During penetration, a large quantity of friction-induced heat is generated, significantly increasing the projectile surface temperature. Considering that the temperature variation depends on the physical properties of the target being penetrated, understanding this relationship can aid in extraterrestrial material behavior for detection and analysis efforts. The study investigated the patterns of heat generation and the distribution of temperature on the surface of a projectile as it penetrates lunar regolith. For discrete medium penetration, large deviations appear in temperature prediction due to particle extrusion flow. Thus, a heat flux density model on the projectile surface by introducing a relative velocity factor (RVF) for correction was established. The particle flow characteristics simulation and fitting model of the introduced factor were also obtained. We constructed a theoretical relationship between the resistance and stress model parameters using dynamic modeling. Experimental projectiles recording penetration acceleration and temperature at the points of interest on the projectile surface were designed and tested to obtain recorded data. The temperature field in this process was simulated in COMSOL software to calculate the projectile surface's heat flux density and temperature distribution. The results indicate that the developed model is effective. This research infers the physical characteristics of the penetrating target under specified penetration conditions and provides more dimensional information for lunar regolith exploration.
The oxidizer system in a hybrid rocket motor needs to deliver the flow from a pressurized storage tank to multiple combustor ports. Pressure losses in the oxidizer system directly impacts combustor pressure and consequently the vehicle performance. However, oxidizer feed line designs till date have been done using simple 1D tools. Higher fidelity flow analysis methods have not been reported in the literature to identify loss generating features. Therefore, a design improvement study was carried out to identify and alleviate the impact of undesirable flow features in a typical oxidizer system design. An experimentally calibrated 3D RANS approach is applied to a typical LOx feed system which includes steps, splitters, ports, and pipes with multiple bends. These design features result in varying degrees of flow separation, secondary flows and vortical flow features and result in total pressure losses of up to 7 %. This loss means that the storage tank needs to be pressurized further to accommodate such losses and ensure combustor performance. A targeted design improvement approach that features simple, alternative, implementable solutions in the loss-generating regions is discussed. The best of these design improvements can reduce the total pressure loss to 4 %, indicating a 43 % reduction in the losses and reduced impact on storage tank design and combustor performance. Therefore, this paper demonstrates that a higher fidelity design enhancement process of the oxidizer feed system, which is often neglected in such detailed studies, can result in overall vehicle level design improvements to ensure mission targets are met effectively.
Beyond the gravitational pull of Earth, space travel poses substantial public health hazards pertaining to the physical and mental well-being of astronauts and passengers, in addition to a possible threat to the populace of Earth upon re-entry. Exposure to cosmic radiation, cranial pressure from microgravity, weakened immunity to contagion, and the potential for depression and psychosis are all risks. Public health crises of this nature are to be expected as the duration of missions extends, as is the case with Mars settlement. In contrast to national space programmes, which have regarded these obstacles as human factors effecting the mission, public health law in common law British nations approaches them from the perspective of social justice and the preservation of human life and societal welfare. Countries including Australia, Canada, the United States, and the United Kingdom continue to apply traditional common law principles of public health law, which provide a sensible and enduring method for reconciling competing public and private interests. Common law permits the violation of civil liberties through the use of force in public health restraint, forced medication, and quarantine, but only if necessary, reasonable, and equitable. While the understanding of the health challenges associated with long-duration spaceflight may be in its infancy for national space programmes and civilian space ventures, the application of common law public health principles could aid in the establishment of health and safety protocols in which human reactions to crises in space resemble those observed on Earth. This may, nevertheless, necessitate the enactment of a more comprehensive federal public health statute. Embedded in both public health common law and international space law, the pre-eminence of preserving and respecting human life and well-being continues to be a cornerstone of humane justice despite the perilous conditions of space.
The work is devoted to the study of laser shock treatment of structural materials used in aviation and space technology with powerful nanosecond pulses in order to reduce surface damage, as well as resistance to crack growth. The hardening effect is achieved due to the mechanical deformation produced by the shock wave from the laser pulse due to the rapidly expanding plasma in the area of the irradiation spot. In this work, laser parameters for processing structural materials are calculated to ensure the required laser radiation power density. The results of laser processing with high-power nanosecond pulses of materials such as oxygen-free copper, aluminum alloy and germanium at various energy densities, with and without a protective coating and a water layer are shown.