首页 > 最新文献

IEEE Transactions on Device and Materials Reliability最新文献

英文 中文
Prediction of Crack Initiation at Die Corner of Molded Underfill Flip-Chip Packages Under Thermal Load by New Criteria—Part I: Accurate Formulation of Singular Stress Fields 通过新标准预测热负荷下模制底部填充倒装芯片封装模具边角处的裂纹萌生--第 I 部分:奇异应力场的精确表述
IF 2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-28 DOI: 10.1109/tdmr.2024.3420759
G.C. Lyu, X.P. Zhang, M.B. Zhou, C.B. Ke, Y.W. Mai
{"title":"Prediction of Crack Initiation at Die Corner of Molded Underfill Flip-Chip Packages Under Thermal Load by New Criteria—Part I: Accurate Formulation of Singular Stress Fields","authors":"G.C. Lyu, X.P. Zhang, M.B. Zhou, C.B. Ke, Y.W. Mai","doi":"10.1109/tdmr.2024.3420759","DOIUrl":"https://doi.org/10.1109/tdmr.2024.3420759","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"172 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Event Burnout Effects of Complementary LDMOS Devices in High-Voltage Integrated Circuits 高压集成电路中互补 LDMOS 器件的单次烧毁效应
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-28 DOI: 10.1109/TDMR.2024.3420391
Chonghao Chen;Jiang Xu;Zhuojun Chen
Lateral diffused metal-oxide-semiconductor (LDMOS) devices are vulnerable to single-event burnout (SEB) in radiation environments, potentially leading to catastrophic failure in high-voltage integrated circuits (HVICs). Pulsed-laser experiments have demonstrated that the SEB triggering voltage of n-type LDMOS (nLDMOS) is significantly lower than that of p-type LDMOS (pLDMOS), which limits the applications of complementary LDMOS devices in aerospace electronic systems. This work investigates the SEB mechanism in both nLDMOS and pLDMOS through technology computer-aided design (TCAD) simulations. The analysis reveals that differences in the current gain of parasitic bipolar transistors and well resistance between pLDMOS and nLDMOS result in varying SEB triggering voltages. Additionally, a radiation-hardening technique is employed to improve the SEB triggering voltage of nLDMOS, aligning it closely with that of pLDMOS. This research provides insight into the design of radiation-hardened high-voltage integrated circuits, such as DC-DC converters and motor drivers, using a standard Bipolar-CMOS-DMOS (BCD) fabrication process.
侧向扩散金属氧化物半导体(LDMOS)器件在辐射环境中容易发生单次烧毁(SEB),可能导致高压集成电路(HVIC)发生灾难性故障。脉冲激光实验证明,n 型 LDMOS(nLDMOS)的 SEB 触发电压明显低于 p 型 LDMOS(pLDMOS),这限制了互补 LDMOS 器件在航空航天电子系统中的应用。这项工作通过技术计算机辅助设计(TCAD)模拟研究了 nLDMOS 和 pLDMOS 中的 SEB 机制。分析表明,寄生双极晶体管的电流增益以及 pLDMOS 和 nLDMOS 之间的阱电阻差异会导致不同的 SEB 触发电压。此外,还采用了辐射硬化技术来改善 nLDMOS 的 SEB 触发电压,使其与 pLDMOS 的触发电压接近。这项研究为使用标准双极-CMOS-DMOS(BCD)制造工艺设计直流-直流转换器和电机驱动器等辐射加固型高压集成电路提供了启示。
{"title":"Single-Event Burnout Effects of Complementary LDMOS Devices in High-Voltage Integrated Circuits","authors":"Chonghao Chen;Jiang Xu;Zhuojun Chen","doi":"10.1109/TDMR.2024.3420391","DOIUrl":"10.1109/TDMR.2024.3420391","url":null,"abstract":"Lateral diffused metal-oxide-semiconductor (LDMOS) devices are vulnerable to single-event burnout (SEB) in radiation environments, potentially leading to catastrophic failure in high-voltage integrated circuits (HVICs). Pulsed-laser experiments have demonstrated that the SEB triggering voltage of n-type LDMOS (nLDMOS) is significantly lower than that of p-type LDMOS (pLDMOS), which limits the applications of complementary LDMOS devices in aerospace electronic systems. This work investigates the SEB mechanism in both nLDMOS and pLDMOS through technology computer-aided design (TCAD) simulations. The analysis reveals that differences in the current gain of parasitic bipolar transistors and well resistance between pLDMOS and nLDMOS result in varying SEB triggering voltages. Additionally, a radiation-hardening technique is employed to improve the SEB triggering voltage of nLDMOS, aligning it closely with that of pLDMOS. This research provides insight into the design of radiation-hardened high-voltage integrated circuits, such as DC-DC converters and motor drivers, using a standard Bipolar-CMOS-DMOS (BCD) fabrication process.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"401-406"},"PeriodicalIF":2.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Highly Reliable 14T and 16T SRAM Cells Combined With Layout Harden Technique 结合布局硬化技术设计高可靠性 14T 和 16T SRAM 单元
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-24 DOI: 10.1109/TDMR.2024.3417961
Feng Wei;Xiaole Cui;Qixue Zhang;Sunrui Zhang;Xiaoxin Cui;Xing Zhang
The node upset may occur in the memory cell if the charged particle from cosmos rays or packaging materials strikes the integrated circuit. Radiation-hardened-by-design (RHBD) techniques introduce redundant transistors in the SRAM cell to improve its ability of recovering from the undesired node upset. However, the extra redundant transistors may increase the number of sensitive nodes in the SRAM cell, which decreases its capability of node-upset tolerance in turn. This work proposes an RHBD 14T SRAM cell and an RHBD 16T SRAM cell. Both the proposed SRAM cells only have two sensitive nodes. The proposed SRAM cells are able to recover from all the SNU cases. The layout harden technique is used to protect the proposed cells from SEMNU, and the blank of the hardened layout is reused so the proposed 14T and 16T SRAM cells consume the same area. Although the proposed cells have more transistors, the hardened layout areas of NS-10T/ PS-10T/ RHD-12T/ RHBD-10T/ RHBD-10T[VLSI]/ QUCCE-12T are respectively $1.78times $ / $1.78times $ / $1.83times $ / $1.78times $ / $1.78times $ / $1.99times $ larger than that of the proposed cells. The reason is that the layout harden technique is easier to be applied to the proposed cells because they only have two sensitive nodes.
如果来自宇宙射线或封装材料的带电粒子撞击到集成电路上,存储单元就会发生节点紊乱。辐射加固设计(RHBD)技术在 SRAM 单元中引入冗余晶体管,以提高其从意外节点干扰中恢复的能力。然而,额外的冗余晶体管可能会增加 SRAM 单元中敏感节点的数量,进而降低其节点上移耐受能力。本研究提出了一种 RHBD 14T SRAM 单元和一种 RHBD 16T SRAM 单元。这两种拟议的 SRAM 单元都只有两个敏感节点。所提出的 SRAM 单元能够从所有 SNU 情况中恢复。布局加固技术用于保护拟议的单元免受 SEMNU 的影响,加固布局的空白被重复使用,因此拟议的 14T 和 16T SRAM 单元占用的面积相同。虽然建议的单元拥有更多的晶体管,但NS-10T/ PS-10T/ RHD-12T/ RHBD-10T/ RHBD-10T[VLSI]/ QUCCE-12T的硬化布局面积分别比建议的单元大1.78/1.78/1.83/1.78/1.78/1.83/1.83/1.83/1.83/1.83/1.83/1.83/1.83/1.78/1.78/1.78/1.99美元。原因是布局加固技术更容易应用于提议的单元,因为它们只有两个敏感节点。
{"title":"Design of Highly Reliable 14T and 16T SRAM Cells Combined With Layout Harden Technique","authors":"Feng Wei;Xiaole Cui;Qixue Zhang;Sunrui Zhang;Xiaoxin Cui;Xing Zhang","doi":"10.1109/TDMR.2024.3417961","DOIUrl":"10.1109/TDMR.2024.3417961","url":null,"abstract":"The node upset may occur in the memory cell if the charged particle from cosmos rays or packaging materials strikes the integrated circuit. Radiation-hardened-by-design (RHBD) techniques introduce redundant transistors in the SRAM cell to improve its ability of recovering from the undesired node upset. However, the extra redundant transistors may increase the number of sensitive nodes in the SRAM cell, which decreases its capability of node-upset tolerance in turn. This work proposes an RHBD 14T SRAM cell and an RHBD 16T SRAM cell. Both the proposed SRAM cells only have two sensitive nodes. The proposed SRAM cells are able to recover from all the SNU cases. The layout harden technique is used to protect the proposed cells from SEMNU, and the blank of the hardened layout is reused so the proposed 14T and 16T SRAM cells consume the same area. Although the proposed cells have more transistors, the hardened layout areas of NS-10T/ PS-10T/ RHD-12T/ RHBD-10T/ RHBD-10T[VLSI]/ QUCCE-12T are respectively \u0000<inline-formula> <tex-math>$1.78times $ </tex-math></inline-formula>\u0000/\u0000<inline-formula> <tex-math>$1.78times $ </tex-math></inline-formula>\u0000/\u0000<inline-formula> <tex-math>$1.83times $ </tex-math></inline-formula>\u0000/\u0000<inline-formula> <tex-math>$1.78times $ </tex-math></inline-formula>\u0000/\u0000<inline-formula> <tex-math>$1.78times $ </tex-math></inline-formula>\u0000/\u0000<inline-formula> <tex-math>$1.99times $ </tex-math></inline-formula>\u0000 larger than that of the proposed cells. The reason is that the layout harden technique is easier to be applied to the proposed cells because they only have two sensitive nodes.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"390-400"},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices 电气和电子工程师学会电子器件期刊》智能传感器系统特刊
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405612
{"title":"Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices","authors":"","doi":"10.1109/TDMR.2024.3405612","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405612","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"354-355"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405820
{"title":"Blank Page","authors":"","doi":"10.1109/TDMR.2024.3405820","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405820","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"C4-C4"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Device and Materials Reliability Information for Authors IEEE 《器件与材料可靠性》期刊为作者提供的信息
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405819
{"title":"IEEE Transactions on Device and Materials Reliability Information for Authors","authors":"","doi":"10.1109/TDMR.2024.3405819","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405819","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566483","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial TDMR IIRW Special Section 特约编辑 TDMR IIRW 特辑
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3407548
Charles LaRow
The IEEE International Integrated Reliability Workshop (IIRW) is a distinctive event which brings together reliability researchers, professionals, and students from around the globe to a common forum for lively discussions, wonderful technical presentations, and beautiful scenery for 4 days and nights. The event takes place every year at Fallen Leaf Lake in South Lake Tahoe, CA, USA, where attendees are housed within a secluded camp with informal meeting spaces and access to boats, trails, and many other outdoor activities. The scope of content centers around hot topics in, novel techniques for, and general knowledge on semiconductor reliability research and industry challenges. Talks on transistor and front-end-of-the-line (FEOL) reliability, bias temperature instability (BTI), hot carrier (HC), gate dielectric time-dependent dielectric breakdown (TDDB), back-end-of-the-line (BEOL) reliability, Interconnect TDDB, electro-migration (EM), circuit reliability, packaging reliability, conventional and emerging memory reliability, failure analysis (FA), wafer-level reliability (WLR), among other topic are presented. The key focus areas at IIRW 2023 were Advanced node scaling solutions (FEOL/MOL/BEOL), circuit reliability (device-circuit degradation and aging).
IEEE 国际集成可靠性研讨会(IIRW)是一项独具特色的活动,它将来自全球各地的可靠性研究人员、专业人士和学生聚集到一个共同的论坛,在四天四夜的时间里进行热烈的讨论、精彩的技术演讲和美丽的风景。活动每年都在美国加利福尼亚州南太浩湖的落叶湖举行,与会者住在一个隐蔽的营地里,那里有非正式的会议场所,还可以乘船、走小路和参加许多其他户外活动。会议内容围绕半导体可靠性研究和行业挑战的热点话题、新技术和常识展开。会议将就晶体管和线路前端 (FEOL) 可靠性、偏置温度不稳定性 (BTI)、热载流子 (HC)、栅极电介质随时间变化的电介质击穿 (TDDB)、线路后端 (BEOL) 可靠性、互连 TDDB、电迁移 (EM)、电路可靠性、封装可靠性、传统和新兴存储器可靠性、故障分析 (FA)、晶圆级可靠性 (WLR) 等主题进行讨论。IIRW 2023 的重点领域是先进节点扩展解决方案(FEOL/MOL/BEOL)、电路可靠性(器件-电路退化和老化)。
{"title":"Guest Editorial TDMR IIRW Special Section","authors":"Charles LaRow","doi":"10.1109/TDMR.2024.3407548","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3407548","url":null,"abstract":"The IEEE International Integrated Reliability Workshop (IIRW) is a distinctive event which brings together reliability researchers, professionals, and students from around the globe to a common forum for lively discussions, wonderful technical presentations, and beautiful scenery for 4 days and nights. The event takes place every year at Fallen Leaf Lake in South Lake Tahoe, CA, USA, where attendees are housed within a secluded camp with informal meeting spaces and access to boats, trails, and many other outdoor activities. The scope of content centers around hot topics in, novel techniques for, and general knowledge on semiconductor reliability research and industry challenges. Talks on transistor and front-end-of-the-line (FEOL) reliability, bias temperature instability (BTI), hot carrier (HC), gate dielectric time-dependent dielectric breakdown (TDDB), back-end-of-the-line (BEOL) reliability, Interconnect TDDB, electro-migration (EM), circuit reliability, packaging reliability, conventional and emerging memory reliability, failure analysis (FA), wafer-level reliability (WLR), among other topic are presented. The key focus areas at IIRW 2023 were Advanced node scaling solutions (FEOL/MOL/BEOL), circuit reliability (device-circuit degradation and aging).","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"159-160"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566481","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Device and Materials Reliability Publication Information IEEE 器件与材料可靠性期刊》出版信息
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3405818
{"title":"IEEE Transactions on Device and Materials Reliability Publication Information","authors":"","doi":"10.1109/TDMR.2024.3405818","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3405818","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers 半导体制造设计 (DFM) 特刊 联合征稿
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-20 DOI: 10.1109/TDMR.2024.3412348
{"title":"Special Issue on Semiconductor Design for Manufacturing (DFM)Joint Call for Papers","authors":"","doi":"10.1109/TDMR.2024.3412348","DOIUrl":"https://doi.org/10.1109/TDMR.2024.3412348","url":null,"abstract":"","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 2","pages":"356-356"},"PeriodicalIF":2.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566482","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-Parameter Patterns 通过处理 S 参数模式进行氧化铟锡电极故障检测和根本原因分析的实证研究
IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-06-17 DOI: 10.1109/TDMR.2024.3415049
Tae Yeob Kang;Haebom Lee;Sungho Suh
In the field of optoelectronics, indium tin oxide (ITO) electrodes play a crucial role in various applications, such as displays, sensors, and solar cells. Effective fault diagnosis and root cause analysis of the ITO electrodes are essential to ensure the performance and reliability of the devices. However, traditional visual inspection is challenging with transparent ITO electrodes, and existing fault diagnosis methods have limitations in determining the root causes of the defects, often requiring destructive evaluations and secondary material characterization techniques. In this study, a fault diagnosis method with root cause analysis is proposed using scattering parameter (S-parameter) patterns, offering early detection, high diagnostic accuracy, and noise robustness. A comprehensive S-parameter pattern database is obtained according to various defect states of the ITO electrodes. Deep learning (DL) approaches, including multilayer perceptron (MLP), convolutional neural network (CNN), and transformer, are then used to simultaneously analyze the cause and severity of defects. Notably, it is demonstrated that the diagnostic performance under additive noise levels can be significantly enhanced by combining different channels of the S-parameters as input to the learning algorithms, as confirmed through the t-distributed stochastic neighbor embedding (t-SNE) dimension reduction visualization of the S-parameter patterns.
在光电子领域,铟锡氧化物(ITO)电极在显示器、传感器和太阳能电池等各种应用中发挥着至关重要的作用。要确保设备的性能和可靠性,就必须对 ITO 电极进行有效的故障诊断和根本原因分析。然而,对于透明的 ITO 电极来说,传统的目视检测具有挑战性,而且现有的故障诊断方法在确定缺陷的根本原因方面存在局限性,通常需要进行破坏性评估和二次材料表征技术。本研究提出了一种利用散射参数(S 参数)模式进行根本原因分析的故障诊断方法,具有早期检测、诊断准确性高和噪声稳健性好的特点。根据 ITO 电极的各种缺陷状态,获得了一个全面的 S 参数模式数据库。然后使用深度学习(DL)方法,包括多层感知器(MLP)、卷积神经网络(CNN)和变压器,同时分析缺陷的原因和严重程度。值得注意的是,通过对 S 参数模式进行 t 分布随机邻域嵌入(t-SNE)降维可视化,证明了将不同通道的 S 参数组合作为学习算法的输入,可显著提高加性噪声水平下的诊断性能。
{"title":"An Empirical Study on Fault Detection and Root Cause Analysis of Indium Tin Oxide Electrodes by Processing S-Parameter Patterns","authors":"Tae Yeob Kang;Haebom Lee;Sungho Suh","doi":"10.1109/TDMR.2024.3415049","DOIUrl":"10.1109/TDMR.2024.3415049","url":null,"abstract":"In the field of optoelectronics, indium tin oxide (ITO) electrodes play a crucial role in various applications, such as displays, sensors, and solar cells. Effective fault diagnosis and root cause analysis of the ITO electrodes are essential to ensure the performance and reliability of the devices. However, traditional visual inspection is challenging with transparent ITO electrodes, and existing fault diagnosis methods have limitations in determining the root causes of the defects, often requiring destructive evaluations and secondary material characterization techniques. In this study, a fault diagnosis method with root cause analysis is proposed using scattering parameter (S-parameter) patterns, offering early detection, high diagnostic accuracy, and noise robustness. A comprehensive S-parameter pattern database is obtained according to various defect states of the ITO electrodes. Deep learning (DL) approaches, including multilayer perceptron (MLP), convolutional neural network (CNN), and transformer, are then used to simultaneously analyze the cause and severity of defects. Notably, it is demonstrated that the diagnostic performance under additive noise levels can be significantly enhanced by combining different channels of the S-parameters as input to the learning algorithms, as confirmed through the t-distributed stochastic neighbor embedding (t-SNE) dimension reduction visualization of the S-parameter patterns.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 3","pages":"380-389"},"PeriodicalIF":2.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Device and Materials Reliability
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1