Pub Date : 2025-06-18DOI: 10.1109/TDMR.2025.3581061
Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli
This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures ($125~{^{circ }}$ C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.
{"title":"Enhancing RRAM Reliability: Exploring the Effects of Al Doping on HfO2-Based Devices","authors":"Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli","doi":"10.1109/TDMR.2025.3581061","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3581061","url":null,"abstract":"This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures (<inline-formula> <tex-math>$125~{^{circ }}$ </tex-math></inline-formula>C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"379-387"},"PeriodicalIF":2.3,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145051068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-11DOI: 10.1109/TDMR.2025.3578692
Seonghwan Kong;Wonbo Shim
Two-transistors-zero-capacitor (2T0C) DRAM-based processing-in-memory (PIM) system experiences retention degradation and capacitive coupling effects because of its volatile characteristics and capacitorless structure. These challenges result in degraded reliability and significant energy consumption due to frequent refresh operations. In this work, we propose a cell structure with surrounding polycrystalline silicon capacitor (poly-Cap.) to enhance the storage node capacitance of the vertical-transistor on gate (VTG) DRAM cell introduced in our previous work. The poly-Cap. improves the retention characteristics and mitigates the capacitive coupling effects while maintaining its unit cell area. We modeled the VTG DRAM cell with the poly-Cap. and analyzed its device characteristics using TCAD simulations. Additionally, we evaluated the inference accuracy of the 2T DRAM-based PIM system using a customized simulation framework. We confirmed that the poly-Cap. increased the storage node capacitance by 31.9%, improved the retention characteristics by 83.3% and reduced the capacitive coupling effects by 52.4% during the write ‘1’ operation and 27.3% during the read ‘1’ operation.
{"title":"Design of 2T DRAM Cell With Surrounding Poly-Si Capacitor for Enhanced Retention and Mitigated Coupling Effect","authors":"Seonghwan Kong;Wonbo Shim","doi":"10.1109/TDMR.2025.3578692","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3578692","url":null,"abstract":"Two-transistors-zero-capacitor (2T0C) DRAM-based processing-in-memory (PIM) system experiences retention degradation and capacitive coupling effects because of its volatile characteristics and capacitorless structure. These challenges result in degraded reliability and significant energy consumption due to frequent refresh operations. In this work, we propose a cell structure with surrounding polycrystalline silicon capacitor (poly-Cap.) to enhance the storage node capacitance of the vertical-transistor on gate (VTG) DRAM cell introduced in our previous work. The poly-Cap. improves the retention characteristics and mitigates the capacitive coupling effects while maintaining its unit cell area. We modeled the VTG DRAM cell with the poly-Cap. and analyzed its device characteristics using TCAD simulations. Additionally, we evaluated the inference accuracy of the 2T DRAM-based PIM system using a customized simulation framework. We confirmed that the poly-Cap. increased the storage node capacitance by 31.9%, improved the retention characteristics by 83.3% and reduced the capacitive coupling effects by 52.4% during the write ‘1’ operation and 27.3% during the read ‘1’ operation.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"460-464"},"PeriodicalIF":2.3,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575823
{"title":"Exploration of the exciting world of multifunctional oxide-based electronic devices: from material to system-level applications","authors":"","doi":"10.1109/TDMR.2025.3575823","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575823","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"355-356"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575821
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue on: OFS-29","authors":"","doi":"10.1109/TDMR.2025.3575821","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575821","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"354-354"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3558657
{"title":"Call for Nominations for Editor-in-Chief IEEE Electron Device Letters","authors":"","doi":"10.1109/TDMR.2025.3558657","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3558657","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"353-353"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575830
{"title":"IEEE Transactions on Device and Materials Reliability Information for Authors","authors":"","doi":"10.1109/TDMR.2025.3575830","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575830","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3575822
{"title":"Reliability of Advanced Nodes","authors":"","doi":"10.1109/TDMR.2025.3575822","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3575822","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"359-360"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028626","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3558210
{"title":"IEEE Transactions on Device and Materials Reliability Publication Information","authors":"","doi":"10.1109/TDMR.2025.3558210","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3558210","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3558656
{"title":"Call for Nominations for Editor-in-Chief IEEE Transactions on Electron Devices(TED)","authors":"","doi":"10.1109/TDMR.2025.3558656","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3558656","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 2","pages":"352-352"},"PeriodicalIF":2.5,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11028631","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-09DOI: 10.1109/TDMR.2025.3578041
Fengkai Liu;Zhijie Zhou;Yadong Wei;Xiaodong Xu;Zhongli Liu;Jianqun Yang;Xingji Li
This study investigates the influence of temperature on single-event burnout (SEB) in n-channel 115-V-rated vertical-diffused metal-oxide-semiconductor field-effect transistors (VDMOSFETs) subjected to irradiation by heavy ions of krypton and tantalum. The experiments spanned a temperature range from 25°C to 200°C, and it is indicated that a marked reduction in SEB sensitivity as the temperature increased. Our analysis methodically examines the interplay among the parasitic bipolar junction transistor (BJT) feedback mechanism, avalanche multiplication, charge collection, and SEB triggering processes. We propose a hypothesis that elevated temperatures decrease carrier mobility, reduce carrier lifetime, and diminish the impact ionization rate, which collectively leads to a reduction in charge collection and attenuates the lateral base current, thereby lowering SEB sensitivity. This hypothesis was substantiated through technology computer-aided design (TCAD) simulations. The findings reveal a consistent pattern in the temperature’s effect on SEB across all linear energy transfer (LET) levels examined, providing essential insights for the utilization of power VDMOS transistors in high-temperature, intense-radiation environments such as those encountered in space applications.
{"title":"Temperature Dependence of Single-Event Burnout Across Varying LET Levels","authors":"Fengkai Liu;Zhijie Zhou;Yadong Wei;Xiaodong Xu;Zhongli Liu;Jianqun Yang;Xingji Li","doi":"10.1109/TDMR.2025.3578041","DOIUrl":"https://doi.org/10.1109/TDMR.2025.3578041","url":null,"abstract":"This study investigates the influence of temperature on single-event burnout (SEB) in n-channel 115-V-rated vertical-diffused metal-oxide-semiconductor field-effect transistors (VDMOSFETs) subjected to irradiation by heavy ions of krypton and tantalum. The experiments spanned a temperature range from 25°C to 200°C, and it is indicated that a marked reduction in SEB sensitivity as the temperature increased. Our analysis methodically examines the interplay among the parasitic bipolar junction transistor (BJT) feedback mechanism, avalanche multiplication, charge collection, and SEB triggering processes. We propose a hypothesis that elevated temperatures decrease carrier mobility, reduce carrier lifetime, and diminish the impact ionization rate, which collectively leads to a reduction in charge collection and attenuates the lateral base current, thereby lowering SEB sensitivity. This hypothesis was substantiated through technology computer-aided design (TCAD) simulations. The findings reveal a consistent pattern in the temperature’s effect on SEB across all linear energy transfer (LET) levels examined, providing essential insights for the utilization of power VDMOS transistors in high-temperature, intense-radiation environments such as those encountered in space applications.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"698-706"},"PeriodicalIF":2.3,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145027974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}