a broader understanding of biofiltration microbiomes and offer possible research avenues for targeted and effective biofilter design strategies.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123684"},"PeriodicalIF":11.4,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lakes are integral to the carbon cycle through the processing of dissolved organic matter (DOM). However, the specific contributions of various aquatic plants to carbon emissions during their decomposition remain inadequately understood. In this study, decomposition experiments were performed on three aquatic plants—algae, Phragmites australis (PA), and Potamogeton crispus L. (PC)—using advanced techniques, including FT-ICR-MS and metagenomics, to investigate the mechanisms of carbon dioxide (CO2) and methane (CH4) emissions. The results indicate that algae exhibit a substantial potential for CO2 emissions, with emissions reaching up to 2,193 μmol·g–1. Conversely, PA contributes the highest CH4 emissions, reaching up to 2,397 μmol·g–1. Factors such as the protein-like content and aromaticity of DOM molecules significantly influence emission levels. DOM with lower aromaticity undergoes easier decomposition in the first 6 days, leading to increased CO2 production. Elevated C/N and C/P ratios in plants enhance the abundance of methanogenic bacteria and genes. Surplus carbon will be mineralized under anaerobic conditions, giving rise to mineralization of organics to CH₄. These findings elucidate the mechanisms underlying CO2 and CH4 emissions during the decomposition of different aquatic plants and provide valuable insights for lake water environment management.
{"title":"The components and aromaticity of dissolved organic matter derived from aquatic plants determine the CO2 and CH4 emission potential","authors":"Kun Wang, Wanchang Ding, Xiaosong Yang, Weiwei Lü, Haoyu Ren, Xia Jiang","doi":"10.1016/j.watres.2025.123685","DOIUrl":"https://doi.org/10.1016/j.watres.2025.123685","url":null,"abstract":"Lakes are integral to the carbon cycle through the processing of dissolved organic matter (DOM). However, the specific contributions of various aquatic plants to carbon emissions during their decomposition remain inadequately understood. In this study, decomposition experiments were performed on three aquatic plants—algae, <em>Phragmites australis</em> (PA), and <em>Potamogeton crispus L</em>. (PC)—using advanced techniques, including FT-ICR-MS and metagenomics, to investigate the mechanisms of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) emissions. The results indicate that algae exhibit a substantial potential for CO<sub>2</sub> emissions, with emissions reaching up to 2,193 μmol·g<sup>–1</sup>. Conversely, PA contributes the highest CH<sub>4</sub> emissions, reaching up to 2,397 μmol·g<sup>–1</sup>. Factors such as the protein-like content and aromaticity of DOM molecules significantly influence emission levels. DOM with lower aromaticity undergoes easier decomposition in the first 6 days, leading to increased CO<sub>2</sub> production. Elevated C/N and C/P ratios in plants enhance the abundance of methanogenic bacteria and genes. Surplus carbon will be mineralized under anaerobic conditions, giving rise to mineralization of organics to CH₄. These findings elucidate the mechanisms underlying CO<sub>2</sub> and CH<sub>4</sub> emissions during the decomposition of different aquatic plants and provide valuable insights for lake water environment management.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"25 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Real-time control (RTC) is an effective method used in urban drainage systems (UDS) for reducing flooding and combined sewer overflows. Recently, RTC based on Deep Reinforcement Learning (DRL) has been proven to have various advantages compared to traditional RTC methods. However, the existing DRL methods solely focus on reducing the total amount of CSO discharge and flooding, ignoring the UDS resilience. Here, we develop new DRL models trained by two new reward functions to enhance the resilience of UDS. These models are tested on a UDS in eastern China, and found to enhance UDS resilience and, simultaneously, reduce the total amount of flooding and CSO discharges. Their performance is influenced by the rainfalls and the DRL types. Specifically, different rainfalls lead to different resilience performance curves and DRL model generalization. The value-based DRL model trained with the duration-weighted reward achieves the best performance in the case study.
{"title":"Enhancing the resilience of urban drainage system using deep reinforcement learning","authors":"Wenchong Tian , Zhiyu Zhang , Kunlun Xin , Zhenliang Liao , Zhiguo Yuan","doi":"10.1016/j.watres.2025.123681","DOIUrl":"10.1016/j.watres.2025.123681","url":null,"abstract":"<div><div>Real-time control (RTC) is an effective method used in urban drainage systems (UDS) for reducing flooding and combined sewer overflows. Recently, RTC based on Deep Reinforcement Learning (DRL) has been proven to have various advantages compared to traditional RTC methods. However, the existing DRL methods solely focus on reducing the total amount of CSO discharge and flooding, ignoring the UDS resilience. Here, we develop new DRL models trained by two new reward functions to enhance the resilience of UDS. These models are tested on a UDS in eastern China, and found to enhance UDS resilience and, simultaneously, reduce the total amount of flooding and CSO discharges. Their performance is influenced by the rainfalls and the DRL types. Specifically, different rainfalls lead to different resilience performance curves and DRL model generalization. The value-based DRL model trained with the duration-weighted reward achieves the best performance in the case study.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123681"},"PeriodicalIF":11.4,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}