As the scaling down of the silicon (Si)-based transistors is reaching its physical limits, the vertical-structure complementary metal-oxide-semiconductor (VCMOS) process has emerged as a promising technology due its comparative advantages, in terms of aggressive scalability. Along these lines, in this work, an emerging nano-scale vertical back-gate (VBG) CMOS platform with gate length depending on the deposition process instead of the accuracy of the lithography process was proposed. In addition, the total ionizing dose (TID) effects on both the direct current and radio frequency characteristics of the proposed VBG MOSFETs were investigated by performing technology computer aided design (TCAD) simulations. Besides, a high integration-density inverter was implemented by the VBG CMOS platform as well. Both the DC and transient performances of the proposed inverter under TID effects were also characterized. From the simulated results it was demonstrated that although the VBG CMOS platform has the potential to be applied in digital integrated circuits (ICs) and RF ICs, the sensitivity to TID is still a problem to be mitigated. This work provides valuable guidelines for the TID-hardened design of VBG MOSFETs and circuits.
{"title":"Total Ionizing Dose Effects on DC/RF Performances of Emerging Vertical Back-Gate CMOS Platform","authors":"Yue Ma;Jinshun Bi;Biyao Zhao;Linjie Fan;Jianjian Wang;Gangping Yan;Ziming Xu;Baihong Chen;Hanying Deng;Zhiqiang Li;Viktor Stempitsky","doi":"10.1109/TDMR.2024.3488750","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3488750","url":null,"abstract":"As the scaling down of the silicon (Si)-based transistors is reaching its physical limits, the vertical-structure complementary metal-oxide-semiconductor (VCMOS) process has emerged as a promising technology due its comparative advantages, in terms of aggressive scalability. Along these lines, in this work, an emerging nano-scale vertical back-gate (VBG) CMOS platform with gate length depending on the deposition process instead of the accuracy of the lithography process was proposed. In addition, the total ionizing dose (TID) effects on both the direct current and radio frequency characteristics of the proposed VBG MOSFETs were investigated by performing technology computer aided design (TCAD) simulations. Besides, a high integration-density inverter was implemented by the VBG CMOS platform as well. Both the DC and transient performances of the proposed inverter under TID effects were also characterized. From the simulated results it was demonstrated that although the VBG CMOS platform has the potential to be applied in digital integrated circuits (ICs) and RF ICs, the sensitivity to TID is still a problem to be mitigated. This work provides valuable guidelines for the TID-hardened design of VBG MOSFETs and circuits.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"637-645"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper simulates the damage of 22nm FDSOI devices under strong electromagnetic pulse in radiation environment. After the introduction of strong electromagnetic pulse in the non-radiating device, the drain - body junction in the center of the device is damaged due to thermal deposition. The results of the strong electromagnetic damage of the device after different total ionizing doses of radiation show that the trap charge trapped in the oxide layer enhances the inverse pattern of the device after radiation. At the same time when the strong electromagnetic pulse is introduced, the electric field intensity in the channel region decreases and the current density increases compared with that before radiation. As a result, the thermal power density of the device increases and the thermal damage time point of the device advances. Finally, the simulation results of different radiation regions show that the trap charge in the BOX layer is the main reason for the reliability reduction of the device.
{"title":"Study on Electromagnetic Pulse Damage of 22nm FDSOI in Radiation Environment","authors":"Chen Chong;Xing Li;Hongxia Liu;Wei Zhou;Menghao Huang","doi":"10.1109/TDMR.2024.3485095","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3485095","url":null,"abstract":"This paper simulates the damage of 22nm FDSOI devices under strong electromagnetic pulse in radiation environment. After the introduction of strong electromagnetic pulse in the non-radiating device, the drain - body junction in the center of the device is damaged due to thermal deposition. The results of the strong electromagnetic damage of the device after different total ionizing doses of radiation show that the trap charge trapped in the oxide layer enhances the inverse pattern of the device after radiation. At the same time when the strong electromagnetic pulse is introduced, the electric field intensity in the channel region decreases and the current density increases compared with that before radiation. As a result, the thermal power density of the device increases and the thermal damage time point of the device advances. Finally, the simulation results of different radiation regions show that the trap charge in the BOX layer is the main reason for the reliability reduction of the device.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 4","pages":"646-655"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to evaluate the reliability of Silicon Carbide (SiC) Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) under extremely high gate voltage stress. The research results show that SiCMOS has certain robustness to extremely high gate voltage stress. After high positive bias stress (PBS) and high negative bias stress (NBS), degradation at room temperature is mainly caused by the injection of holes. At high temperatures, the increased interface state traps appear to play an important role in the degradation under PBS. Both C-V characteristics and the recovery of devices after stress are used to explain the degradation. Degradation under high PBS might be recoverable. After recovery, the threshold voltage $(V_{T})$