To mitigate secondary damage from traditional wound dressing removals, this study pioneers an intelligent wound dressing method using a dual-modality sensor for non-invasive, real-time monitoring of the healing process. Harnessing the skin’s architectural blueprint, the dressing employs a three-layered structure with asymmetric wettability, fabricated via advanced electrospinning and screen printing techniques. Central to this design is the MXene@Sodium alginate (SA)/Polylactic acid (PLA) humidity sensor, mimicking a dermal environment with exceptional sensitivity (99%) and response time (0.6 s), ensuring sustained performance over 28 days. A chitosan sponge (CS) layer, incorporated by freeze-drying, optimizes exudate management and expedites healing. The outer layer, a hydrophobic PLA@Ag3PO4 membrane, offers robust antimicrobial efficacy by eliminating 99.99% of bacterial presence. Functionally, this outer skin analog doubles as an ultra-sensitive capacitive-type pressure sensor (199.22 kPa−1), with impressive durability over numerous cycles (1500 cycles), capturing subtle pressure fluctuations as wounds heal. In vivo results show that the dressing can prevent infection, accelerate angiogenesis and epithelial regeneration, and significantly accelerate the healing of open wounds. Integrated with a flexible sensing unit, control circuitry, and bluetooth module, this intelligent dressing paradigm articulates the nuances of wound healing dynamics, heralding a new era in smart healthcare applications.
Graphical Abstract
Inspired by human skin, a three-layer intelligent wound dressing has been developed that connects wirelessly via bluetooth, enabling real-time monitoring of both humidity and pressure at the wound site. This work holds promise for expanding the applications in the field of wound dressings and advancing intelligent healthcare solutions.