首页 > 最新文献

Semiconductor Physics Quantum Electronics & Optoelectronics最新文献

英文 中文
Time-Domain Measurements of Light Propagation in Dielectric Spheres 介电球中光传播的时域测量
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.8
W. Whitten, R. Shaw, M. Barnes, J. Ramsey
There has been increasing fundamental and practical interest in the properties of dielectric microspheres in recent years. High-Q structural resonances that occur when the round trip optical path is an integral number of wavelengths can be exploited for quantum measurement and the observation of cavity QED effects. The spherical microparticle is also an important component of the earth’s atmosphere, contributing both to visual displays and global change. In this paper, we describe theoretical and experimental applications of optical pulse techniques to the characterization of dielectric spheres.
近年来,人们对介电微球的性质越来越感兴趣。当往返光路为整数波长时发生的高q结构共振可以用于量子测量和观察腔QED效应。球形微粒也是地球大气的重要组成部分,对视觉显示和全球变化都有贡献。本文介绍了光脉冲技术在表征介电球中的理论和实验应用。
{"title":"Time-Domain Measurements of Light Propagation in Dielectric Spheres","authors":"W. Whitten, R. Shaw, M. Barnes, J. Ramsey","doi":"10.1364/qo.1997.qthe.8","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.8","url":null,"abstract":"There has been increasing fundamental and practical interest in the properties of dielectric microspheres in recent years. High-Q structural resonances that occur when the round trip optical path is an integral number of wavelengths can be exploited for quantum measurement and the observation of cavity QED effects. The spherical microparticle is also an important component of the earth’s atmosphere, contributing both to visual displays and global change. In this paper, we describe theoretical and experimental applications of optical pulse techniques to the characterization of dielectric spheres.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81956338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coulomb Contributions to Exciton Saturation in Room Temperature GaAs-AlxGa1-xAs Multiple Quantum Wells 库仑对室温GaAs-AlxGa1-xAs多量子阱中激子饱和的贡献
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthd.3
M. Holden, GT Kennedy, A. Miller
A number of optoelectronic device applications of quantum well semiconductors depend on the saturation of exciton absorption features. Studies of exciton saturation at room temperature have resolved exciton-exciton interactions on timescales less than 300fs, and two distinct mechanisms based on phase space filling (PSF) and Coulomb effects caused by free carriers on longer timescales. Nonequilibrium carrier distributions were originally employed to separate Pauli exclusion and long range Coulomb effects [1]. More recently, optically induced circular dichroism was used to identify PSF and Coulomb exchange contributions [2]. However, Coulomb contributions can arise from both screening and collisional broadening. In this work, we have extended the use of circularly polarised ultrashort pulses to distinguish the two related Coulomb effects of screening and broadening and in addition, compared the relative contributions of excitons and free carriers to Coulomb contributions.
量子阱半导体的许多光电器件应用依赖于激子吸收特性的饱和。室温下激子饱和的研究已经解决了小于300fs时间尺度上激子-激子相互作用的问题,以及在更长的时间尺度上基于相空间填充(PSF)和自由载流子引起的库仑效应的两种不同机制。非平衡载流子分布最初用于分离泡利不相容和远距离库仑效应[1]。最近,光诱导圆二色性被用来确定PSF和库仑交换贡献[2]。然而,屏蔽和碰撞展宽都可能产生库仑贡献。在这项工作中,我们扩展了圆偏振超短脉冲的使用,以区分筛选和展宽两种相关的库仑效应,此外,比较了激子和自由载流子对库仑贡献的相对贡献。
{"title":"Coulomb Contributions to Exciton Saturation in Room Temperature GaAs-AlxGa1-xAs Multiple Quantum Wells","authors":"M. Holden, GT Kennedy, A. Miller","doi":"10.1364/qo.1997.qthd.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qthd.3","url":null,"abstract":"A number of optoelectronic device applications of quantum well semiconductors depend on the saturation of exciton absorption features. Studies of exciton saturation at room temperature have resolved exciton-exciton interactions on timescales less than 300fs, and two distinct mechanisms based on phase space filling (PSF) and Coulomb effects caused by free carriers on longer timescales. Nonequilibrium carrier distributions were originally employed to separate Pauli exclusion and long range Coulomb effects [1]. More recently, optically induced circular dichroism was used to identify PSF and Coulomb exchange contributions [2]. However, Coulomb contributions can arise from both screening and collisional broadening. In this work, we have extended the use of circularly polarised ultrashort pulses to distinguish the two related Coulomb effects of screening and broadening and in addition, compared the relative contributions of excitons and free carriers to Coulomb contributions.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76856268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picosecond Switching using Resonant Nonlinearities in a Quantum Well Device 在量子阱器件中使用共振非线性的皮秒开关
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.1
P. LiKamWa, A. Kan’an
Resonant nonlinearities in quantum well structures arise from exciton saturation and band-filling due to photogeneration of free carriers. Through the Kramers-Kronig’s relation, a corresponding change in refractive index occurs close to the bandgap energy where the absorption change occurs. The change in refractive index can effectively be used to produce optical switching in devices that can convert phase changes into intensity changes or directional switching1. Although the turn-on of carrier induced nonlinearities is effectively an instantaneous effect which follows the photon pulse, these photogenerated carriers tend to linger on well after the photon pulse has passed. The recovery time is usually governed by carrier relaxation times2,3 or carrier removal rates4. In this work, we demonstrate all-optical switching in a Y-junction device in which two control optical pulses are used for each switching event. The first control pulse flips the state of the switch while the second control pulse turns the switch back to its initial state. The switch dynamics is related to other carrier induced devices demonstrated by other independent researchers5,6.
量子阱结构中的共振非线性是由自由载流子的光产生引起的激子饱和和带填充引起的。根据Kramers-Kronig关系,在发生吸收变化的带隙能量附近,折射率会发生相应的变化。折射率的变化可以有效地用于在可以将相位变化转换为强度变化或方向开关的器件中产生光开关1。虽然载流子诱导非线性的开启实际上是随光子脉冲而发生的瞬时效应,但这些光产生的载流子往往在光子脉冲通过后仍能很好地存在。恢复时间通常由载流子弛豫时间2,3或载流子去除率决定。在这项工作中,我们演示了在y结器件中的全光开关,其中每个开关事件使用两个控制光脉冲。第一控制脉冲翻转所述开关的状态,而第二控制脉冲将所述开关转回其初始状态。开关动力学与其他独立研究人员证明的其他载流子诱导器件有关5,6。
{"title":"Picosecond Switching using Resonant Nonlinearities in a Quantum Well Device","authors":"P. LiKamWa, A. Kan’an","doi":"10.1364/qo.1997.qthe.1","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.1","url":null,"abstract":"Resonant nonlinearities in quantum well structures arise from exciton saturation and band-filling due to photogeneration of free carriers. Through the Kramers-Kronig’s relation, a corresponding change in refractive index occurs close to the bandgap energy where the absorption change occurs. The change in refractive index can effectively be used to produce optical switching in devices that can convert phase changes into intensity changes or directional switching1. Although the turn-on of carrier induced nonlinearities is effectively an instantaneous effect which follows the photon pulse, these photogenerated carriers tend to linger on well after the photon pulse has passed. The recovery time is usually governed by carrier relaxation times2,3 or carrier removal rates4. In this work, we demonstrate all-optical switching in a Y-junction device in which two control optical pulses are used for each switching event. The first control pulse flips the state of the switch while the second control pulse turns the switch back to its initial state. The switch dynamics is related to other carrier induced devices demonstrated by other independent researchers5,6.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72460008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microcavity Semiconductor Lasers: Parameter Evaluation and Performances 微腔半导体激光器:参数评价与性能
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qfb.3
G. Bava, P. Debernardi
Microcavity lasers have been shown to be promising devices owing to their characteristics such as very low threshold current, large modulation bandwidth, noise properties, etc. [1, 2, 3].
微腔激光器由于具有极低的阈值电流、大的调制带宽和噪声特性等特点,已被证明是有前途的器件[1,2,3]。
{"title":"Microcavity Semiconductor Lasers: Parameter Evaluation and Performances","authors":"G. Bava, P. Debernardi","doi":"10.1364/qo.1997.qfb.3","DOIUrl":"https://doi.org/10.1364/qo.1997.qfb.3","url":null,"abstract":"Microcavity lasers have been shown to be promising devices owing to their characteristics such as very low threshold current, large modulation bandwidth, noise properties, etc. [1, 2, 3].","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74744545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Annealing of Trap States in ZnSe Quantum Dots ZnSe量子点阱态的激光退火
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.10
C. A. Smith, S. Risbud, J. Cooke, Howard W. H. Lee
Our study of ZnSe quantum dots is motivated by the inherent interest in quantum confined systems and by the potential for shorter wavelength laser operation enabled by blue-shifted quantum confined energy levels. The optical and electronic properties of these nanocrystals as a function of the fabrication process were investigated with various optical techniques including photoluminescence (PL) lifetimes, and absorption, PL , and excitation spectroscopy.
我们对ZnSe量子点的研究是出于对量子受限系统的固有兴趣,以及蓝移量子受限能级实现短波激光操作的潜力。通过各种光学技术,包括光致发光(PL)寿命,吸收,PL和激发光谱,研究了这些纳米晶体的光学和电子特性作为制造工艺的函数。
{"title":"Laser Annealing of Trap States in ZnSe Quantum Dots","authors":"C. A. Smith, S. Risbud, J. Cooke, Howard W. H. Lee","doi":"10.1364/qo.1997.qthe.10","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.10","url":null,"abstract":"Our study of ZnSe quantum dots is motivated by the inherent interest in quantum confined systems and by the potential for shorter wavelength laser operation enabled by blue-shifted quantum confined energy levels. The optical and electronic properties of these nanocrystals as a function of the fabrication process were investigated with various optical techniques including photoluminescence (PL) lifetimes, and absorption, PL , and excitation spectroscopy.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88591061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Cascade Whispering Gallery Lasers 量子级联低语画廊激光器
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qfa.1
C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. Sivco, A. Cho
Low threshold, single-mode quantum cascade whispering gallery lasers with emission wavelengths from 5.0 to 11.5 micrometer are reported. Their potential for true microcavities is discussed.
报道了发射波长为5.0 ~ 11.5微米的低阈值单模量子级联窃窃廊激光器。讨论了它们成为真正的微腔的潜力。
{"title":"Quantum Cascade Whispering Gallery Lasers","authors":"C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. Sivco, A. Cho","doi":"10.1364/qo.1997.qfa.1","DOIUrl":"https://doi.org/10.1364/qo.1997.qfa.1","url":null,"abstract":"Low threshold, single-mode quantum cascade whispering gallery lasers with emission wavelengths from 5.0 to 11.5 micrometer are reported. Their potential for true microcavities is discussed.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83085726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Diffusion of Repulsive Bosons in a Two-Dimensional Random Potential 二维随机势中排斥玻色子的反常扩散
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthb.2
T. Fukuzawa, S. Y. Kim, T. Gustafson, E. Haller, E. Yamada
Two-dimensional (2D) bosons can undergo a Kosterlitz-Thouless transition[1], which does not involve macroscopic occupation of a single quantum state, but which can still result in superfluidity. In addition, strongly interacting bosons subject to a random potential can also exhibit superfluidity, as in the case of charged superfluidity that occurs in high-T c superconductors. Competition between the strength of the interaction and the degree of potential disorder are among the many complicated and competing factors which determine whether superfluidity is promoted or supressed in a Bose system[2]. Strong potential disorder forces bosons to localize and can result in an insulating Bose glass phase. Alternatively, repulsive interactions among bosons act to release them from their traps, to keep their inter-particle distances as uniform as the potential allows, and to arrange the flow direction. An appropriate interaction strength can thus promote superfluidity.
二维(2D)玻色子可以经历Kosterlitz-Thouless跃迁[1],这种跃迁不涉及宏观上占据单个量子态,但仍然可以导致超流动性。此外,受随机势影响的强相互作用玻色子也可以表现出超流动性,就像在高温度超导体中发生的带电超流动性一样。相互作用强度和潜在失序程度之间的竞争是决定玻色系统中超流动性是被促进还是被抑制的众多复杂和竞争因素之一[2]。强势失序迫使玻色子局域化,导致玻色玻璃相绝缘。另外,玻色子之间的排斥性相互作用将它们从陷阱中释放出来,使它们的粒子间距离在势允许的范围内保持一致,并安排流动方向。因此,适当的相互作用强度可以促进超流动性。
{"title":"Anomalous Diffusion of Repulsive Bosons in a Two-Dimensional Random Potential","authors":"T. Fukuzawa, S. Y. Kim, T. Gustafson, E. Haller, E. Yamada","doi":"10.1364/qo.1997.qthb.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qthb.2","url":null,"abstract":"Two-dimensional (2D) bosons can undergo a Kosterlitz-Thouless transition[1], which does not involve macroscopic occupation of a single quantum state, but which can still result in superfluidity. In addition, strongly interacting bosons subject to a random potential can also exhibit superfluidity, as in the case of charged superfluidity that occurs in high-T c superconductors. Competition between the strength of the interaction and the degree of potential disorder are among the many complicated and competing factors which determine whether superfluidity is promoted or supressed in a Bose system[2]. Strong potential disorder forces bosons to localize and can result in an insulating Bose glass phase. Alternatively, repulsive interactions among bosons act to release them from their traps, to keep their inter-particle distances as uniform as the potential allows, and to arrange the flow direction. An appropriate interaction strength can thus promote superfluidity.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78378086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Devices Using Multi-Dots Structures 使用多点结构的量子器件
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qthe.2
E. Fagotto, S. Rossi, E. Moschim
Nowadays, due to the advances in nanolithography technology it is possible to fabricate structures whose electronic properties correspond to that of a quasi-one-dimensional electron gas. Such structures allow us to observe ballistic quantum transport at low temperatures, and remarkable experimental observations have resulted1. Many theoretical studies have investigated conductance fluctuations2 and voltage controlled defects. Cahay et al3 studied the problem of localization associated with the conductance fluctuations of an array of elastic scatterers. Joe et al4 discussed the effects of a voltage controlled impurity for the conductance of a single open quantum box. As the impurity size is changed, it causes conductance oscillations due to the interference of circulating and bound states of the quantum box. In this paper we analyze how changes in geometry of a structure with three open dots affect its electronic properties.
如今,由于纳米光刻技术的进步,可以制造出电子性质与准一维电子气体相对应的结构。这样的结构使我们能够在低温下观察到弹道量子输运,并产生了显著的实验观察结果。许多理论研究研究了电导波动和电压控制缺陷。Cahay等研究了弹性散射体阵列电导波动的局域化问题。Joe等人讨论了电压控制杂质对单个开放量子箱电导的影响。随着杂质尺寸的改变,由于量子盒循环态和束缚态的干扰,会引起电导振荡。本文分析了三开点结构几何形状的变化对其电子性能的影响。
{"title":"Quantum Devices Using Multi-Dots Structures","authors":"E. Fagotto, S. Rossi, E. Moschim","doi":"10.1364/qo.1997.qthe.2","DOIUrl":"https://doi.org/10.1364/qo.1997.qthe.2","url":null,"abstract":"Nowadays, due to the advances in nanolithography technology it is possible to fabricate structures whose electronic properties correspond to that of a quasi-one-dimensional electron gas. Such structures allow us to observe ballistic quantum transport at low temperatures, and remarkable experimental observations have resulted1. Many theoretical studies have investigated conductance fluctuations2 and voltage controlled defects. Cahay et al3 studied the problem of localization associated with the conductance fluctuations of an array of elastic scatterers. Joe et al4 discussed the effects of a voltage controlled impurity for the conductance of a single open quantum box. As the impurity size is changed, it causes conductance oscillations due to the interference of circulating and bound states of the quantum box. In this paper we analyze how changes in geometry of a structure with three open dots affect its electronic properties.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88655141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals 实现光子晶体的亚波长多层二元光栅设计
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qtha.4
R. Tyan, P. Sun, A. Salvekar, H. Chou, Chuan-cheng Cheng, F. Xu, A. Scherer, Y. Fainman
Subwavelength multilayer binary gratings (SMBG) can be seen as a 2-D periodic structures (see Fig.1a) with two periodic directions along the grating vector and the multilayer cascading direction. Such structures combine strong form- birefringence1,2 of the subwavelength grating with high reflectivity due the multilayer structure allowing us to design polarization sensitive microdevices, such as polarization selective mirror and polarizing beam splitter. Recently3 we introduce a new polarizing beam splitter (PBS) microdevice design built of SMBGs. Not only this novel design increases the angular and spectral range of the PBS microdevice in comparison to conventional PBS designs, but most importantly, our microdevice can operate with normally incident light, acting as a high-efficiency polarization-selective mirror. Microdevice with such features are critical for microlaser designs. Since the SMBG is a 2-D periodic structure, it can also be used to design a 2-D photonic crystal. In this manuscript, we summarize the design, modeling, and characterization of the SMBG structure designed to implement polarization sensitive microdevice, and also introduce and discuss a 2-D photonic crystal design based on SMBG.
亚波长多层二元光栅(SMBG)可以看作是一种二维周期结构(见图1a),具有沿光栅矢量和多层级联方向的两个周期方向。这种结构结合了亚波长光栅的强形式双折射1,2和由于多层结构而产生的高反射率,使我们能够设计偏振敏感的微器件,如偏振选择镜和偏振分束器。最近,我们介绍了一种基于SMBGs的新型偏振分束器(PBS)微器件设计。与传统的PBS设计相比,这种新颖的设计不仅增加了PBS微器件的角度和光谱范围,而且最重要的是,我们的微器件可以在正常入射光下工作,作为一个高效的偏振选择镜。具有这些特性的微器件对微激光设计至关重要。由于SMBG是一种二维周期结构,它也可以用于设计二维光子晶体。在本文中,我们总结了用于实现偏振敏感微器件的SMBG结构的设计、建模和表征,并介绍和讨论了基于SMBG的二维光子晶体设计。
{"title":"Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals","authors":"R. Tyan, P. Sun, A. Salvekar, H. Chou, Chuan-cheng Cheng, F. Xu, A. Scherer, Y. Fainman","doi":"10.1364/qo.1997.qtha.4","DOIUrl":"https://doi.org/10.1364/qo.1997.qtha.4","url":null,"abstract":"Subwavelength multilayer binary gratings (SMBG) can be seen as a 2-D periodic structures (see Fig.1a) with two periodic directions along the grating vector and the multilayer cascading direction. Such structures combine strong form- birefringence1,2 of the subwavelength grating with high reflectivity due the multilayer structure allowing us to design polarization sensitive microdevices, such as polarization selective mirror and polarizing beam splitter. Recently3 we introduce a new polarizing beam splitter (PBS) microdevice design built of SMBGs. Not only this novel design increases the angular and spectral range of the PBS microdevice in comparison to conventional PBS designs, but most importantly, our microdevice can operate with normally incident light, acting as a high-efficiency polarization-selective mirror. Microdevice with such features are critical for microlaser designs. Since the SMBG is a 2-D periodic structure, it can also be used to design a 2-D photonic crystal. In this manuscript, we summarize the design, modeling, and characterization of the SMBG structure designed to implement polarization sensitive microdevice, and also introduce and discuss a 2-D photonic crystal design based on SMBG.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87465869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Symmetry Breaking in Vertical-Cavity Semiconductor Lasers 垂直腔半导体激光器中的对称性破缺
IF 0.9 Q3 Engineering Pub Date : 1997-01-01 DOI: 10.1364/qo.1997.qfb.6
J. Woerdman, A. V. van Doorn, M. V. van Exter
It seems fair to say that the polarization behavior of semiconductor Vertical-Cavity Surface-Emitting Lasers (VCSELs) is not understood on a fundamental level. In spite of the nominal anisotropy of a VCSEL the polarization is usually reported as being linear, but not very stable. Most authors associate this behavior with native anisotropies due to imperfect device fabrication although also intrinsic nonlinearities of the gain medium have been put forward for explaining the linear polarization. We are involved in a detailed study [1-4] of the various anisotropies of a VCSEL, their interplay, their manipulation and the consequences thereof for the VCSEL polarization. We have found experimentally that the polarization of a practical VCSEL can be largely explained as a consequence of linear anisotropies; nonlinearities play at most a minor role.
可以说,半导体垂直腔面发射激光器(VCSELs)的极化行为在基本层面上还没有被理解。尽管VCSEL具有名义上的各向异性,但偏振通常被报道为线性的,但不是很稳定。大多数作者将这种行为与由于器件制造不完善而导致的固有各向异性联系起来,尽管也提出增益介质的固有非线性来解释线极化。我们参与了一项详细的研究[1-4],研究了VCSEL的各种各向异性、它们的相互作用、它们的操纵以及它们对VCSEL极化的影响。我们通过实验发现,实际VCSEL的极化在很大程度上可以解释为线性各向异性的结果;非线性最多只起很小的作用。
{"title":"Symmetry Breaking in Vertical-Cavity Semiconductor Lasers","authors":"J. Woerdman, A. V. van Doorn, M. V. van Exter","doi":"10.1364/qo.1997.qfb.6","DOIUrl":"https://doi.org/10.1364/qo.1997.qfb.6","url":null,"abstract":"It seems fair to say that the polarization behavior of semiconductor Vertical-Cavity Surface-Emitting Lasers (VCSELs) is not understood on a fundamental level. In spite of the nominal anisotropy of a VCSEL the polarization is usually reported as being linear, but not very stable. Most authors associate this behavior with native anisotropies due to imperfect device fabrication although also intrinsic nonlinearities of the gain medium have been put forward for explaining the linear polarization. We are involved in a detailed study [1-4] of the various anisotropies of a VCSEL, their interplay, their manipulation and the consequences thereof for the VCSEL polarization. We have found experimentally that the polarization of a practical VCSEL can be largely explained as a consequence of linear anisotropies; nonlinearities play at most a minor role.","PeriodicalId":44695,"journal":{"name":"Semiconductor Physics Quantum Electronics & Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87714745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Semiconductor Physics Quantum Electronics & Optoelectronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1