Pub Date : 2025-06-20DOI: 10.1109/TDMR.2025.3581604
Nitish Kumar;Ankur Gupta;Pushpapraj Singh
The uniaxial tensile mechanical stress (MS) is induced up to 1.4 GPa on the channel of the twin junctionless nanowire (JL-NW) gate-all-around (GAA) field-effect transistors (FETs) using a four-point bending technique. The variation of the electrical parameters is measured before and during induced MS to analyze the performance. The ON-state current, carrier mobility, threshold voltage, and subthreshold swing are directly proportional to the induced MS due to the reduced energy band gap and intervalley scattering effect. The reduced subthreshold swing indicates low power consumption and better switching ability, whereas the higher OFF-state current leads to slightly increased standby power consumption, representing a trade-off for low-power logic applications. In addition, the change of drain current shows highly piezoresistive sensing ability in nanoelectromechanical sensor applications. Thus, this study demonstrates the importance of mechanical stress engineering for performance improvement in non-planar nanowire devices, piezoresistive sensing applications, and device reliability.
{"title":"Impact of Externally Induced Uniaxial Stress on the Electrical Performance of the Junctionless Nanowire Field-Effect Transistors","authors":"Nitish Kumar;Ankur Gupta;Pushpapraj Singh","doi":"10.1109/TDMR.2025.3581604","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3581604","url":null,"abstract":"The uniaxial tensile mechanical stress (MS) is induced up to 1.4 GPa on the channel of the twin junctionless nanowire (JL-NW) gate-all-around (GAA) field-effect transistors (FETs) using a four-point bending technique. The variation of the electrical parameters is measured before and during induced MS to analyze the performance. The ON-state current, carrier mobility, threshold voltage, and subthreshold swing are directly proportional to the induced MS due to the reduced energy band gap and intervalley scattering effect. The reduced subthreshold swing indicates low power consumption and better switching ability, whereas the higher OFF-state current leads to slightly increased standby power consumption, representing a trade-off for low-power logic applications. In addition, the change of drain current shows highly piezoresistive sensing ability in nanoelectromechanical sensor applications. Thus, this study demonstrates the importance of mechanical stress engineering for performance improvement in non-planar nanowire devices, piezoresistive sensing applications, and device reliability.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"677-683"},"PeriodicalIF":2.3,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145027951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-18DOI: 10.1109/TDMR.2025.3581061
Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli
This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures ($125~{^{circ }}$ C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.
{"title":"Enhancing RRAM Reliability: Exploring the Effects of Al Doping on HfO2-Based Devices","authors":"Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli","doi":"10.1109/TDMR.2025.3581061","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3581061","url":null,"abstract":"This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures (<inline-formula> <tex-math>$125~{^{circ }}$ </tex-math></inline-formula>C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"379-387"},"PeriodicalIF":2.3,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-11DOI: 10.1109/TDMR.2025.3578692
Seonghwan Kong;Wonbo Shim
Two-transistors-zero-capacitor (2T0C) DRAM-based processing-in-memory (PIM) system experiences retention degradation and capacitive coupling effects because of its volatile characteristics and capacitorless structure. These challenges result in degraded reliability and significant energy consumption due to frequent refresh operations. In this work, we propose a cell structure with surrounding polycrystalline silicon capacitor (poly-Cap.) to enhance the storage node capacitance of the vertical-transistor on gate (VTG) DRAM cell introduced in our previous work. The poly-Cap. improves the retention characteristics and mitigates the capacitive coupling effects while maintaining its unit cell area. We modeled the VTG DRAM cell with the poly-Cap. and analyzed its device characteristics using TCAD simulations. Additionally, we evaluated the inference accuracy of the 2T DRAM-based PIM system using a customized simulation framework. We confirmed that the poly-Cap. increased the storage node capacitance by 31.9%, improved the retention characteristics by 83.3% and reduced the capacitive coupling effects by 52.4% during the write ‘1’ operation and 27.3% during the read ‘1’ operation.
{"title":"Design of 2T DRAM Cell With Surrounding Poly-Si Capacitor for Enhanced Retention and Mitigated Coupling Effect","authors":"Seonghwan Kong;Wonbo Shim","doi":"10.1109/TDMR.2025.3578692","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3578692","url":null,"abstract":"Two-transistors-zero-capacitor (2T0C) DRAM-based processing-in-memory (PIM) system experiences retention degradation and capacitive coupling effects because of its volatile characteristics and capacitorless structure. These challenges result in degraded reliability and significant energy consumption due to frequent refresh operations. In this work, we propose a cell structure with surrounding polycrystalline silicon capacitor (poly-Cap.) to enhance the storage node capacitance of the vertical-transistor on gate (VTG) DRAM cell introduced in our previous work. The poly-Cap. improves the retention characteristics and mitigates the capacitive coupling effects while maintaining its unit cell area. We modeled the VTG DRAM cell with the poly-Cap. and analyzed its device characteristics using TCAD simulations. Additionally, we evaluated the inference accuracy of the 2T DRAM-based PIM system using a customized simulation framework. We confirmed that the poly-Cap. increased the storage node capacitance by 31.9%, improved the retention characteristics by 83.3% and reduced the capacitive coupling effects by 52.4% during the write ‘1’ operation and 27.3% during the read ‘1’ operation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"460-464"},"PeriodicalIF":2.3,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575823
{"title":"Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications","authors":"","doi":"10.1109/TDMR.2025.3575823","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575823","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"355-356"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575821
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue on: OFS-29","authors":"","doi":"10.1109/TDMR.2025.3575821","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575821","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"354-354"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3558657
{"title":"Call for Nominations for Editor-in-Chief IEEE Electron Device Letters","authors":"","doi":"10.1109/TDMR.2025.3558657","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3558657","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"353-353"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575830
{"title":"IEEE Transactions on Device and Materials Reliability Information for Authors","authors":"","doi":"10.1109/TDMR.2025.3575830","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575830","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575822
{"title":"Reliability of Advanced Nodes","authors":"","doi":"10.1109/TDMR.2025.3575822","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575822","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"359-360"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3558210
{"title":"IEEE Transactions on Device and Materials Reliability Publication Information","authors":"","doi":"10.1109/TDMR.2025.3558210","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3558210","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3558656
{"title":"Call for Nominations for Editor-in-Chief IEEE Transactions on Electron Devices(TED)","authors":"","doi":"10.1109/TDMR.2025.3558656","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3558656","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"352-352"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028631","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}