Pub Date : 2024-09-24DOI: 10.1016/j.actaastro.2024.09.045
The growing concerns posed by orbital debris represent a serious threat to the future of space operations in low Earth orbit. With the goal of limiting the formation of new debris, space agencies are proposing international guidelines that satellites should be able to deorbiting within 25 years of the end of their operational life. Orbital decay is typically caused by atmospheric drag, so estimating the decay time of a satellite subject to drag is critical to assessing whether the guidelines are met. However, such estimate is a very challenging task because of the difficulty of accurately modeling atmospheric properties and because of the coupling of orbital dynamics with spacecraft attitude. In this paper, a simplified algorithm based on the King-Hele formulation is proposed to rapidly estimate the decay time of an orbiting satellite without imposing any assumptions on the spacecraft’s nominal size, mass, geometry or attitude. The algorithm accounts for the effect of solar activity level variations on atmospheric properties and drag coefficient through an iterative procedure and can be applied to any object in orbit. Numerical tests show that the predictions in terms of decay times are very accurate for satellites that are quite different in size and geometry, including the presence of an aerodynamic drag augmentation system such as a drag sail.
{"title":"Decay time estimate for LEO spacecraft","authors":"","doi":"10.1016/j.actaastro.2024.09.045","DOIUrl":"10.1016/j.actaastro.2024.09.045","url":null,"abstract":"<div><div>The growing concerns posed by orbital debris represent a serious threat to the future of space operations in low Earth orbit. With the goal of limiting the formation of new debris, space agencies are proposing international guidelines that satellites should be able to deorbiting within 25 years of the end of their operational life. Orbital decay is typically caused by atmospheric drag, so estimating the decay time of a satellite subject to drag is critical to assessing whether the guidelines are met. However, such estimate is a very challenging task because of the difficulty of accurately modeling atmospheric properties and because of the coupling of orbital dynamics with spacecraft attitude. In this paper, a simplified algorithm based on the King-Hele formulation is proposed to rapidly estimate the decay time of an orbiting satellite without imposing any assumptions on the spacecraft’s nominal size, mass, geometry or attitude. The algorithm accounts for the effect of solar activity level variations on atmospheric properties and drag coefficient through an iterative procedure and can be applied to any object in orbit. Numerical tests show that the predictions in terms of decay times are very accurate for satellites that are quite different in size and geometry, including the presence of an aerodynamic drag augmentation system such as a drag sail.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.actaastro.2024.09.053
Classification of space objects according to their size, mass and density is presented. Methods developed for assessing the degree of near-Earth space contamination by space debris are reviewed briefly. General principles of providing passive and active protection for spacecraft are analyzed. Based on the developed model of particle motion under the conditions of electrodynamic armor, the areas of its efficient application are specified. It is shown that the current level of development of structural materials and high-pulse energy storage devices does not fully ensure the possibility of their full-scale efficient use in spacecraft protection systems. It is stated that it is necessary to develop additional measures to ensure the space flight safety, for example, by developing service spacecraft on the basis of unified space platforms, the primary purpose of which would be the active removal of space debris.
{"title":"Spacecraft protection against man-made and natural space debris particles","authors":"","doi":"10.1016/j.actaastro.2024.09.053","DOIUrl":"10.1016/j.actaastro.2024.09.053","url":null,"abstract":"<div><div>Classification of space objects according to their size, mass and density is presented. Methods developed for assessing the degree of near-Earth space contamination by space debris are reviewed briefly. General principles of providing passive and active protection for spacecraft are analyzed. Based on the developed model of particle motion under the conditions of electrodynamic armor, the areas of its efficient application are specified. It is shown that the current level of development of structural materials and high-pulse energy storage devices does not fully ensure the possibility of their full-scale efficient use in spacecraft protection systems. It is stated that it is necessary to develop additional measures to ensure the space flight safety, for example, by developing service spacecraft on the basis of unified space platforms, the primary purpose of which would be the active removal of space debris.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.actaastro.2024.09.033
Hypergolic bipropellant engines are extensively used in spacecraft operations. In these engines, the combustion reaction is initiated by the impinging jets of the oxidizer and fuel in the liquid phase. The most commonly used hypergolic fuels, hydrazine and monomethylhydrazine, as well as the oxidizer, nitrogen tetroxide, are all in liquid state under room temperature and atmospheric pressure conditions. However, as these engines are operated in a space vacuum, a portion of the propellant inevitably evaporates because of low-pressure boiling immediately after engine start-up. The mixing of gas with liquid propellant results in unstable combustion, and minimizing this effect is critical for the engine design. Particularly, preventing high-frequency combustion instability is essential as it can be detrimental to the engine. This paper presents a mechanism that activates high-frequency combustion instability, realized by analyzing the pressure within the combustion chamber during artificially induced unstable combustion. Furthermore, the methodology for establishing operational constraints based on the proposed mechanism is clarified, along with the method for collecting test data. The study findings provide important indicators for the design criteria of bipropellant engines, contributing to the diversification and complexity of space development programs.
{"title":"Analysis of unstable combustion caused by the Gas–Liquid two-phase flow in small hypergolic propellant engines","authors":"","doi":"10.1016/j.actaastro.2024.09.033","DOIUrl":"10.1016/j.actaastro.2024.09.033","url":null,"abstract":"<div><div>Hypergolic bipropellant engines are extensively used in spacecraft operations. In these engines, the combustion reaction is initiated by the impinging jets of the oxidizer and fuel in the liquid phase. The most commonly used hypergolic fuels, hydrazine and monomethylhydrazine, as well as the oxidizer, nitrogen tetroxide, are all in liquid state under room temperature and atmospheric pressure conditions. However, as these engines are operated in a space vacuum, a portion of the propellant inevitably evaporates because of low-pressure boiling immediately after engine start-up. The mixing of gas with liquid propellant results in unstable combustion, and minimizing this effect is critical for the engine design. Particularly, preventing high-frequency combustion instability is essential as it can be detrimental to the engine. This paper presents a mechanism that activates high-frequency combustion instability, realized by analyzing the pressure within the combustion chamber during artificially induced unstable combustion. Furthermore, the methodology for establishing operational constraints based on the proposed mechanism is clarified, along with the method for collecting test data. The study findings provide important indicators for the design criteria of bipropellant engines, contributing to the diversification and complexity of space development programs.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.actaastro.2024.09.046
A drag sail is a propellantless device suitable for passive deorbiting of satellites after their end-of-life. It exploits atmospheric drag to gradually reduce the kinetic energy of the decommissioned satellite and cause it to lose altitude over time. It is well known that the braking effect of the atmosphere is greater the surface exposed to the flow of the atmospheric particles relative to the satellite. For this reason, a drag sail is essentially a large and lightweight membrane, which is deployed by the satellite when it is to begin orbital decay. For given environmental/initial conditions and inertial characteristics of the deployed system, the braking effect of a drag sail is more intense if its perpendicular axis is constantly aligned with the direction of the relative particle flow. For this purpose, a sliding mode control strategy is adopted. The reference to follow is obtained by propagating the spacecraft orbital dynamics along with its attitude dynamics. Various orbital perturbations and the disturbance torque due to atmospheric drag are implemented in the numerical code to verify the robustness of the proposed control law. It is also assumed that the spacecraft control torque vector is bounded in magnitude and always belongs to the plane of the braking device. The results show that the proposed strategy is effective in accurately tracking the reference attitude and that it is robust, being able to track a reference that varies unpredictably due to both orbital and attitude perturbations.
{"title":"Drag sail attitude tracking via nonlinear control","authors":"","doi":"10.1016/j.actaastro.2024.09.046","DOIUrl":"10.1016/j.actaastro.2024.09.046","url":null,"abstract":"<div><div>A drag sail is a propellantless device suitable for passive deorbiting of satellites after their end-of-life. It exploits atmospheric drag to gradually reduce the kinetic energy of the decommissioned satellite and cause it to lose altitude over time. It is well known that the braking effect of the atmosphere is greater the surface exposed to the flow of the atmospheric particles relative to the satellite. For this reason, a drag sail is essentially a large and lightweight membrane, which is deployed by the satellite when it is to begin orbital decay. For given environmental/initial conditions and inertial characteristics of the deployed system, the braking effect of a drag sail is more intense if its perpendicular axis is constantly aligned with the direction of the relative particle flow. For this purpose, a sliding mode control strategy is adopted. The reference to follow is obtained by propagating the spacecraft orbital dynamics along with its attitude dynamics. Various orbital perturbations and the disturbance torque due to atmospheric drag are implemented in the numerical code to verify the robustness of the proposed control law. It is also assumed that the spacecraft control torque vector is bounded in magnitude and always belongs to the plane of the braking device. The results show that the proposed strategy is effective in accurately tracking the reference attitude and that it is robust, being able to track a reference that varies unpredictably due to both orbital and attitude perturbations.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.actaastro.2024.09.047
The Jupiter Icy Moons Explorer (JUICE) mission is a cornerstone of ESA's Cosmic Vision 2015–2025 program devoted to the scientific exploration of Jupiter and its icy moons. Launched on April 14, 2023, from French Guiana, JUICE will perform multiple gravity assists, including an unprecedented lunar-Earth double gravity assist, in order to shape its trajectory to Jupiter, where it will arrive in July 2031. Thanks to a suite of 10 scientific instruments, JUICE will carry out a comprehensive investigation of the jovian system, with special focus on Ganymede. Among these experiments is the Gravity and Geophysics of Jupiter and the Galilean Moons (3GM) radio science and planetary geodesy experiment, supported by the onboard High Accuracy Accelerometer (HAA). The HAA, a three-axis spring mass accelerometer, measures the non-gravitational perturbations acting on the spacecraft, that need to be measured in order to fully exploit the highly accurate range and range rate measurements of 3GM. This paper analyzes the HAA data collected in the very early phase of the mission, to monitor the initial deployment of the spacecraft's moving appendages. The vibration modes of the magnetometer boom and solar arrays were clearly detected during the appendages' deployment, as well as the latching of the Langmuir probe hinges. The detected resonance frequencies of the first and second magnetometer boom bending modes are equal to 0.44 and 0.46 Hz, respectively. The HAA data contributed to identifying the root-cause of the anomalous Radar for Icy Moon Exploration (RIME) antenna deployment. The strong external perturbations due to the actuators' activation have been used to characterize the spacecraft tranquillization time. Despite the significant increase in the spacecraft noise floor during deployment events, the full sensitivity of the instrument was regained within 10 min. This information can be used to plan the spacecraft operations during the scientific phase of the mission.
{"title":"Monitoring JUICE deployment operations with high-accuracy accelerometer data","authors":"","doi":"10.1016/j.actaastro.2024.09.047","DOIUrl":"10.1016/j.actaastro.2024.09.047","url":null,"abstract":"<div><div>The Jupiter Icy Moons Explorer (JUICE) mission is a cornerstone of ESA's Cosmic Vision 2015–2025 program devoted to the scientific exploration of Jupiter and its icy moons. Launched on April 14, 2023, from French Guiana, JUICE will perform multiple gravity assists, including an unprecedented lunar-Earth double gravity assist, in order to shape its trajectory to Jupiter, where it will arrive in July 2031. Thanks to a suite of 10 scientific instruments, JUICE will carry out a comprehensive investigation of the jovian system, with special focus on Ganymede. Among these experiments is the Gravity and Geophysics of Jupiter and the Galilean Moons (3GM) radio science and planetary geodesy experiment, supported by the onboard High Accuracy Accelerometer (HAA). The HAA, a three-axis spring mass accelerometer, measures the non-gravitational perturbations acting on the spacecraft, that need to be measured in order to fully exploit the highly accurate range and range rate measurements of 3GM. This paper analyzes the HAA data collected in the very early phase of the mission, to monitor the initial deployment of the spacecraft's moving appendages. The vibration modes of the magnetometer boom and solar arrays were clearly detected during the appendages' deployment, as well as the latching of the Langmuir probe hinges. The detected resonance frequencies of the first and second magnetometer boom bending modes are equal to 0.44 and 0.46 Hz, respectively. The HAA data contributed to identifying the root-cause of the anomalous Radar for Icy Moon Exploration (RIME) antenna deployment. The strong external perturbations due to the actuators' activation have been used to characterize the spacecraft tranquillization time. Despite the significant increase in the spacecraft noise floor during deployment events, the full sensitivity of the instrument was regained within 10 min. This information can be used to plan the spacecraft operations during the scientific phase of the mission.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1016/j.actaastro.2024.09.043
Tethered CubeSat systems are characterized by momentum exchange and gravity gradient stabilization, and encounter stability challenges, especially with shorter tethers in highly inclined and eccentric orbits. This study investigates the libration dynamics of a 12U CubeSat in its stowed configuration, which separates into two satellites connected via tether, throughout its deployment, station-keeping, and retrieval phases. Two deployed configurations, symmetrical 6U-6U, and asymmetrical 8U-4U connected by a non-conductive tether with a maximum length of 100 m are analyzed. The study accounts for perturbations including Earth’s oblateness, atmospheric drag, solar radiation pressure, and lunisolar gravitation, modeling the tether as a rigid, extendable rod and the satellites as lumped masses. The translational and rotational dynamics are decoupled, assuming the system’s center of mass follows an unperturbed Keplerian Sun-synchronous orbit at altitudes between 400 and 600 km. A tension control strategy based on Lyapunov’s direct method and supplemented by external actuation torques is explored. Results show high orbit eccentricity significantly affects the maximum in-plane libration angle. The 6U-6U system experiences smaller disturbance torques but greater tether tension variations than the 8U-4U system. Both configurations exhibit larger in-plane oscillations compared to near-zero out-of-plane oscillations, nonetheless, eclipse passages exacerbate the out-of-plane libration of the 8U-4U system. Relative stability is maintained during deployment, however, retrieval is chaotic, with notable oscillations in libration angles and tether tension. The tension control strategy effectively dampens oscillations during retrieval but loses effectiveness as tether tension approaches zero at retrieval’s conclusion. External actuation torques, ranging from 1-2 mN m for deployment to 15 mN m for retrieval, complement tension control.
{"title":"Modeling and control of perturbation torques and mass distribution impact on a tethered system for a 12U CubeSat in sun-synchronous orbit","authors":"","doi":"10.1016/j.actaastro.2024.09.043","DOIUrl":"10.1016/j.actaastro.2024.09.043","url":null,"abstract":"<div><div>Tethered CubeSat systems are characterized by momentum exchange and gravity gradient stabilization, and encounter stability challenges, especially with shorter tethers in highly inclined and eccentric orbits. This study investigates the libration dynamics of a 12U CubeSat in its stowed configuration, which separates into two satellites connected via tether, throughout its deployment, station-keeping, and retrieval phases. Two deployed configurations, symmetrical 6U-6U, and asymmetrical 8U-4U connected by a non-conductive tether with a maximum length of 100<!--> <!-->m are analyzed. The study accounts for perturbations including Earth’s oblateness, atmospheric drag, solar radiation pressure, and lunisolar gravitation, modeling the tether as a rigid, extendable rod and the satellites as lumped masses. The translational and rotational dynamics are decoupled, assuming the system’s center of mass follows an unperturbed Keplerian Sun-synchronous orbit at altitudes between 400 and 600<!--> <!-->km. A tension control strategy based on Lyapunov’s direct method and supplemented by external actuation torques is explored. Results show high orbit eccentricity significantly affects the maximum in-plane libration angle. The 6U-6U system experiences smaller disturbance torques but greater tether tension variations than the 8U-4U system. Both configurations exhibit larger in-plane oscillations compared to near-zero out-of-plane oscillations, nonetheless, eclipse passages exacerbate the out-of-plane libration of the 8U-4U system. Relative stability is maintained during deployment, however, retrieval is chaotic, with notable oscillations in libration angles and tether tension. The tension control strategy effectively dampens oscillations during retrieval but loses effectiveness as tether tension approaches zero at retrieval’s conclusion. External actuation torques, ranging from 1-2<!--> <!-->mN<!--> <!-->m for deployment to 15<!--> <!-->mN<!--> <!-->m for retrieval, complement tension control.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-22DOI: 10.1016/j.actaastro.2024.09.049
On-orbit assembly via deployable modules is a promising way to build large space structures. In this paper, a deployable assembly module is designed for large space structures in both mechanical and electronic aspects in detail. The assembly module utilizes motor-driven rollable booms to achieve high packaging efficiency and easy control of the geometric errors during the assembly process. The deployment dynamics of a single rollable boom is studied via a dynamic model based on the variable-length thin shell element of absolute nodal coordinate formulation (ANCF) in the framework of arbitrary Lagrange-Euler (ALE) and the natural coordinate formulation (NCF), and verified via a deployment experiment. Meanwhile, the microgravity experiments for deployment, contraction, and geometric error control of an assembly module are also conducted on a granite platform with air bearings to demonstrate the performance of the deployable assembly module.
{"title":"Design and dynamics of a deployable assembly module via rollable booms","authors":"","doi":"10.1016/j.actaastro.2024.09.049","DOIUrl":"10.1016/j.actaastro.2024.09.049","url":null,"abstract":"<div><div>On-orbit assembly via deployable modules is a promising way to build large space structures. In this paper, a deployable assembly module is designed for large space structures in both mechanical and electronic aspects in detail. The assembly module utilizes motor-driven rollable booms to achieve high packaging efficiency and easy control of the geometric errors during the assembly process. The deployment dynamics of a single rollable boom is studied via a dynamic model based on the variable-length thin shell element of absolute nodal coordinate formulation (ANCF) in the framework of arbitrary Lagrange-Euler (ALE) and the natural coordinate formulation (NCF), and verified via a deployment experiment. Meanwhile, the microgravity experiments for deployment, contraction, and geometric error control of an assembly module are also conducted on a granite platform with air bearings to demonstrate the performance of the deployable assembly module.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.actaastro.2024.09.040
We discuss the relatively overlooked problem of All Clear in Solar Energetic Particle (SEP) event prediction. These proton and heavier ion events are injected in major solar eruptions, propagate directionally into the heliosphere at relativistic speeds and threaten equipment and personnel at low-Earth orbit and beyond. SEPs are rare to extreme events associated with solar flares and coronal mass ejections (CMEs), with one SEP event detected in-situ every several hundreds of flares and CMEs observed remotely. This abysmal overall association improves drastically to below 1:2 for fast (i.e., shock-fronted) and halo (i.e., propagating mainly along the Sun–Earth line) CMEs. All Clear implies an assessment of tolerable conditions within a preset prediction window. Relying on one of the most comprehensive data sets for SEP events, we implement a methodology that provides an All Clear for events of NOAA severity S1 and above (S1+) and identify the minimal eruption attributes (flare size and CME speed) that could give rise to such SEP events from source locations in the Sun. The results correspond to and reflect settings of minimum complexity, giving rise to different attributes for different longitudinal zones in the earthward solar hemisphere. This work presents proof of concept; complexity can be increased at will for more demanding All Clear definitions, subject only to sufficient statistics due to the scarcity of the phenomenon. At this point, feedback is desired from stakeholders on what fits their definition of All Clear (we expect different definitions from different operators), so that to define the precise settings on which to run this and similar exercises.
{"title":"A treatment of the all-clear problem for solar energetic particle events and subsequent decision making","authors":"","doi":"10.1016/j.actaastro.2024.09.040","DOIUrl":"10.1016/j.actaastro.2024.09.040","url":null,"abstract":"<div><div>We discuss the relatively overlooked problem of All Clear in Solar Energetic Particle (SEP) event prediction. These proton and heavier ion events are injected in major solar eruptions, propagate directionally into the heliosphere at relativistic speeds and threaten equipment and personnel at low-Earth orbit and beyond. SEPs are rare to extreme events associated with solar flares and coronal mass ejections (CMEs), with one SEP event detected in-situ every several hundreds of flares and CMEs observed remotely. This abysmal overall association improves drastically to below 1:2 for fast (i.e., shock-fronted) and halo (i.e., propagating mainly along the Sun–Earth line) CMEs. All Clear implies an assessment of tolerable conditions within a preset prediction window. Relying on one of the most comprehensive data sets for SEP events, we implement a methodology that provides an All Clear for events of NOAA severity S1 and above (S1+) and identify the minimal eruption attributes (flare size and CME speed) that could give rise to such SEP events from source locations in the Sun. The results correspond to and reflect settings of minimum complexity, giving rise to different attributes for different longitudinal zones in the earthward solar hemisphere. This work presents proof of concept; complexity can be increased at will for more demanding All Clear definitions, subject only to sufficient statistics due to the scarcity of the phenomenon. At this point, feedback is desired from stakeholders on what fits their definition of All Clear (we expect different definitions from different operators), so that to define the precise settings on which to run this and similar exercises.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.actaastro.2024.09.025
Ultra-fast camera imaging is used to capture temporal evolution of the plasma discharge in an ablative Pulsed Plasma Thruster (PPT) fueled with solid polytetrafluoroethylene (PTFE) and liquid perfluoropolyether (PFPE), with the goal of comparing the mechanism of the expelled mass acceleration and getting insight into the physics of the processes involved in the discharge maintenance and impulse bit production. The fast photos are taken from two viewpoints (non-simultaneously), directing camera parallel (side view) and perpendicular (front view) to the ablative surface of the propellants, and are correlated with the relevant phases of the discharge current. Side view images reveal the presence of two distinct exhaust fractions, velocities of which differ by an order of magnitude. The speed of the faster fraction is comparable with the median of the ionized particles velocity expelled by the thruster. The vividness of the slow propagating component of the ablated mass, which mostly corresponds to neutral particles (based on velocity estimation) and lower mass bit of PFPE shots hint towards better propellant utilization by a liquid-fed PPT. Front view images confirm stable localization of PFPE discharge, forced by design of the propellant supplying plenum, whereas PTFE discharge is characterized by irregular path that covers an area of the propellant surface in random. The last half-period of the discharge is accompanied by vortices near the cathode spots. They are supposedly formed by evaporated electrode’s material and their trajectories imply further recombination in collisions with the electrodes, making this part of evaporated copper undetectable for charged particles diagnostics.
{"title":"Side and front fast imaging of solid and liquid fed ablative pulsed plasma thruster’s discharge","authors":"","doi":"10.1016/j.actaastro.2024.09.025","DOIUrl":"10.1016/j.actaastro.2024.09.025","url":null,"abstract":"<div><div>Ultra-fast camera imaging is used to capture temporal evolution of the plasma discharge in an ablative Pulsed Plasma Thruster (PPT) fueled with solid polytetrafluoroethylene (PTFE) and liquid perfluoropolyether (PFPE), with the goal of comparing the mechanism of the expelled mass acceleration and getting insight into the physics of the processes involved in the discharge maintenance and impulse bit production. The fast photos are taken from two viewpoints (non-simultaneously), directing camera parallel (side view) and perpendicular (front view) to the ablative surface of the propellants, and are correlated with the relevant phases of the discharge current. Side view images reveal the presence of two distinct exhaust fractions, velocities of which differ by an order of magnitude. The speed of the faster fraction is comparable with the median of the ionized particles velocity expelled by the thruster. The vividness of the slow propagating component of the ablated mass, which mostly corresponds to neutral particles (based on velocity estimation) and lower mass bit of PFPE shots hint towards better propellant utilization by a liquid-fed PPT. Front view images confirm stable localization of PFPE discharge, forced by design of the propellant supplying plenum, whereas PTFE discharge is characterized by irregular path that covers an area of the propellant surface in random. The last half-period of the discharge is accompanied by vortices near the cathode spots. They are supposedly formed by evaporated electrode’s material and their trajectories imply further recombination in collisions with the electrodes, making this part of evaporated copper undetectable for charged particles diagnostics.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.actaastro.2024.09.042
Permanently Shadowed Regions (PSRs) of the Moon contain rich deposits of water ice. They are very valuable to the space community as in-situ extracted water can be used for many purposes, such as propellant production and human habitat support. PSR craters never see sunlight, therefore solar power is not available there. They also present a cryogenic environment with regolith as cold as 40 K. These challenges can be overcome by employing a Radioisotope Power System (RPS) to provide both thermal and electrical power to resource extraction systems in the PSRs. The work presented here aims at characterizing an ice-mining lunar rover. The rover will be equipped with an Americium-241 (or 241Am) based RPS. 241Am has a 432-year long half-life and can provide decades of stable power output for the rover operations. The innovation lies in the fact that the RPS will not only provide electrical power to the rover, but that its waste heat will be employed to thermally mine ice from its deposits. The rover is equipped with a sublimation plate irradiating the underlying regolith to sublimate ice contained within, and with a cold trap where extracted volatiles will be deposited. This work studied the rover concept feasibility and developed a model of its Thermal Management System (TMS) to meet sublimation plate and cold trap temperature requirements. The results have been validated by a 3D finite element method thermal simulation for icy regolith conditions of 0–10 vol% water-ice content. The findings of this work suggest that it is possible to perform thermal ice-mining in the lunar PSR environment with an RPS-powered rover, with different degrees of efficiencies depending on the amount of ice in the deposits.
{"title":"Ice-mining lunar rover using Americium-241 radioisotope power systems","authors":"","doi":"10.1016/j.actaastro.2024.09.042","DOIUrl":"10.1016/j.actaastro.2024.09.042","url":null,"abstract":"<div><div>Permanently Shadowed Regions (PSRs) of the Moon contain rich deposits of water ice. They are very valuable to the space community as in-situ extracted water can be used for many purposes, such as propellant production and human habitat support. PSR craters never see sunlight, therefore solar power is not available there. They also present a cryogenic environment with regolith as cold as 40 K. These challenges can be overcome by employing a Radioisotope Power System (RPS) to provide both thermal and electrical power to resource extraction systems in the PSRs. The work presented here aims at characterizing an ice-mining lunar rover. The rover will be equipped with an Americium-241 (or <sup>241</sup>Am) based RPS. <sup>241</sup>Am has a 432-year long half-life and can provide decades of stable power output for the rover operations. The innovation lies in the fact that the RPS will not only provide electrical power to the rover, but that its waste heat will be employed to thermally mine ice from its deposits. The rover is equipped with a sublimation plate irradiating the underlying regolith to sublimate ice contained within, and with a cold trap where extracted volatiles will be deposited. This work studied the rover concept feasibility and developed a model of its Thermal Management System (TMS) to meet sublimation plate and cold trap temperature requirements. The results have been validated by a 3D finite element method thermal simulation for icy regolith conditions of 0–10 vol% water-ice content. The findings of this work suggest that it is possible to perform thermal ice-mining in the lunar PSR environment with an RPS-powered rover, with different degrees of efficiencies depending on the amount of ice in the deposits.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}