Pub Date : 2022-08-27DOI: 10.14710/ijred.2022.47260
Muhamad Izzuddin Bin Zamli, M. Akmal, Fazeela Niazi, F. Ahmad, F. Hisham
In this study, chitosan thin film derived from Aspergillus oryzae cell walls was fabricated and characterised. First, the chitosan from the fungal biomass was extracted (0.18 g/g) with 52.25% of degree of deacetylation obtained through Fourier transform infrared (FTIR) spectroscopy. Subsequently, several parameters of the chitosan thin film fabrication were optimised, including chitosan solution volume and drying temperature. Resultantly, the highest mechanical quality factor (3.22±0.012), the lowest dissipation factor (0.327±0.0003) and the best tensile strength (13.35±0.045 MPa) were obtained when pure chitosan was dissolved in 35 ml of 0.25 M formic acid and dried at 60 ˚C. In addition, the scanning electron microscopy (SEM) analysis presented a fine chitosan agglomerate distributed in the formic acid. The optimised fabricated, fungal-derived chitosan thin film was validated, recording a mechanical quality factor of 3.68 and dissipation factor of 0.248; both values were comparable to the synthetic polymer, polyvinylidene fluoride (PVDF) thin film. Thus, fungal-derived chitosan thin film can potentially be used as a piezoelectric material.
{"title":"Piezoelectric Performance of Microbial Chitosan Thin Film Derived from Aspergillus oryzae","authors":"Muhamad Izzuddin Bin Zamli, M. Akmal, Fazeela Niazi, F. Ahmad, F. Hisham","doi":"10.14710/ijred.2022.47260","DOIUrl":"https://doi.org/10.14710/ijred.2022.47260","url":null,"abstract":"In this study, chitosan thin film derived from Aspergillus oryzae cell walls was fabricated and characterised. First, the chitosan from the fungal biomass was extracted (0.18 g/g) with 52.25% of degree of deacetylation obtained through Fourier transform infrared (FTIR) spectroscopy. Subsequently, several parameters of the chitosan thin film fabrication were optimised, including chitosan solution volume and drying temperature. Resultantly, the highest mechanical quality factor (3.22±0.012), the lowest dissipation factor (0.327±0.0003) and the best tensile strength (13.35±0.045 MPa) were obtained when pure chitosan was dissolved in 35 ml of 0.25 M formic acid and dried at 60 ˚C. In addition, the scanning electron microscopy (SEM) analysis presented a fine chitosan agglomerate distributed in the formic acid. The optimised fabricated, fungal-derived chitosan thin film was validated, recording a mechanical quality factor of 3.68 and dissipation factor of 0.248; both values were comparable to the synthetic polymer, polyvinylidene fluoride (PVDF) thin film. Thus, fungal-derived chitosan thin film can potentially be used as a piezoelectric material.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43103390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-26DOI: 10.14710/ijred.2023.46328
N. Hussein, Sabah T Ahmed, A. Ekaid
In this investigation, the effect of replacing the conventional solar absorber with a new solar absorber on the thermal performance of a double-pass solar air heater has been studied experimentally and numerically. Three configurations have been introduced, the first configuration is a double pass solar air heater with a flat plate solar absorber (DPSAHWFP) for the aim of comparison, and the second configuration is a double pass solar air heater with a tubular absorber that includes a set of tubes which are fitted perpendicularly to the direction of airflow (DPSAHWT-1), and the third configuration is double-pass solar air heater with a tubular absorber that involves set of tubes which are fitted in parallel to the direction of airflow (DPSAHWT-2). The experiments have been carried out under indoor conditions at a constant heat flux equal to 1000 W/m2 and different air mass flow rates (0.01– 0.03 kg/s). The results revealed that the air mass flow rate has a substantial impact compared to the rise in air temperature, hence, the thermal performance of solar air heater is directly proportional to increase air mass flow rate. In addition, the experimental and numerical outcomes indicated that for all air flow rates. The (DPSAHWT-2) offers higher thermal performance as compared to other models, where the maximum effective efficiency has been obtained at 0.03 kg/s equal to 80.9 %. Moreover, (DPSAHWT-2) is more efficient than DPSAHWFP and DPSAHWT-1 by 4.2 % and 9.8 % respectively.
{"title":"Thermal Performance of Double Pass Solar Air Heater With Tubular Solar Absorber","authors":"N. Hussein, Sabah T Ahmed, A. Ekaid","doi":"10.14710/ijred.2023.46328","DOIUrl":"https://doi.org/10.14710/ijred.2023.46328","url":null,"abstract":"In this investigation, the effect of replacing the conventional solar absorber with a new solar absorber on the thermal performance of a double-pass solar air heater has been studied experimentally and numerically. Three configurations have been introduced, the first configuration is a double pass solar air heater with a flat plate solar absorber (DPSAHWFP) for the aim of comparison, and the second configuration is a double pass solar air heater with a tubular absorber that includes a set of tubes which are fitted perpendicularly to the direction of airflow (DPSAHWT-1), and the third configuration is double-pass solar air heater with a tubular absorber that involves set of tubes which are fitted in parallel to the direction of airflow (DPSAHWT-2). The experiments have been carried out under indoor conditions at a constant heat flux equal to 1000 W/m2 and different air mass flow rates (0.01– 0.03 kg/s). The results revealed that the air mass flow rate has a substantial impact compared to the rise in air temperature, hence, the thermal performance of solar air heater is directly proportional to increase air mass flow rate. In addition, the experimental and numerical outcomes indicated that for all air flow rates. The (DPSAHWT-2) offers higher thermal performance as compared to other models, where the maximum effective efficiency has been obtained at 0.03 kg/s equal to 80.9 %. Moreover, (DPSAHWT-2) is more efficient than DPSAHWFP and DPSAHWT-1 by 4.2 % and 9.8 % respectively.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45431519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-25DOI: 10.14710/ijred.2022.45180
Mehmood Ali, Fazeela Niazi, M. Siddiqui, M. Saleem
The current study examined reduction of moisture from agricultural energy and food crops in a conventional oven to a solar dryer at various treatment periods at temperature between 40 ± 10 oC. Sugarcane bagasse and Phragmites Australis had initial moisture of 50.8 % and 6.07 % by dry weight, respectively, with higher heating values (HHV) 6548.5 kJ/kg and 17653.02 kJ/kg respectively. The moisture content of bagasse and phragmites were decreased by 51.31% and 68.69% respectively using oven drying, while the moisture content of bagasse and phragmites was reduced by 48.01% and 66.22% respectively, using solar drying with 5 hrs treatment time. Corresponding increase in HHV’s observed in bagasse to 11195.6 KJ/kg (oven drying) and 10998.1 KJ/kg (solar drying), while HHV of phragmites increased to 18706.79KJ/kg (oven drying) and 18685.36KJ/kg (solar drying). Green chillies had a moisture content reduction by 33.69 % (oven) and 8.28 % (solar), whereas grapes had a reduction by 31.20 % (oven) and 7.88 % (solar) with 5 hrs treatment time. The oven drying approach revealed higher carbohydrate content in food crops when compared to solar drying, while both treatments showed a similar drop in protein, fat, and vitamin C contents. Statistical and energy analysis observed that comparing solar drying; the oven drying eliminates slightly higher moisture content and have less drying energy requirements. The amount of heat energy required for drying unit mass of bagasse was 0.476 kJ/kg (oven) and 0.556 kJ/kg (solar), for phragmites it was 0.074 kJ/kg (oven) and 0.092 kJ/kg (solar), for chilles 0.524 kJ/kg (oven) and 0.576 kJ/kg (solar) and for grapes 0.123 kJ/kg (oven) and 0.157 MJ/kg (solar). According to the results solar drying required greater quantity of heat energy than oven drying. Mass transfer analysis showed drying constant of bagasse and phragmites were higher initially, then showed reducing trend with respect time. Furthermore, it was observed that the effective diffusivity and mass transfer coefficient were found reducing with respect to increasing drying treatment time. The research findings of renewable solar drying, on the other hand, are comparable to those of oven drying, demonstrating that there is still enough untapped heat energy available for its utilization in biomass thermo-chemical conversion methods.
{"title":"Comparative Study on Oven and Solar Drying of Agricultural Residues and Food Crops","authors":"Mehmood Ali, Fazeela Niazi, M. Siddiqui, M. Saleem","doi":"10.14710/ijred.2022.45180","DOIUrl":"https://doi.org/10.14710/ijred.2022.45180","url":null,"abstract":"The current study examined reduction of moisture from agricultural energy and food crops in a conventional oven to a solar dryer at various treatment periods at temperature between 40 ± 10 oC. Sugarcane bagasse and Phragmites Australis had initial moisture of 50.8 % and 6.07 % by dry weight, respectively, with higher heating values (HHV) 6548.5 kJ/kg and 17653.02 kJ/kg respectively. The moisture content of bagasse and phragmites were decreased by 51.31% and 68.69% respectively using oven drying, while the moisture content of bagasse and phragmites was reduced by 48.01% and 66.22% respectively, using solar drying with 5 hrs treatment time. Corresponding increase in HHV’s observed in bagasse to 11195.6 KJ/kg (oven drying) and 10998.1 KJ/kg (solar drying), while HHV of phragmites increased to 18706.79KJ/kg (oven drying) and 18685.36KJ/kg (solar drying). Green chillies had a moisture content reduction by 33.69 % (oven) and 8.28 % (solar), whereas grapes had a reduction by 31.20 % (oven) and 7.88 % (solar) with 5 hrs treatment time. The oven drying approach revealed higher carbohydrate content in food crops when compared to solar drying, while both treatments showed a similar drop in protein, fat, and vitamin C contents. Statistical and energy analysis observed that comparing solar drying; the oven drying eliminates slightly higher moisture content and have less drying energy requirements. The amount of heat energy required for drying unit mass of bagasse was 0.476 kJ/kg (oven) and 0.556 kJ/kg (solar), for phragmites it was 0.074 kJ/kg (oven) and 0.092 kJ/kg (solar), for chilles 0.524 kJ/kg (oven) and 0.576 kJ/kg (solar) and for grapes 0.123 kJ/kg (oven) and 0.157 MJ/kg (solar). According to the results solar drying required greater quantity of heat energy than oven drying. Mass transfer analysis showed drying constant of bagasse and phragmites were higher initially, then showed reducing trend with respect time. Furthermore, it was observed that the effective diffusivity and mass transfer coefficient were found reducing with respect to increasing drying treatment time. The research findings of renewable solar drying, on the other hand, are comparable to those of oven drying, demonstrating that there is still enough untapped heat energy available for its utilization in biomass thermo-chemical conversion methods.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45117096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-25DOI: 10.14710/ijred.2023.46068
Abeth Novria Sonjaya, K. Safitri, Adi Surjosatyo
This study aimed to determine the effect of rice husk fluidization and variation in the equivalence ratio of bubbling fluidized bed gasifiers without sand bed materials. It also aimed to improve the fluidization quality by reducing the diameter of rice husks. Therefore, the bulk density increases, whereas voidage decreases, both of which are the main parameters for improving the quality of fluidization in solid particles. Experiments were carried out at a velocity of 0.82 m/s, by varying the equivalent ratios ranging from 0.20 to 0.35, and analyzing the syngas composition, cold gas and carbon conversion efficiencies, lower heating value, and temperature distribution. An equivalence ratio of 0.30 was obtained for a bubbling fluidized gasifier with syngas compositions of 7.415%, 15.674%, 3.071%, 17.839%, and 56.031% for H2, CO, CH4, CO2, and N2, respectively. Under these conditions, we obtained cold gas and carbon conversion efficiencies and a lower heating value of 31.340%, 37.120%, and 3.881 MJ/Nm3, respectively.
{"title":"Experimental Study of Rice Husk Fluidization Without a Sand Bed Material on a Bubbling Fluidized Bed Gasifier","authors":"Abeth Novria Sonjaya, K. Safitri, Adi Surjosatyo","doi":"10.14710/ijred.2023.46068","DOIUrl":"https://doi.org/10.14710/ijred.2023.46068","url":null,"abstract":"This study aimed to determine the effect of rice husk fluidization and variation in the equivalence ratio of bubbling fluidized bed gasifiers without sand bed materials. It also aimed to improve the fluidization quality by reducing the diameter of rice husks. Therefore, the bulk density increases, whereas voidage decreases, both of which are the main parameters for improving the quality of fluidization in solid particles. Experiments were carried out at a velocity of 0.82 m/s, by varying the equivalent ratios ranging from 0.20 to 0.35, and analyzing the syngas composition, cold gas and carbon conversion efficiencies, lower heating value, and temperature distribution. An equivalence ratio of 0.30 was obtained for a bubbling fluidized gasifier with syngas compositions of 7.415%, 15.674%, 3.071%, 17.839%, and 56.031% for H2, CO, CH4, CO2, and N2, respectively. Under these conditions, we obtained cold gas and carbon conversion efficiencies and a lower heating value of 31.340%, 37.120%, and 3.881 MJ/Nm3, respectively.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46514194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-18DOI: 10.14710/ijred.2022.45213
U. Alola, A. Alola, Serdar Çop, Marymagdaline Enowmbi Tarkang
Environmental sustainability is one of the vast research areas in the globe. Most industries are not left out in the quest for a sustainable environment including the hotel industry. Also, customers look for environmental friendly hotel to patronize. With this vast knowledge, the current study takes into account the relationship between green training and green employee involvement, with the mediating effect of perceived behavioural control. The sample of 306 was collected from 4 and 5-star hotel in Turkey in 2020. The study assessed the data with AMOS 20 to hypothesize the relationship between the variables. Findings confirmed that there is a positive impact of green training on perceived behavioural control, organizational citizenship behaviour towards the environment and green employee involvement. In addition, results also validated the positive effect of perceived behavioural control on organizational citizenship behaviour and green employee involvement. It contributes significantly to the ongoing research in the field of green training in the hotel industry in Turkey. These outcomes are supportive to Turkey’s hotel industry green management and employee behavioural actions to the environment.
{"title":"Environmental Sustainability Goal and the Effect of Resources Extrication: A \"Give and Take Perspective”","authors":"U. Alola, A. Alola, Serdar Çop, Marymagdaline Enowmbi Tarkang","doi":"10.14710/ijred.2022.45213","DOIUrl":"https://doi.org/10.14710/ijred.2022.45213","url":null,"abstract":"Environmental sustainability is one of the vast research areas in the globe. Most industries are not left out in the quest for a sustainable environment including the hotel industry. Also, customers look for environmental friendly hotel to patronize. With this vast knowledge, the current study takes into account the relationship between green training and green employee involvement, with the mediating effect of perceived behavioural control. The sample of 306 was collected from 4 and 5-star hotel in Turkey in 2020. The study assessed the data with AMOS 20 to hypothesize the relationship between the variables. Findings confirmed that there is a positive impact of green training on perceived behavioural control, organizational citizenship behaviour towards the environment and green employee involvement. In addition, results also validated the positive effect of perceived behavioural control on organizational citizenship behaviour and green employee involvement. It contributes significantly to the ongoing research in the field of green training in the hotel industry in Turkey. These outcomes are supportive to Turkey’s hotel industry green management and employee behavioural actions to the environment.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49184427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-07DOI: 10.14710/ijred.2022.45799
K. Mrigua, M. Zemamou, M. Aggour
The classic Savonius semi-circular blade turbine has a relatively low power coefficient.The performance of a Savonius wind turbine depends on its geometrical parameters. Various blade profiles have been developed in the past years to improve the performance of this class of turbine. In this paper, a new blade shapes of Savonius wind turbine is investigated numerically by using the CFD method , by using transient conditions and set k omega turbulence model.The new blade has different concave and convex shape, which is a combination of the conventional and the elliptical blade. A comparative study of three blade profiles, semi-circular, elliptical and the composed blades have been performed.Flow structures around the rotor have also been analyzed. The results show that changing the blade shape has an effect on the performance efficiency of the Savonius turbine.The new modified and the elliptical blade exhibit higher performance compared to the conventional Savonius wind turbine. The new modified Savonius blade and the elliptical blade exhibit an improved performance compared to the conventional model in the order of 20.5% and 18.2% respectively at the tip speed ratio of 0.8.
{"title":"Numerical Investigation of a New Modified Savonius Wind Turbines","authors":"K. Mrigua, M. Zemamou, M. Aggour","doi":"10.14710/ijred.2022.45799","DOIUrl":"https://doi.org/10.14710/ijred.2022.45799","url":null,"abstract":"The classic Savonius semi-circular blade turbine has a relatively low power coefficient.The performance of a Savonius wind turbine depends on its geometrical parameters. Various blade profiles have been developed in the past years to improve the performance of this class of turbine. In this paper, a new blade shapes of Savonius wind turbine is investigated numerically by using the CFD method , by using transient conditions and set k omega turbulence model.The new blade has different concave and convex shape, which is a combination of the conventional and the elliptical blade. A comparative study of three blade profiles, semi-circular, elliptical and the composed blades have been performed.Flow structures around the rotor have also been analyzed. The results show that changing the blade shape has an effect on the performance efficiency of the Savonius turbine.The new modified and the elliptical blade exhibit higher performance compared to the conventional Savonius wind turbine. The new modified Savonius blade and the elliptical blade exhibit an improved performance compared to the conventional model in the order of 20.5% and 18.2% respectively at the tip speed ratio of 0.8.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46400275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.14710/ijred.2022.46009
R. S. Dubey, S. Saravanan
The issues related to global energy needs and environmental safeties as well as health crisis are some of the major challenges faced by the human, which make us to generate new pollution-free and sustainable energy sources. For that the optical functional nanostructures can be manipulated the confined light at the nanoscale level. These characteristics are emerging and leading candidate for the solar energy conversion. The combination of photonic (dielectric) and plasmonic (metallic) nanostructures are responsible for the development of better optical performance in solar cells. Here, the enhancement of light trapping within the thin active region is the primary goal. In this work, we have studied the influence of front-ITO (rectangular) and back-Ag (triangular) nanogratings were incorporated with ultrathin film amorphous silicon (a-Si) solar cell by using rigorous coupled wave analysis (RCWA) method. The improvement of light absorption, scattering (large angle), diffraction and field distributions (TE/TM) were demonstrated by the addition of single and dual nanogratings structures. Significantly, the plasmonic (noble metal) nanogratings are located at the bottom of the cell structure as a backside reflector which is helpful for the omni-directional reflection and increased the path length (life time) of the photons due to that the collection of the charge carriers were enhanced. Further, the proposed solar cell structure has optimized and compared to a back-Ag, front-ITO and dual nanogratings based ultrathin film amorphous silicon solar cell. Finally, the obtained results were evidenced for the assistance of photonic and plasmonic modes and achieved the highest current density (Jsc) of 23.82 mA/cm2(TE) and 22.75 mA/cm2 (TM) with in 50 nm thin active layers by integration of (dual) cell structures
{"title":"Ultrathin Film Amorphous Silicon Solar Cell Performance using Rigorous Coupled Wave Analysis Method","authors":"R. S. Dubey, S. Saravanan","doi":"10.14710/ijred.2022.46009","DOIUrl":"https://doi.org/10.14710/ijred.2022.46009","url":null,"abstract":"The issues related to global energy needs and environmental safeties as well as health crisis are some of the major challenges faced by the human, which make us to generate new pollution-free and sustainable energy sources. For that the optical functional nanostructures can be manipulated the confined light at the nanoscale level. These characteristics are emerging and leading candidate for the solar energy conversion. The combination of photonic (dielectric) and plasmonic (metallic) nanostructures are responsible for the development of better optical performance in solar cells. Here, the enhancement of light trapping within the thin active region is the primary goal. In this work, we have studied the influence of front-ITO (rectangular) and back-Ag (triangular) nanogratings were incorporated with ultrathin film amorphous silicon (a-Si) solar cell by using rigorous coupled wave analysis (RCWA) method. The improvement of light absorption, scattering (large angle), diffraction and field distributions (TE/TM) were demonstrated by the addition of single and dual nanogratings structures. Significantly, the plasmonic (noble metal) nanogratings are located at the bottom of the cell structure as a backside reflector which is helpful for the omni-directional reflection and increased the path length (life time) of the photons due to that the collection of the charge carriers were enhanced. Further, the proposed solar cell structure has optimized and compared to a back-Ag, front-ITO and dual nanogratings based ultrathin film amorphous silicon solar cell. Finally, the obtained results were evidenced for the assistance of photonic and plasmonic modes and achieved the highest current density (Jsc) of 23.82 mA/cm2(TE) and 22.75 mA/cm2 (TM) with in 50 nm thin active layers by integration of (dual) cell structures","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47898712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.14710/ijred.2022.43790
Y. Admi, M. Moussaoui, A. Mezrhab
In this paper, a numerical investigation was performed to simulate laminar flow and heat transfer characteristics in a two-dimensional horizontal channel, comprising three heated square cylinders placed side-by-side and controlled by a downstream detached partition. The Double Multiple Relaxation Time Lattice Boltzmann Method (MRT-LBM) is applied as the numerical method was using the MRT-D2Q9 model and the MRT-D2Q5 model to treat the flow and the temperature fields respectively. The problem considered is a laminar and incompressible flow. The air (Pr = 0.71) is the fluid circulating in the channel, its physical properties, except the density, are assumed to be constant. The top and bottom channel walls are supposed to be adiabatic, the airflow incoming with cold temperature which is fixed to θc = - 0.5, each cylinder at a constant hot temperature equal to θh= 0,5. The flow is fully developed with a parabolic velocity profile at the inlet and at the outlet of the channel. Also, in the outlet, the temperature and velocity gradients are assumed to be zero. The effects of horizontal and vertical plate position and length on the fluid flow and the heat transfer are examined in terms of streamlines and isotherms contours visualizations.
{"title":"Numerical Investigation of Convective Heat Transfer and Fluid Flow Past a Three Square Cylinders Controlled by a Partition in Channel","authors":"Y. Admi, M. Moussaoui, A. Mezrhab","doi":"10.14710/ijred.2022.43790","DOIUrl":"https://doi.org/10.14710/ijred.2022.43790","url":null,"abstract":"In this paper, a numerical investigation was performed to simulate laminar flow and heat transfer characteristics in a two-dimensional horizontal channel, comprising three heated square cylinders placed side-by-side and controlled by a downstream detached partition. The Double Multiple Relaxation Time Lattice Boltzmann Method (MRT-LBM) is applied as the numerical method was using the MRT-D2Q9 model and the MRT-D2Q5 model to treat the flow and the temperature fields respectively. The problem considered is a laminar and incompressible flow. The air (Pr = 0.71) is the fluid circulating in the channel, its physical properties, except the density, are assumed to be constant. The top and bottom channel walls are supposed to be adiabatic, the airflow incoming with cold temperature which is fixed to θc = - 0.5, each cylinder at a constant hot temperature equal to θh= 0,5. The flow is fully developed with a parabolic velocity profile at the inlet and at the outlet of the channel. Also, in the outlet, the temperature and velocity gradients are assumed to be zero. The effects of horizontal and vertical plate position and length on the fluid flow and the heat transfer are examined in terms of streamlines and isotherms contours visualizations. ","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49159611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-04DOI: 10.14710/ijred.2022.43627
Aditya Kolakoti, M. Setiyo, M. L. Rochman
In this work, naturally available moringa oleifera leaves are chosen as a heterogeneous catalyst for biodiesel production from palm oil. The dry moringa oleifera leaves are calcinated up to 700 °C for 3 hours to improve their adsorbing property. The calcinated catalyst characterization analysis from XRD and EDX highlights the presence of calcium, potassium, and other elements. Response surface method (RSM) optimization and artificial neural network (ANN) modeling were carried out to elucidate the interaction effect of significant process variables on biodiesel yield. The results show that a maximum biodiesel yield of 92.82% was achieved at optimum conditions of catalyst usage (9 wt.%), molar ratio (7:1), temperature (50 °C) and reaction time (120 min). The catalyst usage (wt.%) was identified as a significant process variable followed by molar ratio. Furthermore, the significant fuel properties of the biodiesel related to thermal, physical, chemical, and elemental match with the established standards of ASTM. The reutilization analysis of the catalyst reveals that more than 50% of the biodiesel yield was achieved after five cycles of reuse.
{"title":"A green heterogeneous catalyst production and characterization for biodiesel production using RSM and ANN approach","authors":"Aditya Kolakoti, M. Setiyo, M. L. Rochman","doi":"10.14710/ijred.2022.43627","DOIUrl":"https://doi.org/10.14710/ijred.2022.43627","url":null,"abstract":"In this work, naturally available moringa oleifera leaves are chosen as a heterogeneous catalyst for biodiesel production from palm oil. The dry moringa oleifera leaves are calcinated up to 700 °C for 3 hours to improve their adsorbing property. The calcinated catalyst characterization analysis from XRD and EDX highlights the presence of calcium, potassium, and other elements. Response surface method (RSM) optimization and artificial neural network (ANN) modeling were carried out to elucidate the interaction effect of significant process variables on biodiesel yield. The results show that a maximum biodiesel yield of 92.82% was achieved at optimum conditions of catalyst usage (9 wt.%), molar ratio (7:1), temperature (50 °C) and reaction time (120 min). The catalyst usage (wt.%) was identified as a significant process variable followed by molar ratio. Furthermore, the significant fuel properties of the biodiesel related to thermal, physical, chemical, and elemental match with the established standards of ASTM. The reutilization analysis of the catalyst reveals that more than 50% of the biodiesel yield was achieved after five cycles of reuse.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43611123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-02DOI: 10.14710/ijred.2022.46747
T. Dei, Nomuulin Batjargal
This paper is intended as an investigation on a reliability of solar PV(Photovoltaic) and DG (Diesel Generator) hybrid system and the economical evaluation. In the remote area or island countries, diesel generator is a common technology for supplying power. In general, the price of diesel oil is expensive in remote areas. Therefore, introduction of the technologies which can reduce the fuel consumption for power generation is important in those area. Interconnection of solar PV with isolated diesel distribution lines is one of the options when expanding power generation facilities. However, the output of solar PV is influenced by the weather condition, it is difficult to ensure a constant output and control power amount. Using unstable input for power generation such as solar PV increases the risk of power outage due to instability of system voltage and frequency fluctuations. In this study, experiments were conducted to clarify the unstable condition using the micro-solar diesel hybrid system using solar PV (2kW), Battery Bank (24V,420Ah) and Diesel Generator (4.7kVA) and load(1500W) at Ashikaga University (AU). The experiments are conducted by two different setups, a hybrid system of solar PV and DG and the hybrid with battery bank. The results of the experiments show the frequency fluctuations becomes smaller by the hybrid system with battery bank. And the mechanical governor which attached to the DG has important function to stabilize frequency fluctuation. In the study, economic viability of the solar PV and DG hybrid system is examined by computing the Internal Rate of Return (IRR). In the calculation of the least-cost alternative system, a diesel engine powered generation system with the capacity to generate the same amount of electricity as the solar PV-DG hybrid system was used. The IRRs of the solar PV – diesel hybrid system is positive in all configuration. IRR becomes larger in the hybrid system without a battery bank and also it becomes larger with increase of the penetration ratio of solar PV. The configuration of solar PV and DG hybrid system have to be considered by the type of power demand. If the demand user requires quality power such as stabilized voltage and frequency in minimum range, battery bank have to be installed to the system. If the economical operation by saving the amount of fuel consumption is more important, battery bank does not need to be included. The system is feasible on the both aspect of technical and economical, therefore it can be introduced as reliable energy supply system for small power demand in remote areas.
{"title":"Technical and Economical Evaluation of Micro-Solar PV/Diesel Hybrid Generation System for Small Demand","authors":"T. Dei, Nomuulin Batjargal","doi":"10.14710/ijred.2022.46747","DOIUrl":"https://doi.org/10.14710/ijred.2022.46747","url":null,"abstract":"This paper is intended as an investigation on a reliability of solar PV(Photovoltaic) and DG (Diesel Generator) hybrid system and the economical evaluation. In the remote area or island countries, diesel generator is a common technology for supplying power. In general, the price of diesel oil is expensive in remote areas. Therefore, introduction of the technologies which can reduce the fuel consumption for power generation is important in those area. Interconnection of solar PV with isolated diesel distribution lines is one of the options when expanding power generation facilities. However, the output of solar PV is influenced by the weather condition, it is difficult to ensure a constant output and control power amount. Using unstable input for power generation such as solar PV increases the risk of power outage due to instability of system voltage and frequency fluctuations. In this study, experiments were conducted to clarify the unstable condition using the micro-solar diesel hybrid system using solar PV (2kW), Battery Bank (24V,420Ah) and Diesel Generator (4.7kVA) and load(1500W) at Ashikaga University (AU). The experiments are conducted by two different setups, a hybrid system of solar PV and DG and the hybrid with battery bank. The results of the experiments show the frequency fluctuations becomes smaller by the hybrid system with battery bank. And the mechanical governor which attached to the DG has important function to stabilize frequency fluctuation. In the study, economic viability of the solar PV and DG hybrid system is examined by computing the Internal Rate of Return (IRR). In the calculation of the least-cost alternative system, a diesel engine powered generation system with the capacity to generate the same amount of electricity as the solar PV-DG hybrid system was used. The IRRs of the solar PV – diesel hybrid system is positive in all configuration. IRR becomes larger in the hybrid system without a battery bank and also it becomes larger with increase of the penetration ratio of solar PV. The configuration of solar PV and DG hybrid system have to be considered by the type of power demand. If the demand user requires quality power such as stabilized voltage and frequency in minimum range, battery bank have to be installed to the system. If the economical operation by saving the amount of fuel consumption is more important, battery bank does not need to be included. The system is feasible on the both aspect of technical and economical, therefore it can be introduced as reliable energy supply system for small power demand in remote areas.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48277099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}