Pub Date : 2022-01-01DOI: 10.3934/environsci.2022021
Lei Wang, Huan Du, Jiajun Wu, Wei Gao, Linna Suo, Daniel H. Wei, Liang Jin, Jianli Ding, Jian-zhi Xie, Zhizhuang An
Land degradation due to soil erosion is a major problem in mountainous areas. It is crucially important to understand the law of soil erosion under different land-use patterns with rainfall variability. We studied Qingshuihe Watershed in the Chongli district of the Zhangjiakou area. Four runoff plots, including caragana, corn, apricot trees, and barren grassland, were designed on the typical slopes of Xigou and Donggou locations. The 270 natural rainfall events observed from 2014 to 2016 were used to form a rainfall gradient. The relationship between runoff and sediment yield was analyzed. Results showed that the monthly rainfall of the slope runoff plot in the Chongli mountain area presented the trend of concentrated rainfall in summer, mainly from June to September, accounting for 82.4% of the total rainfall in 2014–2016, which was far higher than that in other months. Starting from April to May every year, the rainfall increased with time, then from July to September, the rainfall decreased gradually, but it was still at the high level of the whole year. Among the four ecosystems, the caragana-field has the best effect on reducing the kinetic energy of rainfall and runoff, which can effectively reduce the runoff and sediment yield of the slope and reduce the intensity of soil erosion. In terms of the total amount of runoff and sediment, the runoff and sediment yield of the caragana-field reduced by 74%–87% and 64%–86% compared with that of the grassland. Comparing different land-use types, the caragana plantation would be conducive to conserving soil and water resources.
{"title":"Characteristics of soil erosion in different land-use patterns under natural rainfall","authors":"Lei Wang, Huan Du, Jiajun Wu, Wei Gao, Linna Suo, Daniel H. Wei, Liang Jin, Jianli Ding, Jian-zhi Xie, Zhizhuang An","doi":"10.3934/environsci.2022021","DOIUrl":"https://doi.org/10.3934/environsci.2022021","url":null,"abstract":"Land degradation due to soil erosion is a major problem in mountainous areas. It is crucially important to understand the law of soil erosion under different land-use patterns with rainfall variability. We studied Qingshuihe Watershed in the Chongli district of the Zhangjiakou area. Four runoff plots, including caragana, corn, apricot trees, and barren grassland, were designed on the typical slopes of Xigou and Donggou locations. The 270 natural rainfall events observed from 2014 to 2016 were used to form a rainfall gradient. The relationship between runoff and sediment yield was analyzed. Results showed that the monthly rainfall of the slope runoff plot in the Chongli mountain area presented the trend of concentrated rainfall in summer, mainly from June to September, accounting for 82.4% of the total rainfall in 2014–2016, which was far higher than that in other months. Starting from April to May every year, the rainfall increased with time, then from July to September, the rainfall decreased gradually, but it was still at the high level of the whole year. Among the four ecosystems, the caragana-field has the best effect on reducing the kinetic energy of rainfall and runoff, which can effectively reduce the runoff and sediment yield of the slope and reduce the intensity of soil erosion. In terms of the total amount of runoff and sediment, the runoff and sediment yield of the caragana-field reduced by 74%–87% and 64%–86% compared with that of the grassland. Comparing different land-use types, the caragana plantation would be conducive to conserving soil and water resources.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022028
S. Hota, S. Ghosh, B. Sarkar
The proposed study described the application of innovative technology to solve the issues in a supply chain model due to the players' unreliability. The unreliable manufacturer delivers a percentage of the ordered quantity to the retailer, which causes shortages. At the same time, the retailer provides wrong information regarding the amount of the sales of the product. Besides intelligent technology, a single setup multiple unequal increasing delivery transportation policy is applied in this study to reduce the holding cost of the retailer. A consumed fuel and electricity-dependent carbon emission cost are used for environmental sustainability. Since the industries face problems with smooth functioning in each of its steps for unreliable players, the study is proposed to solve the unpredictable player problem in the supply chain. The robust distribution approach is utilized to overcome the situation of unknown lead time demand. Two metaheuristic optimization techniques, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize the total cost. From the numerical section, it is clear the PSO is $ 0.32 $ % more beneficial than GA to obtain the minimum total cost of the supply chain. The discussed case studies show that the applied single-setup-multi-unequal-increasing delivery policy is $ 0.62 $ % beneficial compared to the single-setup-single-delivery policy and $ 0.35 $ % beneficial compared to the single-setup-multi-delivery policy. The sensitivity analysis with graphical representation is provided to explain the result clearly.
{"title":"Involvement of smart technologies in an advanced supply chain management to solve unreliability under distribution robust approach","authors":"S. Hota, S. Ghosh, B. Sarkar","doi":"10.3934/environsci.2022028","DOIUrl":"https://doi.org/10.3934/environsci.2022028","url":null,"abstract":"The proposed study described the application of innovative technology to solve the issues in a supply chain model due to the players' unreliability. The unreliable manufacturer delivers a percentage of the ordered quantity to the retailer, which causes shortages. At the same time, the retailer provides wrong information regarding the amount of the sales of the product. Besides intelligent technology, a single setup multiple unequal increasing delivery transportation policy is applied in this study to reduce the holding cost of the retailer. A consumed fuel and electricity-dependent carbon emission cost are used for environmental sustainability. Since the industries face problems with smooth functioning in each of its steps for unreliable players, the study is proposed to solve the unpredictable player problem in the supply chain. The robust distribution approach is utilized to overcome the situation of unknown lead time demand. Two metaheuristic optimization techniques, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize the total cost. From the numerical section, it is clear the PSO is $ 0.32 $ % more beneficial than GA to obtain the minimum total cost of the supply chain. The discussed case studies show that the applied single-setup-multi-unequal-increasing delivery policy is $ 0.62 $ % beneficial compared to the single-setup-single-delivery policy and $ 0.35 $ % beneficial compared to the single-setup-multi-delivery policy. The sensitivity analysis with graphical representation is provided to explain the result clearly.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022019
G. Ignatavicius, Murat H. Unsal, P. Busher, S. Wołkowicz, J. Satkūnas, Giedrė Šulijienė, V. Valskys
Our paper reviews the current understanding of mercury in the environment of soil and sediment, including sampling, mobilization phases and analyzing methods. As a dangerous trace element, mercury has been shown to have several harmful effects on the environment. Mercury is released into the environment in a variety of chemical forms by both geogenic and human activities, with the majority of it coming from anthropogenic sources. It is affected by environmental conditions such as pH, redox potential, light and temperature-all of which determine its final chemical form-reactivity and toxicity. Methylmercury is considered one of the most poisonous forms found in nature. Considering the methodologies of the studies carried out we have found that the best technique for preserving methylmercury in soil and sediment samples is to freeze it immediately after collection. Organically rich soils are related to higher total mercury levels. Plants, such as Solanum nigrum (BR3) and Cynodon dactylon (BR2), can play an important role in mercury transport and accumulation. Solid-phase selenium causes faster demethylation and slower methylation of mercury. Methylmercury can increase by climate change and thawing; arctic permafrost is a potential source of Hg. Chemical vapor generation inductively coupled plasma mass spectrometry was used to develop a simple and quick method for measuring methylmercury; ultrasonic agitation and HNO3 were used for the process, the last of which proved to be the most efficient for selective extraction of methylmercury.
{"title":"Geochemistry of mercury in soils and water sediments","authors":"G. Ignatavicius, Murat H. Unsal, P. Busher, S. Wołkowicz, J. Satkūnas, Giedrė Šulijienė, V. Valskys","doi":"10.3934/environsci.2022019","DOIUrl":"https://doi.org/10.3934/environsci.2022019","url":null,"abstract":"Our paper reviews the current understanding of mercury in the environment of soil and sediment, including sampling, mobilization phases and analyzing methods. As a dangerous trace element, mercury has been shown to have several harmful effects on the environment. Mercury is released into the environment in a variety of chemical forms by both geogenic and human activities, with the majority of it coming from anthropogenic sources. It is affected by environmental conditions such as pH, redox potential, light and temperature-all of which determine its final chemical form-reactivity and toxicity. Methylmercury is considered one of the most poisonous forms found in nature. Considering the methodologies of the studies carried out we have found that the best technique for preserving methylmercury in soil and sediment samples is to freeze it immediately after collection. Organically rich soils are related to higher total mercury levels. Plants, such as Solanum nigrum (BR3) and Cynodon dactylon (BR2), can play an important role in mercury transport and accumulation. Solid-phase selenium causes faster demethylation and slower methylation of mercury. Methylmercury can increase by climate change and thawing; arctic permafrost is a potential source of Hg. Chemical vapor generation inductively coupled plasma mass spectrometry was used to develop a simple and quick method for measuring methylmercury; ultrasonic agitation and HNO3 were used for the process, the last of which proved to be the most efficient for selective extraction of methylmercury.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.20220011
Chukwuebuka C. Okafor, Juliet C. Ibekwe, C. Nzekwe, C. Ajaero, Chiadika M. Ikeotuonye
Open-burning of municipal solid waste (MSW) is very common in Nigeria. Hence, this work estimated the emissions (greenhouse gases and others) from open-burning of uncollected MSW in Nigeria. The parameters (secondary data) used for the estimations were obtained from pertinent literature of MSW generation rate in Nigeria, level of uncollected MSW subjected to burning in Nigeria, oxidation/burning efficiency and others, 80.6% of wastes generated in Nigeria are combustibles. The National Bureau of Statistics showed that 52% of Nigerians lives in urban areas in the year 2020. With an annual mean growth rate of 2.62% between 2006–2020 (World Bank data), the urban population of Nigeria was estimated at 104, 885, 855 in 2020. The estimation for the year 2020 shows that the MSW generated by the urban population of Nigeria ranges from 16.8–25.3 million tons. With burning/oxidation efficiency ($eta $) of 0.58, between 2.4–3.7 million tons of the uncollected wastes are open-burned. This represents 14.7% of the total MSW generated in Nigeria for the year. IPCC guidelines show that only fossil-carbon wastes are climate-relevant for CO2 emissions. Our estimation shows that 14.3% of the MSW generated in Nigeria contain fossil carbon. The total emissions for the three GHGs–carbon dioxide, methane and nitrogen oxides were between 798 to 1, 197 kilotons of CO2-eq per year. Other emissions associated with open-burning of MSW was also estimated using their default emission factor. The findings suggest the urgent need for the country to transition to proper waste management system, which will include improved collection and disposal to sanitary landfills, to protect public health and the environment.
{"title":"Estimating emissions from open-burning of uncollected municipal solid waste in Nigeria","authors":"Chukwuebuka C. Okafor, Juliet C. Ibekwe, C. Nzekwe, C. Ajaero, Chiadika M. Ikeotuonye","doi":"10.3934/environsci.20220011","DOIUrl":"https://doi.org/10.3934/environsci.20220011","url":null,"abstract":"Open-burning of municipal solid waste (MSW) is very common in Nigeria. Hence, this work estimated the emissions (greenhouse gases and others) from open-burning of uncollected MSW in Nigeria. The parameters (secondary data) used for the estimations were obtained from pertinent literature of MSW generation rate in Nigeria, level of uncollected MSW subjected to burning in Nigeria, oxidation/burning efficiency and others, 80.6% of wastes generated in Nigeria are combustibles. The National Bureau of Statistics showed that 52% of Nigerians lives in urban areas in the year 2020. With an annual mean growth rate of 2.62% between 2006–2020 (World Bank data), the urban population of Nigeria was estimated at 104, 885, 855 in 2020. The estimation for the year 2020 shows that the MSW generated by the urban population of Nigeria ranges from 16.8–25.3 million tons. With burning/oxidation efficiency ($eta $) of 0.58, between 2.4–3.7 million tons of the uncollected wastes are open-burned. This represents 14.7% of the total MSW generated in Nigeria for the year. IPCC guidelines show that only fossil-carbon wastes are climate-relevant for CO2 emissions. Our estimation shows that 14.3% of the MSW generated in Nigeria contain fossil carbon. The total emissions for the three GHGs–carbon dioxide, methane and nitrogen oxides were between 798 to 1, 197 kilotons of CO2-eq per year. Other emissions associated with open-burning of MSW was also estimated using their default emission factor. The findings suggest the urgent need for the country to transition to proper waste management system, which will include improved collection and disposal to sanitary landfills, to protect public health and the environment.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022008
C. M. Galon, J. G. Esguerra
The pandemic has underscored the importance of the environment. In this study, the environmental condition of Central Visayas, Philippines has been assessed and evaluated before and during the onset of the COVID-19 pandemic to deal with a possible association between the environmental indicators and the pandemic. The relationships between environmental key variables namely: air quality, air pollution, water quality, water pollution, and solid waste management have been quantified. The study utilized secondary data sources from a review of records from government agencies and LGUs in Region 7. This study also provides a framework which is the pandemics and epidemics in environmental aspects. The paper concludes by offering researchers and policymakers to promote changes in environmental policies and provide some recommendations for adequately controlling future pandemic and epidemic threats in Central Visayas, Philippines.
{"title":"Impact of COVID-19 on the environment sector: a case study of Central Visayas, Philippines","authors":"C. M. Galon, J. G. Esguerra","doi":"10.3934/environsci.2022008","DOIUrl":"https://doi.org/10.3934/environsci.2022008","url":null,"abstract":"The pandemic has underscored the importance of the environment. In this study, the environmental condition of Central Visayas, Philippines has been assessed and evaluated before and during the onset of the COVID-19 pandemic to deal with a possible association between the environmental indicators and the pandemic. The relationships between environmental key variables namely: air quality, air pollution, water quality, water pollution, and solid waste management have been quantified. The study utilized secondary data sources from a review of records from government agencies and LGUs in Region 7. This study also provides a framework which is the pandemics and epidemics in environmental aspects. The paper concludes by offering researchers and policymakers to promote changes in environmental policies and provide some recommendations for adequately controlling future pandemic and epidemic threats in Central Visayas, Philippines.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-29DOI: 10.3934/environsci.2021024
R. Kajaste, P. Oinas
This study focuses on the possibilities to abate greenhouse gas emissions in the value chain of plastics with special emphasis on efficiency improvements in the virgin plastics production and to recycle or reuse/regenerate plastics from waste streams. The study is restricted to the plastics and their intermediates produced in annual quantities over 20 million tons (Mt) on global scale. The chemicals and polymers considered include intermediate feedstocks ammonia, methanol, ethene and propene, polyolefins polyethylene and polypropylene, and other included polymers are polyester, polyamide and acrylic fibres, polyvinylchloride, polyethylene terephthalate, polyurethane resin and polystyrene. Improved efficiency in the virgin plastic value chain has the potential to reduce global greenhouse gas (GHG) emissions by 531 Mt CO2eq/y, provided that all of the current global production is upgraded to meet the European Union's best benchmarked facilities. These improvements would mean a 15.4% reduction of all global chemical sector emissions. The evaluation of probability for all global production facilities to reach the EU benchmarked values is excluded as unclear. Increasing the global recycling rate of plastics from the current 18% to 42% would reduce global greenhouse gas emissions by 142.3 Mt CO2eq /a, provided that the segregation of recyclable materials is improved, and that incineration is not increased. These downstream improvements would mean a 4% reduction of all global chemical sector emissions and reduce the accumulation of plastics not only on land but also in the oceans.
{"title":"Plastics value chain - Abatement of greenhouse gas emissions","authors":"R. Kajaste, P. Oinas","doi":"10.3934/environsci.2021024","DOIUrl":"https://doi.org/10.3934/environsci.2021024","url":null,"abstract":"\u0000 This study focuses on the possibilities to abate greenhouse gas emissions in the value chain of plastics with special emphasis on efficiency improvements in the virgin plastics production and to recycle or reuse/regenerate plastics from waste streams. The study is restricted to the plastics and their intermediates produced in annual quantities over 20 million tons (Mt) on global scale. The chemicals and polymers considered include intermediate feedstocks ammonia, methanol, ethene and propene, polyolefins polyethylene and polypropylene, and other included polymers are polyester, polyamide and acrylic fibres, polyvinylchloride, polyethylene terephthalate, polyurethane resin and polystyrene. Improved efficiency in the virgin plastic value chain has the potential to reduce global greenhouse gas (GHG) emissions by 531 Mt CO2eq/y, provided that all of the current global production is upgraded to meet the European Union's best benchmarked facilities. These improvements would mean a 15.4% reduction of all global chemical sector emissions. The evaluation of probability for all global production facilities to reach the EU benchmarked values is excluded as unclear. Increasing the global recycling rate of plastics from the current 18% to 42% would reduce global greenhouse gas emissions by 142.3 Mt CO2eq /a, provided that the segregation of recyclable materials is improved, and that incineration is not increased. These downstream improvements would mean a 4% reduction of all global chemical sector emissions and reduce the accumulation of plastics not only on land but also in the oceans.\u0000","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48270526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.3934/environsci.2021033
S. Kanchanasuta, S. Sooktawee, Natthaya Bunplod, A. Patpai, N. Piemyai, Ratchatawan Ketwang
Short-term air quality monitoring in a coastal area, Naklua Subdistrict, Pattaya, Thailand is an activity to support the designated area under Thailand's sustainable tourism development. This study provided a short-term monitoring data analysis on time series and Bivariate Polar Plot (BVP) to provide the status of air quality and to determine the potential source area of air pollution. The result showed that NO2, SO2, CO and PM10 were not higher than the national air quality standards, while the 24-hour average of PM2.5 and the 8-hour average of O3 were slightly higher than the World Health Organization (WHO) air quality guideline values. The nighttime PM2.5 concentration was higher than the daytime concentration, and its potential source area is urban areas in the south. However, the daytime O3 concentration is higher than the nighttime concentration. Its potential source area is from the northwest, where Sichang island is located. This result could be used to support air pollution management by controlling and reducing emissions in the potential source areas as the first priority. Also, the study revealed that the BVP technique could be used to determine the source area of air pollution in the coastal area, where wind circulation is more complex than that over the land.
{"title":"Analysis of short-term air quality monitoring data in a coastal area","authors":"S. Kanchanasuta, S. Sooktawee, Natthaya Bunplod, A. Patpai, N. Piemyai, Ratchatawan Ketwang","doi":"10.3934/environsci.2021033","DOIUrl":"https://doi.org/10.3934/environsci.2021033","url":null,"abstract":"Short-term air quality monitoring in a coastal area, Naklua Subdistrict, Pattaya, Thailand is an activity to support the designated area under Thailand's sustainable tourism development. This study provided a short-term monitoring data analysis on time series and Bivariate Polar Plot (BVP) to provide the status of air quality and to determine the potential source area of air pollution. The result showed that NO2, SO2, CO and PM10 were not higher than the national air quality standards, while the 24-hour average of PM2.5 and the 8-hour average of O3 were slightly higher than the World Health Organization (WHO) air quality guideline values. The nighttime PM2.5 concentration was higher than the daytime concentration, and its potential source area is urban areas in the south. However, the daytime O3 concentration is higher than the nighttime concentration. Its potential source area is from the northwest, where Sichang island is located. This result could be used to support air pollution management by controlling and reducing emissions in the potential source areas as the first priority. Also, the study revealed that the BVP technique could be used to determine the source area of air pollution in the coastal area, where wind circulation is more complex than that over the land.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70230667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.3934/ENVIRONSCI.2021009
N. Naveena, G. Satyanarayana, A. Raju, K. S. Rao, N. Umakanth
The climate of a place has a decisive role in human adaptations. Man’s health, adaptability, behavioural patterns, food, shelter, and clothing are mainly influenced by the temperatures of the area. Hence, a study is undertaken to analyse the spatial distribution, frequency, and trend in the heat waves over the country. The statistical characteristics of heat waves over India are addressed in this study. Gridded daily temperature data sets for the period 1951–2019 were used to compute the arithmetic mean (AM), standard deviation (SD), coefficient of variation (CV), and trends of monthly maximum temperature. The number of heat wave days were identified using the criteria given by India Meteorological Department (IMD) i.e., a heat wave is recognized when the daily normal maximum temperature of a station is less than or equal to (greater than) 40 °C than it will be considered as a heat wave if the daily maximum temperature exceeds the daily normal maximum temperature by 5 °C (4 °C). The analysis was confined to the two summer months of April and May only. The spatial distribution of the AM shows higher values during May, and the core hot region with temperatures exceeding 40 °C lies over central India extending towards the northwest. The SD distribution shows higher values over the northeast of central India decreasing towards the southwest. The CV distribution shows higher values over the north decreasing toward the south. Higher numbers of heat waves are observed during May and the number is higher over Andhra Pradesh and south Telangana regions of southeast India. This study concludes that a moderate hot region experiences a higher number of heat wave days over India.
{"title":"Spatial and statistical characteristics of heat waves impacting India","authors":"N. Naveena, G. Satyanarayana, A. Raju, K. S. Rao, N. Umakanth","doi":"10.3934/ENVIRONSCI.2021009","DOIUrl":"https://doi.org/10.3934/ENVIRONSCI.2021009","url":null,"abstract":"The climate of a place has a decisive role in human adaptations. Man’s health, adaptability, behavioural patterns, food, shelter, and clothing are mainly influenced by the temperatures of the area. Hence, a study is undertaken to analyse the spatial distribution, frequency, and trend in the heat waves over the country. The statistical characteristics of heat waves over India are addressed in this study. Gridded daily temperature data sets for the period 1951–2019 were used to compute the arithmetic mean (AM), standard deviation (SD), coefficient of variation (CV), and trends of monthly maximum temperature. The number of heat wave days were identified using the criteria given by India Meteorological Department (IMD) i.e., a heat wave is recognized when the daily normal maximum temperature of a station is less than or equal to (greater than) 40 °C than it will be considered as a heat wave if the daily maximum temperature exceeds the daily normal maximum temperature by 5 °C (4 °C). The analysis was confined to the two summer months of April and May only. The spatial distribution of the AM shows higher values during May, and the core hot region with temperatures exceeding 40 °C lies over central India extending towards the northwest. The SD distribution shows higher values over the northeast of central India decreasing towards the southwest. The CV distribution shows higher values over the north decreasing toward the south. Higher numbers of heat waves are observed during May and the number is higher over Andhra Pradesh and south Telangana regions of southeast India. This study concludes that a moderate hot region experiences a higher number of heat wave days over India.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.3934/ENVIRONSCI.2021010
D. Kotzias
A large number of studies indicated the presence of volatile organic compounds (VOCs) of various chemical classes in indoor environments (public buildings, homes). VOCs affect the air quality indoors having an impact on human health and wellbeing. They are the result of infiltration of polluted outdoor air and emissions from various indoor sources, including building materials, consumer products (fragrances, air fresheners), activities of the occupants (cleaning) and smoking. On average, people spend a great part of their time (85 to 90%) in confined spaces (homes, office buildings and schools) exposed to a complex mixture of air contaminants at concentration levels that are often several times higher than outdoors. For many chemicals present in indoor air (and their mixtures) the risk for human health and comfort is almost unknown and difficult to predict because of the lack of toxicological data and information on the dose-response characteristics in humans or animal models. Saving of energy for homes and public buildings becomes an additional and essential criterion for the overall quality of the built environment. The need to construct airtight buildings may lead to the accumulation of air contaminants indoors and thus changing the prevailing philosophy for a healthy indoor environmental quality. The necessity emerged, in particular, for low emitting construction and building materials along with the adaptation of appropriate ventilation regimes to ensure wellbeing and comfort for building occupants. The paper provides an overview of indoor/outdoor air concentrations of volatile organic compounds in buildings. It discusses the methodological approaches and procedures applied so far to assess VOC's presence indoors and outdoors, notably benzene and formaldehyde as model compounds for indoor air quality emphasizing the needs for future research and action plans to ensure a healthy and occupant friendly indoor environment.
{"title":"Built environment and indoor air quality: The case of volatile organic compounds","authors":"D. Kotzias","doi":"10.3934/ENVIRONSCI.2021010","DOIUrl":"https://doi.org/10.3934/ENVIRONSCI.2021010","url":null,"abstract":"A large number of studies indicated the presence of volatile organic compounds (VOCs) of various chemical classes in indoor environments (public buildings, homes). VOCs affect the air quality indoors having an impact on human health and wellbeing. They are the result of infiltration of polluted outdoor air and emissions from various indoor sources, including building materials, consumer products (fragrances, air fresheners), activities of the occupants (cleaning) and smoking. On average, people spend a great part of their time (85 to 90%) in confined spaces (homes, office buildings and schools) exposed to a complex mixture of air contaminants at concentration levels that are often several times higher than outdoors. For many chemicals present in indoor air (and their mixtures) the risk for human health and comfort is almost unknown and difficult to predict because of the lack of toxicological data and information on the dose-response characteristics in humans or animal models. Saving of energy for homes and public buildings becomes an additional and essential criterion for the overall quality of the built environment. The need to construct airtight buildings may lead to the accumulation of air contaminants indoors and thus changing the prevailing philosophy for a healthy indoor environmental quality. The necessity emerged, in particular, for low emitting construction and building materials along with the adaptation of appropriate ventilation regimes to ensure wellbeing and comfort for building occupants. The paper provides an overview of indoor/outdoor air concentrations of volatile organic compounds in buildings. It discusses the methodological approaches and procedures applied so far to assess VOC's presence indoors and outdoors, notably benzene and formaldehyde as model compounds for indoor air quality emphasizing the needs for future research and action plans to ensure a healthy and occupant friendly indoor environment.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.3934/environsci.2021017
Lemuel Clark P. Velasco, Mary Jane F. Burden, Marie Joy Satiniaman, Rachelle Bea C. Uy, Luchin Valrian Pueblos, Reynald Gimena
Solid waste management is seen as a response to the increase in waste generation due to the rising number of industrial facilities. This includes digital manufacturing facilities such as Fabrication Laboratories (FAB LAB) which acts as innovation centers that generates prototypes using a common set of digital fabrication equipment. Previous studies have tackled with the environmental impacts of FAB LABs in a macro-level scale; however, there has been a lack of research specifically assessing the solid waste of laboratories, more so on Philippine FAB LABs. A baseline assessment study on FAB LABs of the Philippines could be applicable in future implementations of solid waste management systems through the crafting of institutional policies and guidelines for environmental sustainability. Using data gathered from 11 respondent FAB LABs, this study quantified percentage compositions of the waste according to waste type as well as the relative waste generated by each respondent FAB LAB. Machine availability was seen as a factor in waste generation resulting in the high generation of wood and plastic waste. Moreover, it was observed that earlier established laboratories generally had more active makers than recently established ones, hence the older FAB LABs statistically produced more waste. Approximately 53% of the overall waste produced was considered recyclable by Philippine standards but the actual recyclability of the waste was still undetermined due to the ambiguous criteria for recyclables and the lack of feedback data from recycling facilities. The initial findings suggest that an implementation of continuous waste monitoring, sufficient in-laboratory protocols, and coordination between FAB LABs and recycling facilities could improve actual waste recyclability and—by extension—the environmental sustainability of Philippine FAB LABs.
{"title":"Preliminary assessment of solid waste in Philippine Fabrication Laboratories","authors":"Lemuel Clark P. Velasco, Mary Jane F. Burden, Marie Joy Satiniaman, Rachelle Bea C. Uy, Luchin Valrian Pueblos, Reynald Gimena","doi":"10.3934/environsci.2021017","DOIUrl":"https://doi.org/10.3934/environsci.2021017","url":null,"abstract":"Solid waste management is seen as a response to the increase in waste generation due to the rising number of industrial facilities. This includes digital manufacturing facilities such as Fabrication Laboratories (FAB LAB) which acts as innovation centers that generates prototypes using a common set of digital fabrication equipment. Previous studies have tackled with the environmental impacts of FAB LABs in a macro-level scale; however, there has been a lack of research specifically assessing the solid waste of laboratories, more so on Philippine FAB LABs. A baseline assessment study on FAB LABs of the Philippines could be applicable in future implementations of solid waste management systems through the crafting of institutional policies and guidelines for environmental sustainability. Using data gathered from 11 respondent FAB LABs, this study quantified percentage compositions of the waste according to waste type as well as the relative waste generated by each respondent FAB LAB. Machine availability was seen as a factor in waste generation resulting in the high generation of wood and plastic waste. Moreover, it was observed that earlier established laboratories generally had more active makers than recently established ones, hence the older FAB LABs statistically produced more waste. Approximately 53% of the overall waste produced was considered recyclable by Philippine standards but the actual recyclability of the waste was still undetermined due to the ambiguous criteria for recyclables and the lack of feedback data from recycling facilities. The initial findings suggest that an implementation of continuous waste monitoring, sufficient in-laboratory protocols, and coordination between FAB LABs and recycling facilities could improve actual waste recyclability and—by extension—the environmental sustainability of Philippine FAB LABs.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70230700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}