Pub Date : 2025-03-25DOI: 10.1109/TPS.2025.3541210
Yaxiong Tan;Chi Yang;Maerlan Reheman;Jian Li
Insufficient efficiency and transition ablation are the main problems of current electromagnetic launch device, which affect the launch performance and service life. Due to the structure of the electromagnetic launch device, common speed increasing method usually causes more severe armature-rail ablative damage. In this article, a magnetic field-regulated enhanced electromagnetic launch (EEL) was investigated through experiments, and the ablation of the device was analyzed as well. The magnetic field distribution is controlled through head and tail guidance. Achieved a significant synergistic enhancement in both launch speed and damage reduction. An experimental platform for magnetic field-regulated EEL was set up. Conduct experimental validation of conventional armature and enhanced armatures with rear-end guidance angles of 30° and 45°. Compared to the conventional armature, the speed of the enhanced armature increased by 31.9%. The armature-rail contact surface damage was significantly reduced. A study was conducted on the ablative damage of the armature under high-speed sliding friction. The tail of the conventional armature experienced severe melting, with its length reduced from 19 to 12 mm. There was no significant change in the length of the enhanced armature tails and the damage was significantly reduced. Changes in the armature-rail contact surface are analyzed based on muzzle voltage. Mechanisms for damage reduction under magnetic field regulation units are revealed. At $t =2$ ms, the conventional armature experienced transition, while the enhanced armature showed no obvious transition during its movement.
{"title":"Experimental Study and Damage Analysis of a Magnetic Field-Regulated Enhanced Electromagnetic Launcher","authors":"Yaxiong Tan;Chi Yang;Maerlan Reheman;Jian Li","doi":"10.1109/TPS.2025.3541210","DOIUrl":"https://doi.org/10.1109/TPS.2025.3541210","url":null,"abstract":"Insufficient efficiency and transition ablation are the main problems of current electromagnetic launch device, which affect the launch performance and service life. Due to the structure of the electromagnetic launch device, common speed increasing method usually causes more severe armature-rail ablative damage. In this article, a magnetic field-regulated enhanced electromagnetic launch (EEL) was investigated through experiments, and the ablation of the device was analyzed as well. The magnetic field distribution is controlled through head and tail guidance. Achieved a significant synergistic enhancement in both launch speed and damage reduction. An experimental platform for magnetic field-regulated EEL was set up. Conduct experimental validation of conventional armature and enhanced armatures with rear-end guidance angles of 30° and 45°. Compared to the conventional armature, the speed of the enhanced armature increased by 31.9%. The armature-rail contact surface damage was significantly reduced. A study was conducted on the ablative damage of the armature under high-speed sliding friction. The tail of the conventional armature experienced severe melting, with its length reduced from 19 to 12 mm. There was no significant change in the length of the enhanced armature tails and the damage was significantly reduced. Changes in the armature-rail contact surface are analyzed based on muzzle voltage. Mechanisms for damage reduction under magnetic field regulation units are revealed. At <inline-formula> <tex-math>$t =2$ </tex-math></inline-formula> ms, the conventional armature experienced transition, while the enhanced armature showed no obvious transition during its movement.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"818-825"},"PeriodicalIF":1.3,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As the applications of pulse generators continue to develop in a variety of fields, so do the requirements for pulse generators. The development of pulse generators is facing many key issues, such as high-voltage drive isolation, compact design, and weight reduction. In this regard, a single-driver Marx generator (SDMG) based on series-connected switches (SCSs) is proposed in this article. The proposed SCS module improves the voltage withstand capability of each Marx stage while ensuring good synchronization of the switches, thus reducing the number of Marx stages. Moreover, in the whole Marx generator, only one switch needs to be triggered by the driver; the rest of the switches can be self-triggered by coupling capacitors. With the reduction in the drivers and Marx stages, the size and the cost of Marx circuits are significantly reduced. The working principle is first analyzed. Then, through the simulation, the proposed SCS module is verified to have a higher switching synchronization compared to the related topologies previously proposed. Finally, an SDMG prototype based on the SCS is developed. The output parameters of the SDMG are tested. The test result shows that the SDMG can output pulse with a voltage of 12 kV and a rise time of 69.5 ns. The pulsewidth can be flexibly adjusted from 200 to 1000 ns, and the size of the generator is very small, only $13times 6times 2.5$ cm.
{"title":"A Single-Driver Marx Generator Based on Series-Connected Switches With High Synchronization","authors":"Shoulong Dong;Haobo Yang;Sizhe Xiang;Lisheng Zhao;Qinyu Huang;Huangtong Luo;Chenguo Yao;Liang Yu","doi":"10.1109/TPS.2025.3545266","DOIUrl":"https://doi.org/10.1109/TPS.2025.3545266","url":null,"abstract":"As the applications of pulse generators continue to develop in a variety of fields, so do the requirements for pulse generators. The development of pulse generators is facing many key issues, such as high-voltage drive isolation, compact design, and weight reduction. In this regard, a single-driver Marx generator (SDMG) based on series-connected switches (SCSs) is proposed in this article. The proposed SCS module improves the voltage withstand capability of each Marx stage while ensuring good synchronization of the switches, thus reducing the number of Marx stages. Moreover, in the whole Marx generator, only one switch needs to be triggered by the driver; the rest of the switches can be self-triggered by coupling capacitors. With the reduction in the drivers and Marx stages, the size and the cost of Marx circuits are significantly reduced. The working principle is first analyzed. Then, through the simulation, the proposed SCS module is verified to have a higher switching synchronization compared to the related topologies previously proposed. Finally, an SDMG prototype based on the SCS is developed. The output parameters of the SDMG are tested. The test result shows that the SDMG can output pulse with a voltage of 12 kV and a rise time of 69.5 ns. The pulsewidth can be flexibly adjusted from 200 to 1000 ns, and the size of the generator is very small, only <inline-formula> <tex-math>$13times 6times 2.5$ </tex-math></inline-formula> cm.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"478-486"},"PeriodicalIF":1.3,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The global energy structure is primarily dominated by fossil fuels, with coal being the main contributor to energy supply. This article proposes a combustion method based on the combination of nonequilibrium plasma generated by medium barrier discharge and water additives. The influence of different H2O atomization rates on discharge power, mass loss, and temperature variation during plasma-assisted coal combustion processes was investigated. The research findings indicate that, under a fixed power supply voltage amplitude of 13.5 kV, as the H2O atomization rate increases from 0 to 3.0 mL/min, the asymmetry of discharge current increases while discharge power decreases. When the H2O atomization rate is 1.2 mL/min, the mass loss, temperature, and combustion surface reach their maximum values. Excessive H2O inhibits coal combustion. Compared with the case of no H2O addition, at a power supply voltage amplitude of 13.5 kV and a H2O atomization rate of 1.2 mL/min, the combustion rate of coal significantly increases, and the combustion limit is extended.
{"title":"Moisture Content’s Influence on Characteristics of DBD Plasma-Assisted Coal Combustion With Central Electrode Structure","authors":"Ping Li;Xiaoyu Cheng;Haoyuan Song;Sile Chen;Chao Wang;Zhaoquan Chen","doi":"10.1109/TPS.2025.3543509","DOIUrl":"https://doi.org/10.1109/TPS.2025.3543509","url":null,"abstract":"The global energy structure is primarily dominated by fossil fuels, with coal being the main contributor to energy supply. This article proposes a combustion method based on the combination of nonequilibrium plasma generated by medium barrier discharge and water additives. The influence of different H<sub>2</sub>O atomization rates on discharge power, mass loss, and temperature variation during plasma-assisted coal combustion processes was investigated. The research findings indicate that, under a fixed power supply voltage amplitude of 13.5 kV, as the H<sub>2</sub>O atomization rate increases from 0 to 3.0 mL/min, the asymmetry of discharge current increases while discharge power decreases. When the H<sub>2</sub>O atomization rate is 1.2 mL/min, the mass loss, temperature, and combustion surface reach their maximum values. Excessive H<sub>2</sub>O inhibits coal combustion. Compared with the case of no H<sub>2</sub>O addition, at a power supply voltage amplitude of 13.5 kV and a H<sub>2</sub>O atomization rate of 1.2 mL/min, the combustion rate of coal significantly increases, and the combustion limit is extended.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"669-677"},"PeriodicalIF":1.3,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-24DOI: 10.1109/TPS.2025.3549984
Konstantinos E. Orfanidis;Zisis C. Ioannidis;Stylianos P. Savaidis
A proof of concept microwave non-thermal plasma reactor (NTPR) has been developed in order to assess whether the sole use of microwaves without cascading treatment, for example, electron beam or chemical reactants, may reduce NOx in diesel engine exhaust gas. The experimental study used a 2.47 GHz source at 10 and 5 kW to drive a waveguide-based cavity achieving an amplification gain of 22.6 dB. Gas treatment with pulsed microwaves proved that NOx reduction is possible by using optimal pairs of pulse durations and pulse repetition rates. Further improvements on the NOx reduction efficiency were achieved by using a varying duty cycle pulsed scheme.
{"title":"Diesel Engine Exhaust Gas Treatment for NOx Reduction Using Microwave Nonthermal Plasma Reactor","authors":"Konstantinos E. Orfanidis;Zisis C. Ioannidis;Stylianos P. Savaidis","doi":"10.1109/TPS.2025.3549984","DOIUrl":"https://doi.org/10.1109/TPS.2025.3549984","url":null,"abstract":"A proof of concept microwave non-thermal plasma reactor (NTPR) has been developed in order to assess whether the sole use of microwaves without cascading treatment, for example, electron beam or chemical reactants, may reduce NO<italic><sub>x</sub></i> in diesel engine exhaust gas. The experimental study used a 2.47 GHz source at 10 and 5 kW to drive a waveguide-based cavity achieving an amplification gain of 22.6 dB. Gas treatment with pulsed microwaves proved that NO<italic><sub>x</sub></i> reduction is possible by using optimal pairs of pulse durations and pulse repetition rates. Further improvements on the NO<italic><sub>x</sub></i> reduction efficiency were achieved by using a varying duty cycle pulsed scheme.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"633-642"},"PeriodicalIF":1.3,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1109/TPS.2025.3547749
Kaylee Champion;Hanspeter Schaub
Cislunar spacecraft may be mesothermal with respect to ambient plasma, generating spacecraft ion wakes. It is unknown that how these wake formations impact technologies, such as touchless potential sensing and the electrostatic tractor. Therefore, wakes are generated in the Electrostatic Charging Laboratory for Interactions between Plasma and Spacecraft (ECLIPS) vacuum chamber at the University of Colorado at Boulder to determine how to account for and take advantage of the wake formations. The natural ion beam generated in the chamber is too small to place a several centimeter-sized objects in the wake and expands radially outward. To correct this, electrostatic lens configurations are designed to expand and refocus the ion beam. Optimization algorithms are used to determine the ideal electrostatic lens configuration, and the design, installation, and characterization of these lenses are presented. The experimental and numerical simulations show good agreement, enabling the installation of simple electrostatic lenses for ion beam manipulation in vacuum systems. Representative cislunar spacecraft wakes are then successfully generated and measured in the ECLIPS vacuum chamber.
{"title":"Electrostatic Lenses for Laboratory Spacecraft Wake Generation","authors":"Kaylee Champion;Hanspeter Schaub","doi":"10.1109/TPS.2025.3547749","DOIUrl":"https://doi.org/10.1109/TPS.2025.3547749","url":null,"abstract":"Cislunar spacecraft may be mesothermal with respect to ambient plasma, generating spacecraft ion wakes. It is unknown that how these wake formations impact technologies, such as touchless potential sensing and the electrostatic tractor. Therefore, wakes are generated in the Electrostatic Charging Laboratory for Interactions between Plasma and Spacecraft (ECLIPS) vacuum chamber at the University of Colorado at Boulder to determine how to account for and take advantage of the wake formations. The natural ion beam generated in the chamber is too small to place a several centimeter-sized objects in the wake and expands radially outward. To correct this, electrostatic lens configurations are designed to expand and refocus the ion beam. Optimization algorithms are used to determine the ideal electrostatic lens configuration, and the design, installation, and characterization of these lenses are presented. The experimental and numerical simulations show good agreement, enabling the installation of simple electrostatic lenses for ion beam manipulation in vacuum systems. Representative cislunar spacecraft wakes are then successfully generated and measured in the ECLIPS vacuum chamber.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"649-660"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1109/TPS.2025.3549598
Yuxin Wang;Yinyu Zhang;Yuan Zheng;Jie Wu;Ke Yan;Yang Yang;Yubin Gong
The terahertz (THz) traveling wave tube (TWT) is characterized by low interaction efficiency and insufficient output power. Higher power can be obtained by minimizing insertion loss through advanced processing techniques. The 0.65 THz high-frequency circuits, composed of serpentine waveguide (SWG) slow wave structure (SWS), were designed, fabricated, cold tested, and analyzed in this article. The high-frequency characteristics of the process-adapted SWSs, applicable to both the high-precision computer numerical control (CNC) and deep reactive-ion etching (DRIE) technologies, are analyzed and compared. Then, two high-frequency circuits for high power 0.65 THz TWT are fabricated by those micro-electro-mechanical system (MEMS) technologies. The circuits fabricated by CNC and DRIE techniques exhibit superior equivalent conductivity of $2.4times 10^{7}$ S/m in cold test. Benefiting from the high precision bonding and DRIE technology feature, the circuit can eliminate the $3pi $ /2 point cave in the ${S} _{21}$ curve. The particle-in-cell (PIC) simulation results of the 3-D models, reconstructed based on the cold test data, predict that low-loss high-frequency circuits manufactured by advanced manufacturing technologies can achieve 25% output power improvement. Employing the DRIE process, it is possible to not only reduce manufacturing costs and shorten the manufacturing cycle, enabling mass production, but also effectively mitigate $3pi $ /2 point oscillation, enhancing the stability of the device.
{"title":"Analysis of the 0.65 THz High-Frequency Circuits Fabricated by MEMS Technologies","authors":"Yuxin Wang;Yinyu Zhang;Yuan Zheng;Jie Wu;Ke Yan;Yang Yang;Yubin Gong","doi":"10.1109/TPS.2025.3549598","DOIUrl":"https://doi.org/10.1109/TPS.2025.3549598","url":null,"abstract":"The terahertz (THz) traveling wave tube (TWT) is characterized by low interaction efficiency and insufficient output power. Higher power can be obtained by minimizing insertion loss through advanced processing techniques. The 0.65 THz high-frequency circuits, composed of serpentine waveguide (SWG) slow wave structure (SWS), were designed, fabricated, cold tested, and analyzed in this article. The high-frequency characteristics of the process-adapted SWSs, applicable to both the high-precision computer numerical control (CNC) and deep reactive-ion etching (DRIE) technologies, are analyzed and compared. Then, two high-frequency circuits for high power 0.65 THz TWT are fabricated by those micro-electro-mechanical system (MEMS) technologies. The circuits fabricated by CNC and DRIE techniques exhibit superior equivalent conductivity of <inline-formula> <tex-math>$2.4times 10^{7}$ </tex-math></inline-formula> S/m in cold test. Benefiting from the high precision bonding and DRIE technology feature, the circuit can eliminate the <inline-formula> <tex-math>$3pi $ </tex-math></inline-formula>/2 point cave in the <inline-formula> <tex-math>${S} _{21}$ </tex-math></inline-formula> curve. The particle-in-cell (PIC) simulation results of the 3-D models, reconstructed based on the cold test data, predict that low-loss high-frequency circuits manufactured by advanced manufacturing technologies can achieve 25% output power improvement. Employing the DRIE process, it is possible to not only reduce manufacturing costs and shorten the manufacturing cycle, enabling mass production, but also effectively mitigate <inline-formula> <tex-math>$3pi $ </tex-math></inline-formula>/2 point oscillation, enhancing the stability of the device.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"842-847"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1109/TPS.2025.3548354
Runchang Li;Luyao Liu;Weihong Hou;Hongshun Liu;Kui Zhang;Dongjie Xu;Yuchao Shi;Shiqiang Dai
Transient faults on extra-high-voltage/ultrahigh-voltage (EHV/UHV) transmission lines are mostly single-phase-to-ground faults, and the corresponding extinction characteristics of secondary arc affect the success rate of single-phase auto-reclosing (SPAR) and the transient stability of power system. In this article, based on the equivalent experiments performed in the laboratory, the binary image of the secondary arc is extracted by the method of grayscale expansion after the logarithmic transformation of the arc images, and the morphological characteristics of the secondary arcs are described by calculating and analyzing the skeleton and the sinuosity of the arc, the barycenter and Feret’s maximum and minimum diameters and their maximum and minimum angles. The sinuosity and the curvature distribution of the secondary arc, the barycenter velocity, momentum, acceleration, and resultant force of the secondary arc are visually plotted and quantitatively calculated. Their corresponding variation rules are also summarized. The results of this study will provide a more complete experimental basis and a better understanding of the morphological characteristics of secondary arc.
{"title":"Study on the Morphological Characteristics of Multiple-Reignition Secondary Arcs on EHV/UHV Transmission Lines","authors":"Runchang Li;Luyao Liu;Weihong Hou;Hongshun Liu;Kui Zhang;Dongjie Xu;Yuchao Shi;Shiqiang Dai","doi":"10.1109/TPS.2025.3548354","DOIUrl":"https://doi.org/10.1109/TPS.2025.3548354","url":null,"abstract":"Transient faults on extra-high-voltage/ultrahigh-voltage (EHV/UHV) transmission lines are mostly single-phase-to-ground faults, and the corresponding extinction characteristics of secondary arc affect the success rate of single-phase auto-reclosing (SPAR) and the transient stability of power system. In this article, based on the equivalent experiments performed in the laboratory, the binary image of the secondary arc is extracted by the method of grayscale expansion after the logarithmic transformation of the arc images, and the morphological characteristics of the secondary arcs are described by calculating and analyzing the skeleton and the sinuosity of the arc, the barycenter and Feret’s maximum and minimum diameters and their maximum and minimum angles. The sinuosity and the curvature distribution of the secondary arc, the barycenter velocity, momentum, acceleration, and resultant force of the secondary arc are visually plotted and quantitatively calculated. Their corresponding variation rules are also summarized. The results of this study will provide a more complete experimental basis and a better understanding of the morphological characteristics of secondary arc.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"751-759"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Separation of the positive electrode active material (PEAM) layer including the critical metal is necessary for recycling of lithium-ion batteries (LiBs). Herein, we applied the pulsed discharge to one side coated positive electrode sample in air and water as environments with different heat transfer conditions for the separation. Performing the pulsed discharge at $ED=1.20$ J/mm3 in water was beneficial for separating in this study. Notably, 99.6% of the PEAM layer was separated at energy density (ED) = 1.20 J/mm3 in water, whereas the sample was pulverized at $ED=1.10$ J/mm3 in air. The simulations indicated that the polyvinylidene difluoride (PVDF) binder melted because the temperature exceeded the melting point. The maximum thermal stress acting on the Al foil and the volume expansion of the surrounding medium were 41% and 20% larger in air than in water, respectively, resulting in a greater expansion force and pulverization of the sample in air. The separation mechanism by pulsed discharge is the decrease in adhesion at the interface due to PVDF melting and the thermal stress acting at the timing that prevents Al from tearing. Thus, the separation by pulsed discharge is based on the control of Joule heating and its heat conduction.
{"title":"Active Material Layer Separation From Positive Electrodes in Lithium–Ion Batteries by Joule Heating During Pulsed Discharge in Air and Water","authors":"Moe Nakahara;Taketoshi Koita;Shinichi Higuchi;Kaito Teruya;Kazuyuki Shishino;Katsuya Teshima;Takao Namihira;Chiharu Tokoro","doi":"10.1109/TPS.2025.3546480","DOIUrl":"https://doi.org/10.1109/TPS.2025.3546480","url":null,"abstract":"Separation of the positive electrode active material (PEAM) layer including the critical metal is necessary for recycling of lithium-ion batteries (LiBs). Herein, we applied the pulsed discharge to one side coated positive electrode sample in air and water as environments with different heat transfer conditions for the separation. Performing the pulsed discharge at <inline-formula> <tex-math>$ED=1.20$ </tex-math></inline-formula> J/mm<sup>3</sup> in water was beneficial for separating in this study. Notably, 99.6% of the PEAM layer was separated at energy density (<italic>ED</i>) = 1.20 J/mm<sup>3</sup> in water, whereas the sample was pulverized at <inline-formula> <tex-math>$ED=1.10$ </tex-math></inline-formula> J/mm<sup>3</sup> in air. The simulations indicated that the polyvinylidene difluoride (PVDF) binder melted because the temperature exceeded the melting point. The maximum thermal stress acting on the Al foil and the volume expansion of the surrounding medium were 41% and 20% larger in air than in water, respectively, resulting in a greater expansion force and pulverization of the sample in air. The separation mechanism by pulsed discharge is the decrease in adhesion at the interface due to PVDF melting and the thermal stress acting at the timing that prevents Al from tearing. Thus, the separation by pulsed discharge is based on the control of Joule heating and its heat conduction.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"678-687"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-21DOI: 10.1109/TPS.2025.3547632
Horia-Eugen Porteanu;Ilija Stefanović;Michael Klute;Peter Awakowicz;Ralf-Peter Brinkmann;Wolfgang Heinrich
Measurement of resonances requires data acquisition at different frequencies. Tracing the evolution of a resonance, therefore, requires a long time for each step. Reproducible events allow us to record data in the time domain at different fixed frequencies and then to rebuild the resonance shapes at different times. Using this method, the ignition process and the transition from electrostatic to electromagnetic coupling (E–H) have been investigated for plasma formation in different gases (He, Ar, N2, and O2) and pressures (20–2000 Pa). The microwave source used offers a miniature model of an inductively coupled plasma (ICP) inside a quartz tube and has a relatively narrow resonance in the range of 2.4–2.5 GHz with or without plasma. After a short time with only capacitive coupling, at low pressures, there is a coexistence of two resonances, indicating that capacitive and inductive coupling exist. At high pressures, the ignition time is much longer, and a common hybrid resonance appears. Helium and argon show an increase in time over tens of microseconds of the resonance frequency corresponding to inductive coupling, which means, in our global model, a very slow increase of the electron density. Nitrogen and oxygen show, on the contrary, a relatively long initial phase of capacitive coupling and then a stable electron density with inductive coupling. Moreover, oxygen at high pressures shows a plateau, initially indicating an attachment of electrons to oxygen atoms (O$^{-}$ ) and after hundreds of microseconds followed by the formation of positive oxygen ions.
{"title":"Time-Resolved Investigations of the Capacitive to Inductive Transition in a Microwave-Driven Plasma Source","authors":"Horia-Eugen Porteanu;Ilija Stefanović;Michael Klute;Peter Awakowicz;Ralf-Peter Brinkmann;Wolfgang Heinrich","doi":"10.1109/TPS.2025.3547632","DOIUrl":"https://doi.org/10.1109/TPS.2025.3547632","url":null,"abstract":"Measurement of resonances requires data acquisition at different frequencies. Tracing the evolution of a resonance, therefore, requires a long time for each step. Reproducible events allow us to record data in the time domain at different fixed frequencies and then to rebuild the resonance shapes at different times. Using this method, the ignition process and the transition from electrostatic to electromagnetic coupling (<italic>E</i>–<italic>H</i>) have been investigated for plasma formation in different gases (He, Ar, N<sub>2</sub>, and O<sub>2</sub>) and pressures (20–2000 Pa). The microwave source used offers a miniature model of an inductively coupled plasma (ICP) inside a quartz tube and has a relatively narrow resonance in the range of 2.4–2.5 GHz with or without plasma. After a short time with only capacitive coupling, at low pressures, there is a coexistence of two resonances, indicating that capacitive and inductive coupling exist. At high pressures, the ignition time is much longer, and a common hybrid resonance appears. Helium and argon show an increase in time over tens of microseconds of the resonance frequency corresponding to inductive coupling, which means, in our global model, a very slow increase of the electron density. Nitrogen and oxygen show, on the contrary, a relatively long initial phase of capacitive coupling and then a stable electron density with inductive coupling. Moreover, oxygen at high pressures shows a plateau, initially indicating an attachment of electrons to oxygen atoms (O<inline-formula> <tex-math>$^{-}$ </tex-math></inline-formula>) and after hundreds of microseconds followed by the formation of positive oxygen ions.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"571-578"},"PeriodicalIF":1.3,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1109/TPS.2025.3540916
Zuyu Wang;Hongcheng Yin;Ling Guan;Xunwang Dang;Haochuan Deng;Zhenpei Tan
During hypersonic spacecraft flights, it is easy to produce metal particles containing aluminum (Al) or form a plasma sheath containing an Al metal layer to attach to the surface of the spacecraft, which leads to the interruption of radio communication. In this article, Using the Bhatnagar–Gross–Krook (BGK) collision model, this study calculates the transmission coefficient of electromagnetic (EM) waves in the inhomogeneous medium comprising fully ionized dusty plasma and Al layers through the scattering matrix method (SMM). The transport characteristics of left-circularly polarized and right-circularly polarized waves in inhomogeneous fully ionized dusty plasma containing an Al layer are analyzed in the presence of an external magnetic field. The effects of magnetic field intensity, Al layer thickness, and other dusty plasma parameters (dust particle density, dust particle radius, electron density, and effective collision frequency) on the propagation characteristics of EM waves in fully ionized dusty plasma and inhomogeneous media of Al are analyzed in the GHz band. The findings reveal that aluminum significantly impedes EM wave propagation, with increased Al layer thickness exacerbating the obstruction of EM waves penetrating the fully ionized dusty plasma. In addition, magnetic field intensity and different dusty plasma parameters also affect the propagation characteristics of EM waves in the fully ionized dusty plasma containing Al to different degrees. These results provide a theoretical basis for alleviating the blackouts problem of hypersonic spacecraft during flight.
{"title":"Analysis of Electromagnetic Wave Propagation Characteristics in Dusty Plasma Containing Aluminum Metal Layer by Using BGK Model","authors":"Zuyu Wang;Hongcheng Yin;Ling Guan;Xunwang Dang;Haochuan Deng;Zhenpei Tan","doi":"10.1109/TPS.2025.3540916","DOIUrl":"https://doi.org/10.1109/TPS.2025.3540916","url":null,"abstract":"During hypersonic spacecraft flights, it is easy to produce metal particles containing aluminum (Al) or form a plasma sheath containing an Al metal layer to attach to the surface of the spacecraft, which leads to the interruption of radio communication. In this article, Using the Bhatnagar–Gross–Krook (BGK) collision model, this study calculates the transmission coefficient of electromagnetic (EM) waves in the inhomogeneous medium comprising fully ionized dusty plasma and Al layers through the scattering matrix method (SMM). The transport characteristics of left-circularly polarized and right-circularly polarized waves in inhomogeneous fully ionized dusty plasma containing an Al layer are analyzed in the presence of an external magnetic field. The effects of magnetic field intensity, Al layer thickness, and other dusty plasma parameters (dust particle density, dust particle radius, electron density, and effective collision frequency) on the propagation characteristics of EM waves in fully ionized dusty plasma and inhomogeneous media of Al are analyzed in the GHz band. The findings reveal that aluminum significantly impedes EM wave propagation, with increased Al layer thickness exacerbating the obstruction of EM waves penetrating the fully ionized dusty plasma. In addition, magnetic field intensity and different dusty plasma parameters also affect the propagation characteristics of EM waves in the fully ionized dusty plasma containing Al to different degrees. These results provide a theoretical basis for alleviating the blackouts problem of hypersonic spacecraft during flight.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"806-812"},"PeriodicalIF":1.3,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}