Pub Date : 2024-08-15DOI: 10.1109/tdmr.2024.3442781
Yongdong Wu, Bin He, Jingyuan Fang, Yuqi Hu, Xiaoliang Zeng, Linlin Ren, Rong Sun
{"title":"Unveiling the Degradation Mechanism of Polymer-Based Thermal Interface Materials Under Thermo-Oxidative Condition","authors":"Yongdong Wu, Bin He, Jingyuan Fang, Yuqi Hu, Xiaoliang Zeng, Linlin Ren, Rong Sun","doi":"10.1109/tdmr.2024.3442781","DOIUrl":"https://doi.org/10.1109/tdmr.2024.3442781","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"5 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1109/tdmr.2024.3443107
Junhou Cao, Chenlu Wang, Lei Huang, Tuanzhuang Wu, Hao Fu, Zhaoxiang Wei, Zhaoxu Song, Shaohong Li, Jiaxing Wei, Siyang Liu, Weifeng Sun
{"title":"All-Regions Damage Extraction Method for SiC IGBTs Based on C-V Curves","authors":"Junhou Cao, Chenlu Wang, Lei Huang, Tuanzhuang Wu, Hao Fu, Zhaoxiang Wei, Zhaoxu Song, Shaohong Li, Jiaxing Wei, Siyang Liu, Weifeng Sun","doi":"10.1109/tdmr.2024.3443107","DOIUrl":"https://doi.org/10.1109/tdmr.2024.3443107","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"55 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electronic components operating in aerospace environments face a variety of reliability issues. The total ionization dose (TID) degradation mechanism of bulk I/O-FinFETs and the influence of hot carrier degradation (HCD) on TID irradiation are investigated in this paper. Devices under ON/TG/OFF bias conditions were irradiated to 2 Mrad (Si). The nFinFETs show degradation of threshold voltage, subthreshold swing and off-state leakage current. An increase in peak transconductance and on-state current was also observed in the nFinFETs. The TID response of nFinFETs is dominated by positively trapped charges in the gate oxide and shallow trench isolation (STI). For pFinFETs, radiation-induced hole-trapped charges leads to an increase in the threshold voltage and a decrease in the drive current. The worst degradation is observed when a high electric field is applied to the gate during irradiation. Post-stress irradiation results show that the HCD and TID degradation trends of the nFinFETs are opposite and have a mutual canceling effect, while the degradation trends of the pFinFETs are consistent and jointly deteriorate the device performance. Compared to the un-stressed devices, the TID damage of the pre-stressed devices is more drastic, especially for the nFinFETs. The stress-induced interface trapped charges increase the electric field in the gate oxide during subsequent irradiation, which causes more radiation-induced hole-trapped charges and exacerbate TID degradation.
在航空航天环境中运行的电子元件面临着各种可靠性问题。本文研究了块状 I/O-FinFET 的总电离剂量(TID)降解机制以及热载流子降解(HCD)对 TID 辐照的影响。器件在 ON/TG/OFF 偏置条件下受到 2 Mrad(硅)辐照。nFinFET 的阈值电压、阈下摆动和关态漏电流都出现了衰减。在 nFinFET 中还观察到峰值跨导和导通电流的增加。nFinFET 的 TID 响应主要是由栅极氧化物中的正陷落电荷和浅沟道隔离(STI)引起的。对于 pFinFET,辐射诱导的空穴阱电荷导致阈值电压升高,驱动电流降低。在辐照期间对栅极施加高电场时,观察到最严重的劣化现象。应力辐照后的结果表明,nFinFET 的 HCD 和 TID 退化趋势相反,具有相互抵消的效果,而 pFinFET 的退化趋势一致,共同导致器件性能恶化。与无应力器件相比,预应力器件的 TID 损坏更为严重,尤其是 nFinFET。应力诱导的界面捕获电荷会在后续辐照过程中增加栅极氧化物中的电场,从而导致更多辐射诱导的空穴捕获电荷,加剧 TID 退化。
{"title":"Influence of Hot Carrier Degradation on Total Ionizing Dose in Bulk I/O-FinFETs","authors":"Ruxue Yao;Hongliang Lu;Yuming Zhang;Yutao Zhang;Jing Qiao;Jing Sun;Mingzhu Xun;Gang Yu","doi":"10.1109/TDMR.2024.3431633","DOIUrl":"10.1109/TDMR.2024.3431633","url":null,"abstract":"Electronic components operating in aerospace environments face a variety of reliability issues. The total ionization dose (TID) degradation mechanism of bulk I/O-FinFETs and the influence of hot carrier degradation (HCD) on TID irradiation are investigated in this paper. Devices under ON/TG/OFF bias conditions were irradiated to 2 Mrad (Si). The nFinFETs show degradation of threshold voltage, subthreshold swing and off-state leakage current. An increase in peak transconductance and on-state current was also observed in the nFinFETs. The TID response of nFinFETs is dominated by positively trapped charges in the gate oxide and shallow trench isolation (STI). For pFinFETs, radiation-induced hole-trapped charges leads to an increase in the threshold voltage and a decrease in the drive current. The worst degradation is observed when a high electric field is applied to the gate during irradiation. Post-stress irradiation results show that the HCD and TID degradation trends of the nFinFETs are opposite and have a mutual canceling effect, while the degradation trends of the pFinFETs are consistent and jointly deteriorate the device performance. Compared to the un-stressed devices, the TID damage of the pre-stressed devices is more drastic, especially for the nFinFETs. The stress-induced interface trapped charges increase the electric field in the gate oxide during subsequent irradiation, which causes more radiation-induced hole-trapped charges and exacerbate TID degradation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"456-462"},"PeriodicalIF":2.5,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1109/TDMR.2024.3431707
Renze Yu;Saeed Jahdi;Konstantinos Floros;Ingo Lüdtke;Phil Mellor
Uneven electro-thermal conditions between parallel-connected devices can reduce the overall reliability of the power electronics systems, particularly during extreme cases such as short circuit. The current distribution between parallel devices is dynamically regulated during the transient and the degradation of devices is intertwined in the long run. To better understand the evolving patterns in the parallel configuration and to compare differences among various device structures, repetitive short circuit tests were conducted on planar, symmetrical double-trench, and asymmetrical trench SiC MOSFETs. Technology computer-aided design (TCAD) models were employed to analyze the evolution of current density and temperature profile between parallel devices. Test results indicate that the switching speed difference caused by gate resistance (Rg) mismatch leads to the asynchronous degradation of asymmetrical trench devices. The decreased threshold voltage (Vth) induce higher short circuit energy (Esc), forming a positive feedback for degradation. Besides, even if the current is dynamically shared between parallel SiC MOSFETs under different case temperature (Tcase), the initial temperature has a key impact on short-circuit reliability over Esc.
并联设备之间不均匀的电热条件会降低电力电子系统的整体可靠性,尤其是在短路等极端情况下。并联器件之间的电流分布在瞬态期间是动态调节的,而器件的劣化在长期内是相互交织的。为了更好地了解并联配置的演变模式,并比较各种器件结构之间的差异,对平面、对称双沟槽和非对称沟槽 SiC MOSFET 进行了重复短路测试。采用技术计算机辅助设计(TCAD)模型分析了并联器件之间电流密度和温度曲线的演变。测试结果表明,栅极电阻(Rg)不匹配造成的开关速度差异导致了非对称沟槽器件的异步退化。阈值电压(Vth)的降低会导致更高的短路能量(Esc),形成退化的正反馈。此外,即使并联 SiC MOSFET 在不同外壳温度 (Tcase) 下动态分担电流,初始温度也会对 Esc 短路可靠性产生关键影响。
{"title":"Impact of Layout Parameter Mismatches on Short Circuit Reliability of Parallel-Connected Planar, Trench, and Double-Trench SiC MOSFETs","authors":"Renze Yu;Saeed Jahdi;Konstantinos Floros;Ingo Lüdtke;Phil Mellor","doi":"10.1109/TDMR.2024.3431707","DOIUrl":"10.1109/TDMR.2024.3431707","url":null,"abstract":"Uneven electro-thermal conditions between parallel-connected devices can reduce the overall reliability of the power electronics systems, particularly during extreme cases such as short circuit. The current distribution between parallel devices is dynamically regulated during the transient and the degradation of devices is intertwined in the long run. To better understand the evolving patterns in the parallel configuration and to compare differences among various device structures, repetitive short circuit tests were conducted on planar, symmetrical double-trench, and asymmetrical trench SiC MOSFETs. Technology computer-aided design (TCAD) models were employed to analyze the evolution of current density and temperature profile between parallel devices. Test results indicate that the switching speed difference caused by gate resistance (Rg) mismatch leads to the asynchronous degradation of asymmetrical trench devices. The decreased threshold voltage (Vth) induce higher short circuit energy (Esc), forming a positive feedback for degradation. Besides, even if the current is dynamically shared between parallel SiC MOSFETs under different case temperature (Tcase), the initial temperature has a key impact on short-circuit reliability over Esc.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"437-447"},"PeriodicalIF":2.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141783340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1109/TDMR.2024.3430033
Alija Jusić
In this paper, the results of the analysis of the influence of critical working conditions on stability of varistor characteristics are presented. Moreover, the paper offers both experimental and theoretical interpretation concerning the influence of temperature, operations’ time-number and the effect of neutron and gamma radiation on the stability of varistor characteristics. For the purpose of this paper an original measuring system of extremely low measurement uncertainty has been developed. Recording of volt-ampere, volt-ohm characteristics as well as varistor, breakdown voltage which was directly measured by a measuring system developed for that purpose, was carried out in the manner based on utilizing a single current pulse. Having analyzed the obtained results, it can be concluded that, when designing the insulation coordination at low or high voltage level, ambient environmental conditions (temperature variation) and functional aging in synergy with natural aging should be taken into account.
{"title":"Influence of Critical Working Conditions on Stability of Varistor Characteristics","authors":"Alija Jusić","doi":"10.1109/TDMR.2024.3430033","DOIUrl":"10.1109/TDMR.2024.3430033","url":null,"abstract":"In this paper, the results of the analysis of the influence of critical working conditions on stability of varistor characteristics are presented. Moreover, the paper offers both experimental and theoretical interpretation concerning the influence of temperature, operations’ time-number and the effect of neutron and gamma radiation on the stability of varistor characteristics. For the purpose of this paper an original measuring system of extremely low measurement uncertainty has been developed. Recording of volt-ampere, volt-ohm characteristics as well as varistor, breakdown voltage which was directly measured by a measuring system developed for that purpose, was carried out in the manner based on utilizing a single current pulse. Having analyzed the obtained results, it can be concluded that, when designing the insulation coordination at low or high voltage level, ambient environmental conditions (temperature variation) and functional aging in synergy with natural aging should be taken into account.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"448-455"},"PeriodicalIF":2.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distribution and drift of Flash memory cells on the recognition accuracy for various CNN architectures based on the CIM schemes. Based on the reliability study, we proposed a novel compensation scheme to effectively mitigate the impact of threshold voltage drift and evaluated the effectiveness of the proposed scheme by recognition accuracy evaluation.
对于基于闪存的卷积神经网络(CNN)内存计算(CIM)架构而言,存储可靠性至关重要。在本文中,我们构建了一种基于 Nor Flash 阵列(NFA)的 CIM 方案。我们进行了仿真,研究了闪存单元的阈值电压分布和漂移对基于 CIM 方案的各种 CNN 架构的识别准确率的影响。在可靠性研究的基础上,我们提出了一种新型补偿方案,以有效缓解阈值电压漂移的影响,并通过识别准确率评估来评价所提方案的有效性。
{"title":"An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network","authors":"Xinrui Zhang;Jian Huang;Xianping Liu;Baiqing Zhong;Zhiyi Yu","doi":"10.1109/TDMR.2024.3429662","DOIUrl":"10.1109/TDMR.2024.3429662","url":null,"abstract":"The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distribution and drift of Flash memory cells on the recognition accuracy for various CNN architectures based on the CIM schemes. Based on the reliability study, we proposed a novel compensation scheme to effectively mitigate the impact of threshold voltage drift and evaluated the effectiveness of the proposed scheme by recognition accuracy evaluation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"422-427"},"PeriodicalIF":2.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1109/TDMR.2024.3429185
Shivendra K. Rathaur;Cheng-Jun Ma;Abhisek Dixit;Ching-Ting Lee;Edward Yi Chang
In this study, we empirically explore the performance degradation of quaternary InAlGaN/AlN/GaN Metal-Insulator-Semiconductor High Electron Mobility Transistors (MIS-HEMTs) with a Gate Field Plate (GFP) structure under a Positive Bias Temperature Instability (PBTI) and Negative Bias Temperature Instability (NBTI) stresses. Both stress conditions (PBTI with V ${_{text {GS}}} = 10$