首页 > 最新文献

Advanced Fiber Materials最新文献

英文 中文
Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn–Air Batteries 揭示高性能柔性/耐磨锌-空气电池集成阴极中氧催化的尖端效应
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-15 DOI: 10.1007/s42765-024-00425-5
Yirun Shen, Haoning Mao, Chen Li, Keer Li, Yi Liu, Jihai Liao, Shengsen Zhang, Yueping Fang, Xin Cai

The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an in-situ wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–Nx–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall ΔE of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH/O2 reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kgZn–1) and superb cycling stability (> 425 h) at 20 mA cm–2. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm−2, specific energy of 1003 Wh kgZn–1) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.

Graphical Abstract

探索高效过渡金属-氮-碳(M-N-C)催化剂对于加速氧还原/氧进化反应(ORR/OER)的动力学至关重要。微调 M-N-C 催化剂中可访问金属位点的分布和相关的三相界面具有重大意义。在本研究中,我们介绍了一种集成电催化剂,它由封装在掺杂 N 的碳纳米管(NiFe@CNTs)中的尖端富集 NiFe 纳米合金组成,采用原位湿电化学介导法合成。定义明确的 NiFe@CNTs 催化剂具有多孔异质结构、协同的 M-Nx-C 活性位点和亲密的微界面,从而促进了氧化还原动力学的加速发展。这使得该催化剂具有卓越的 OER/ORR 活性和 630 mV 的低总 ΔE。实验结果和密度泛函理论计算揭示了顶端双金属位点与邻近掺杂 N 的 CNT 之间的主要电子相互作用,从而增强了 NiFe@CNT 上中间产物的结合。分子动力学模拟显示,NiFe@CNT 周围的局部气液环境有利于 OH-/O2 反应物的扩散/吸附。因此,NiFe@CNT 为高性能水性锌-空气电池(ZABs)做出了贡献,在 20 mA cm-2 的条件下表现出较高的重力能量密度(936 Wh kgZn-1)和超强的循环稳定性(425 h)。此外,基于 NiFe@CNTs 的固态 ZAB 还表现出令人印象深刻的电化学性能(例如,峰值功率密度为 108 mW cm-2,比能量为 1003 Wh kgZn-1)和突出的灵活性。这项工作为构建金属位点特异性、无钴和集成的 M-N-C 电催化剂提供了一种可行的策略,可用于多功能催化和先进/柔性储能应用。
{"title":"Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn–Air Batteries","authors":"Yirun Shen,&nbsp;Haoning Mao,&nbsp;Chen Li,&nbsp;Keer Li,&nbsp;Yi Liu,&nbsp;Jihai Liao,&nbsp;Shengsen Zhang,&nbsp;Yueping Fang,&nbsp;Xin Cai","doi":"10.1007/s42765-024-00425-5","DOIUrl":"10.1007/s42765-024-00425-5","url":null,"abstract":"<div><p>The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an <i>in-situ</i> wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–N<sub>x</sub>–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall Δ<i>E</i> of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH<sup>−</sup>/O<sub>2</sub> reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kg<sub>Zn</sub><sup>–1</sup>) and superb cycling stability (&gt; 425 h) at 20 mA cm<sup>–2</sup>. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm<sup>−2</sup>, specific energy of 1003 Wh kg<sub>Zn</sub><sup>–1</sup>) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1470 - 1482"},"PeriodicalIF":17.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140974302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Superb Iron-Based Glassy-Crystal Alloy Fiber as an Ultrafast and Stable Catalyst for Advanced Oxidation 一种用于高级氧化的超快稳定催化剂--铁基玻璃晶体合金纤维
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-14 DOI: 10.1007/s42765-024-00426-4
Sida Jiang, Guanyu Cao, Zhe Jia, Ligang Sun, Chen Wang, Hongbo Fan, Yonghui Wang, Weizhi Xu, Yifan Cui, Zhiliang Ning, Jianfei Sun, Jianhua Li, Xiaobin Tang, Heng Liang, E. Peng

Waterborne organic pollutants pose significant threats to ecosystems and the health of billions worldwide, presenting a pressing global challenge. Advanced oxidation processes (AOPs) offer promise for efficient wastewater treatment, yet the efficacy and the reliability of current environmental catalysts hinder their widespread adoption. This study developed an as-cast nanostructured glassy fiber capable of rapidly activating persulfate and achieved the degradation of diverse organic contaminants within 60 s using the as-prepared fiber. The material is relatively robust and can be reused about 40 times. The exceptional catalytic performance of the fibers stemmed from their low atomic coordination numbers, which facilitated the generation of numerous unsaturated active sites and accelerated radical production rates through a one-electron transfer mechanism. Additionally, the glassy-nanocrystalline heterogeneous interface, achieved through our proposed nanostructuralization approach, exhibited electron delocalization behavior. This enhanced persulfate adsorption and reduced the energy barrier for heterolytic cleavage of peroxy bonds. These findings present a novel avenue for the rational structural design of high-performance environmental catalysts for advanced water remediation.

Graphical Abstract

水载有机污染物对生态系统和全球数十亿人的健康构成重大威胁,是一项紧迫的全球性挑战。高级氧化工艺(AOPs)为高效废水处理带来了希望,但目前环境催化剂的功效和可靠性阻碍了其广泛应用。本研究开发了一种能够快速活化过硫酸盐的铸模纳米玻璃纤维,并利用制备的纤维在 60 秒内实现了对多种有机污染物的降解。该材料相对坚固,可重复使用约 40 次。这种纤维的催化性能出众源于其较低的原子配位数,这有利于产生大量不饱和活性位点,并通过单电子转移机制加快自由基的产生速率。此外,通过我们提出的纳米结构化方法实现的玻璃状纳米结晶异质界面表现出了电子析出行为。这增强了过硫酸盐的吸附性,降低了过氧键异质裂解的能量障碍。这些发现为合理设计用于先进水修复的高性能环境催化剂结构提供了一条新途径。
{"title":"A Superb Iron-Based Glassy-Crystal Alloy Fiber as an Ultrafast and Stable Catalyst for Advanced Oxidation","authors":"Sida Jiang,&nbsp;Guanyu Cao,&nbsp;Zhe Jia,&nbsp;Ligang Sun,&nbsp;Chen Wang,&nbsp;Hongbo Fan,&nbsp;Yonghui Wang,&nbsp;Weizhi Xu,&nbsp;Yifan Cui,&nbsp;Zhiliang Ning,&nbsp;Jianfei Sun,&nbsp;Jianhua Li,&nbsp;Xiaobin Tang,&nbsp;Heng Liang,&nbsp;E. Peng","doi":"10.1007/s42765-024-00426-4","DOIUrl":"10.1007/s42765-024-00426-4","url":null,"abstract":"<div><p>Waterborne organic pollutants pose significant threats to ecosystems and the health of billions worldwide, presenting a pressing global challenge. Advanced oxidation processes (AOPs) offer promise for efficient wastewater treatment, yet the efficacy and the reliability of current environmental catalysts hinder their widespread adoption. This study developed an as-cast nanostructured glassy fiber capable of rapidly activating persulfate and achieved the degradation of diverse organic contaminants within 60 s using the as-prepared fiber. The material is relatively robust and can be reused about 40 times. The exceptional catalytic performance of the fibers stemmed from their low atomic coordination numbers, which facilitated the generation of numerous unsaturated active sites and accelerated radical production rates through a one-electron transfer mechanism. Additionally, the glassy-nanocrystalline heterogeneous interface, achieved through our proposed nanostructuralization approach, exhibited electron delocalization behavior. This enhanced persulfate adsorption and reduced the energy barrier for heterolytic cleavage of peroxy bonds. These findings present a novel avenue for the rational structural design of high-performance environmental catalysts for advanced water remediation.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1483 - 1494"},"PeriodicalIF":17.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning 利用机器学习辅助呼吸监测的高灵敏度同轴纳米纤维面罩
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-14 DOI: 10.1007/s42765-024-00420-w
Boling Lan, Cheng Zhong, Shenglong Wang, Yong Ao, Yang Liu, Yue Sun, Tao Yang, Guo Tian, Longchao Huang, Jieling Zhang, Weili Deng, Weiqing Yang

Respiration is a critical physiological process of the body and plays an essential role in maintaining human health. Wearable piezoelectric nanofiber-based respiratory monitoring has attracted much attention due to its self-power, high linearity, noninvasiveness, and convenience. However, the limited sensitivity of conventional piezoelectric nanofibers makes it difficult to meet medical and daily respiratory monitoring requirements due to their low electromechanical conversion efficiency. Here, we present a universally applicable, highly sensitive piezoelectric nanofiber characterized by a coaxial composite structure of polyvinylidene fluoride (PVDF) and carbon nanotube (CNT), which is denoted as PS-CC. Based on elucidating the enhancement mechanism from the percolation effect, PS-CC exhibits excellent sensing performance with a high sensitivity of 3.7 V/N and a fast response time of 20 ms for electromechanical conversion. As a proof-of-concept, the nanofiber membrane is seamlessly integrated into a facial mask, facilitating accurate recognition of respiratory states. With the assistance of a one-dimensional convolutional neural network (CNN), a PS-CC-based smart mask can recognize respiratory tracts and multiple breathing patterns with a classification accuracy of up to 97.8%. Notably, this work provides an effective strategy for monitoring respiratory diseases and offers widespread utility for daily health monitoring and clinical applications.

Graphical abstract

呼吸是人体的一个重要生理过程,对维持人体健康起着至关重要的作用。基于可穿戴压电纳米纤维的呼吸监测因其自供电、高线性度、无创性和便捷性而备受关注。然而,传统压电纳米纤维的灵敏度有限,机电转换效率低,难以满足医疗和日常呼吸监测的要求。在此,我们提出了一种普遍适用的高灵敏度压电纳米纤维,其特征在于聚偏二氟乙烯(PVDF)和碳纳米管(CNT)的同轴复合结构,简称 PS-CC。在阐明渗流效应增强机制的基础上,PS-CC 表现出优异的传感性能,灵敏度高达 3.7 V/N,机电转换响应时间快达 20 ms。作为概念验证,纳米纤维膜与面罩无缝集成,有助于准确识别呼吸状态。在一维卷积神经网络(CNN)的辅助下,基于 PS-CC 的智能面罩可以识别呼吸道和多种呼吸模式,分类准确率高达 97.8%。值得注意的是,这项工作为监测呼吸系统疾病提供了一种有效的策略,并为日常健康监测和临床应用提供了广泛的实用性。
{"title":"A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning","authors":"Boling Lan,&nbsp;Cheng Zhong,&nbsp;Shenglong Wang,&nbsp;Yong Ao,&nbsp;Yang Liu,&nbsp;Yue Sun,&nbsp;Tao Yang,&nbsp;Guo Tian,&nbsp;Longchao Huang,&nbsp;Jieling Zhang,&nbsp;Weili Deng,&nbsp;Weiqing Yang","doi":"10.1007/s42765-024-00420-w","DOIUrl":"10.1007/s42765-024-00420-w","url":null,"abstract":"<div><p>Respiration is a critical physiological process of the body and plays an essential role in maintaining human health. Wearable piezoelectric nanofiber-based respiratory monitoring has attracted much attention due to its self-power, high linearity, noninvasiveness, and convenience. However, the limited sensitivity of conventional piezoelectric nanofibers makes it difficult to meet medical and daily respiratory monitoring requirements due to their low electromechanical conversion efficiency. Here, we present a universally applicable, highly sensitive piezoelectric nanofiber characterized by a coaxial composite structure of polyvinylidene fluoride (PVDF) and carbon nanotube (CNT), which is denoted as PS-CC. Based on elucidating the enhancement mechanism from the percolation effect, PS-CC exhibits excellent sensing performance with a high sensitivity of 3.7 V/N and a fast response time of 20 ms for electromechanical conversion. As a proof-of-concept, the nanofiber membrane is seamlessly integrated into a facial mask, facilitating accurate recognition of respiratory states. With the assistance of a one-dimensional convolutional neural network (CNN), a PS-CC-based smart mask can recognize respiratory tracts and multiple breathing patterns with a classification accuracy of up to 97.8%. Notably, this work provides an effective strategy for monitoring respiratory diseases and offers widespread utility for daily health monitoring and clinical applications.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1402 - 1412"},"PeriodicalIF":17.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable Electrospun Fiber-Hydrogel Composite Delivery System for Prolonged and Nociceptive-Selective Analgesia 可注射的电纺纤维-水凝胶复合给药系统,用于延长镇痛时间并具有痛觉选择性
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-14 DOI: 10.1007/s42765-024-00422-8
Sufang Chen, Weifeng Yao, Zhendong Ding, Jingyi Du, Tienan Wang, Xue Xiao, Linan Zhang, Jing Yang, Yu Guan, Chaojin Chen, Yu Tao, Mingqiang Li, Haixia Wang, Ziqing Hei

Nociceptive-selective analgesia is often preferred over traditional methods, providing effective pain relief with minimum systemic side effects.The quaternary lidocaine derivative QX-314, is a promising local anesthetic for achieving selective analgesia. However, due to its inability to penetrate the cell membrane, its efficacy is limited to intracellular administration. In this study, we aimed to develop an injectable electrospun fiber-hydrogel composite comprising QX-314-loaded poly(ε-caprolactone) electrospun fiber and capsaicin (Cap)-loaded F127 hydrogel (Fiber-QX314/Gel-Cap composite) for long-term and nociceptive-selective analgesia. The sequential and sustained release mechanism of Cap and QX-314 helped remarkably extend the sensory blockade duration up to 44.0 h, and prevent motor blockade. Specifically, our findings indicated that QX-314 can traverse the cell membrane through the transient receptor potential vanilloid 1 channel activated by Cap, thus targeting the intracellular Na+ channel receptor to achieve selective analgesia. Moreover, the composite effectively alleviated incision pain by suppressing c-Fos expression in the dorsal root ganglion and reducing the activation of glial cells in the dorsal horn of the spinal cord. Consequently, the Fiber-QX314/Gel-Cap composite, designed for exceptional biosafety and sustained selective analgesia, holds great promise as a non-opioid analgesic.

Graphical abstract

Injectable composite comprising QX-314-loaded electrospun fiber and capsaicin-loaded thermosensitive hydrogel sequentially releasing drugs for prolonged and nociceptive-selective local analgesia.

与传统方法相比,痛觉选择性镇痛通常更受青睐,它能有效缓解疼痛,同时将全身副作用降至最低。QX-314 是一种很有前景的局麻药,可实现选择性镇痛。然而,由于其无法穿透细胞膜,其功效仅限于细胞内给药。在这项研究中,我们旨在开发一种可注射的电纺纤维-水凝胶复合材料,它由负载 QX-314 的聚(ε-己内酯)电纺纤维和负载辣椒素(Cap)的 F127 水凝胶(Fiber-QX314/Gel-Cap 复合材料)组成,可用于长期和痛觉选择性镇痛。Cap 和 QX-314 的顺序和持续释放机制有助于显著延长感觉阻滞持续时间至 44.0 小时,并防止运动阻滞。具体而言,我们的研究结果表明,QX-314 可通过 Cap 激活的瞬时受体电位类香草素 1 通道穿越细胞膜,从而靶向细胞内 Na+ 通道受体,实现选择性镇痛。此外,该复合制剂还能抑制背根神经节中 c-Fos 的表达,减少脊髓背角神经胶质细胞的活化,从而有效缓解切口疼痛。因此,Fiber-QX314/Gel-Cap复合材料具有优异的生物安全性和持续的选择性镇痛效果,有望成为一种非阿片类镇痛剂。
{"title":"Injectable Electrospun Fiber-Hydrogel Composite Delivery System for Prolonged and Nociceptive-Selective Analgesia","authors":"Sufang Chen,&nbsp;Weifeng Yao,&nbsp;Zhendong Ding,&nbsp;Jingyi Du,&nbsp;Tienan Wang,&nbsp;Xue Xiao,&nbsp;Linan Zhang,&nbsp;Jing Yang,&nbsp;Yu Guan,&nbsp;Chaojin Chen,&nbsp;Yu Tao,&nbsp;Mingqiang Li,&nbsp;Haixia Wang,&nbsp;Ziqing Hei","doi":"10.1007/s42765-024-00422-8","DOIUrl":"10.1007/s42765-024-00422-8","url":null,"abstract":"<div><p>Nociceptive-selective analgesia is often preferred over traditional methods, providing effective pain relief with minimum systemic side effects.The quaternary lidocaine derivative QX-314, is a promising local anesthetic for achieving selective analgesia. However, due to its inability to penetrate the cell membrane, its efficacy is limited to intracellular administration. In this study, we aimed to develop an injectable electrospun fiber-hydrogel composite comprising QX-314-loaded poly(ε-caprolactone) electrospun fiber and capsaicin (Cap)-loaded F127 hydrogel (Fiber-QX314/Gel-Cap composite) for long-term and nociceptive-selective analgesia. The sequential and sustained release mechanism of Cap and QX-314 helped remarkably extend the sensory blockade duration up to 44.0 h, and prevent motor blockade. Specifically, our findings indicated that QX-314 can traverse the cell membrane through the transient receptor potential vanilloid 1 channel activated by Cap, thus targeting the intracellular Na<sup>+</sup> channel receptor to achieve selective analgesia. Moreover, the composite effectively alleviated incision pain by suppressing c-Fos expression in the dorsal root ganglion and reducing the activation of glial cells in the dorsal horn of the spinal cord. Consequently, the Fiber-QX314/Gel-Cap composite, designed for exceptional biosafety and sustained selective analgesia, holds great promise as a non-opioid analgesic.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div><div><p>Injectable composite comprising QX-314-loaded electrospun fiber and capsaicin-loaded thermosensitive hydrogel sequentially releasing drugs for prolonged and nociceptive-selective local analgesia.</p></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1428 - 1445"},"PeriodicalIF":17.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired Design of Textile-Based Absorbers: Photothermal and Electrothermal Synergistic Conversion for Efficient Clean-Up of Heavy Oil 纺织品吸收器的生物启发设计:光热与电热协同转换:高效清洁重油
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-14 DOI: 10.1007/s42765-024-00423-7
Xin Yang, Yankuan Tian, Rong Zhou, Feng Xia, Yifei Gong, Chengming Zhang, Feng Ji, Liu Liu, Faxue Li, Ruiyun Zhang, Jianyong Yu, Tingting Gao

It is a worldwide challenge to achieve an efficient cleaning of heavy oil at ambient temperature. Conventional cleanup methods for high-viscosity oil spills exhibit low absorption efficiency and have severe practical operating limits. Herein, inspired by the passive transport process in the Salvinia cucullata, a solar-heated and joule-heated textile-based absorber using the scalable electrostatic flocking technique. Benefiting from the efficient photothermal and electrothermal conversion effects, the textile-based absorber, with oleophilic and aligned channels, facilitates thermal conduction and hence enhances heavy oil absorption. The absorber is highly efficient for organic solvents (chloroform and dichloromethane) and low-viscosity oils (silicone oil, gasoline, and diesel oil). The surface temperature of the textile absorber rises rapidly to 92 °C (114 °C) in 120 s (240 s) under one sun irradiation (or 5 V voltage), resulting in a sharp drop in the viscosity of the heavy oil and then achieving an ultrahigh absorption rate (2647 kg h−1 m−2) and fast equilibrium time (25 s). Rapid absorption rate significantly reduces spill cleanup time and spill spreading area, hence alleviating the environmental harm caused by oil spills as much as possible. The proposed solar-heated and joule-heated textile-based absorbers with aligned channels show great potential for efficient heavy oil absorption.

Graphical Abstract

在常温下实现重油的高效清洁是一项世界性挑战。针对高粘度油类泄漏的传统清理方法吸收效率较低,并且存在严重的实际操作限制。在此,我们从小叶女贞(Salvinia cucullata)的被动传输过程中汲取灵感,利用可扩展的静电植绒技术,开发出一种基于太阳能加热和焦耳热的纺织品吸收剂。得益于高效的光热和电热转换效应,这种纺织吸收剂具有亲油性和排列整齐的通道,有利于热传导,从而提高重油吸收率。这种吸收器对有机溶剂(氯仿和二氯甲烷)和低粘度油(硅油、汽油和柴油)具有很高的吸收效率。在一个太阳光照射(或 5 V 电压)下,纺织吸收器的表面温度在 120 秒(240 秒)内迅速升至 92 ℃(114 ℃),导致重油粘度急剧下降,然后达到超高吸收率(2647 kg h-1 m-2)和快速平衡时间(25 秒)。快速吸收率大大减少了溢油清理时间和溢油扩散面积,从而尽可能减轻溢油对环境造成的危害。所提出的具有对齐通道的太阳能加热和焦耳热纺织品吸收器显示出高效吸收重油的巨大潜力。 图文摘要
{"title":"Bioinspired Design of Textile-Based Absorbers: Photothermal and Electrothermal Synergistic Conversion for Efficient Clean-Up of Heavy Oil","authors":"Xin Yang,&nbsp;Yankuan Tian,&nbsp;Rong Zhou,&nbsp;Feng Xia,&nbsp;Yifei Gong,&nbsp;Chengming Zhang,&nbsp;Feng Ji,&nbsp;Liu Liu,&nbsp;Faxue Li,&nbsp;Ruiyun Zhang,&nbsp;Jianyong Yu,&nbsp;Tingting Gao","doi":"10.1007/s42765-024-00423-7","DOIUrl":"10.1007/s42765-024-00423-7","url":null,"abstract":"<div><p>It is a worldwide challenge to achieve an efficient cleaning of heavy oil at ambient temperature. Conventional cleanup methods for high-viscosity oil spills exhibit low absorption efficiency and have severe practical operating limits. Herein, inspired by the passive transport process in the Salvinia cucullata, a solar-heated and joule-heated textile-based absorber using the scalable electrostatic flocking technique. Benefiting from the efficient photothermal and electrothermal conversion effects, the textile-based absorber, with oleophilic and aligned channels, facilitates thermal conduction and hence enhances heavy oil absorption. The absorber is highly efficient for organic solvents (chloroform and dichloromethane) and low-viscosity oils (silicone oil, gasoline, and diesel oil). The surface temperature of the textile absorber rises rapidly to 92 °C (114 °C) in 120 s (240 s) under one sun irradiation (or 5 V voltage), resulting in a sharp drop in the viscosity of the heavy oil and then achieving an ultrahigh absorption rate (2647 kg h<sup>−1</sup> m<sup>−2</sup>) and fast equilibrium time (25 s). Rapid absorption rate significantly reduces spill cleanup time and spill spreading area, hence alleviating the environmental harm caused by oil spills as much as possible. The proposed solar-heated and joule-heated textile-based absorbers with aligned channels show great potential for efficient heavy oil absorption.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1446 - 1455"},"PeriodicalIF":17.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Twisting Fabrication Process for Wearable Electronic Devices 可穿戴电子设备的扭曲制造工艺
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-08 DOI: 10.1007/s42765-024-00429-1
Xiaobing Lan, Jun Chen, Guangfu Liao, Meifang Zhu

The advancement of integrated circuits has made it easier to reduce the size of increasingly potent wearable electronic devices. However, it is still difficult to seamlessly integrate electronic systems enabling unrestricted human behavior into wearable gadgets. The procedure of creating fiber devices by twisting fiber electrodes and incorporating them into textile systems is exhibited in recent work. These textile systems are highly resilient and flexible, which makes them ideal for various wearable applications, i.e., thread lithium-ion batteries (TLIBs), multi-ply sensing threads (MSTs), and thread electroluminescent devices (TELDs).

集成电路的发展使日益强大的可穿戴电子设备更容易缩小体积。然而,要将电子系统无缝集成到可穿戴小工具中,使人类的行为不受限制,仍然存在困难。最近的研究展示了通过扭转纤维电极制造纤维装置并将其融入纺织系统的过程。这些纺织系统具有高弹性和灵活性,因此非常适合各种可穿戴应用,例如线锂离子电池(TLIB)、多层传感线(MST)和线电致发光器件(TELD)。
{"title":"A Twisting Fabrication Process for Wearable Electronic Devices","authors":"Xiaobing Lan,&nbsp;Jun Chen,&nbsp;Guangfu Liao,&nbsp;Meifang Zhu","doi":"10.1007/s42765-024-00429-1","DOIUrl":"10.1007/s42765-024-00429-1","url":null,"abstract":"<div><p>The advancement of integrated circuits has made it easier to reduce the size of increasingly potent wearable electronic devices. However, it is still difficult to seamlessly integrate electronic systems enabling unrestricted human behavior into wearable gadgets. The procedure of creating fiber devices by twisting fiber electrodes and incorporating them into textile systems is exhibited in recent work. These textile systems are highly resilient and flexible, which makes them ideal for various wearable applications, i.e., thread lithium-ion batteries (TLIBs), multi-ply sensing threads (MSTs), and thread electroluminescent devices (TELDs).</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"943 - 945"},"PeriodicalIF":17.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-Site Electrospinning Nanofiber Membranes Incorporating V-Shaped Organic Semiconductors for Multifunctional Diabetic Wound Dressing 用于多功能糖尿病伤口敷料的含有 V 型有机半导体的现场电纺丝纳米纤维膜
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-07 DOI: 10.1007/s42765-024-00421-9
Ling Hong, Pu Qiu, Shining Niu, Qian Chen, Xiuqin Lu, Fengkun Chen, Mei Wen, Nuo Yu, Zhigang Chen

Personalized wound dressings with on-site deposition, exudate suction, and reproducible sterilization are urged for treating diabetic wounds. Herein, we have developed nanofiber membranes incorporating a V-shaped photosensitizer (VPS), a donor-acceptor-donor type organic semiconductor with indacenodithienothiophene (IDTT) as the electron-donor and triphenyleno[1,2-c:7,8-c′]bis([1,2,5] -thiadiazole) (TPTz) as the electron-acceptor, for multifunctional wound dressing. The VPS-incorporated nanofiber membranes are in situ deposited on rough wounds by using a handheld electrospinning device, which offers full coverage and better affinity than gauze to stop bleeding and suck exudate rapidly. They are breathable, waterproof, and have bacteria repelling capacity due to their hydrophobicity and negative charges. Upon light irradiation, the VPS in nanofibers undergoes low aggregation-caused quenching and retains high fluorescence and reproducible photodynamic sterilization towards both Gram-positive and Gram-negative bacteria. The nanofiber dressing also promotes cell adhesion and proliferation and exhibits high security in blood biochemistry and hematology. With the above merits, the nanofiber membranes greatly reduce the expression of tumor necrosis factor α and interleukin 6 in serum and wound tissues, expediting the wound healing process. These wound dressings combine the benefits of in situ electrospinning, fiber membrane, and VPS, and will provide strategies for emergency medical operations.

Graphical abstract

具有现场沉积、渗出物抽吸和可重复消毒功能的个性化伤口敷料是治疗糖尿病伤口的当务之急。在此,我们开发了一种纳米纤维膜,其中加入了 V 型光敏剂(VPS),这是一种供体-受体-供体型有机半导体,以茚二硫噻吩(IDTT)为电子供体,三苯基烯并[1,2-c:7,8-c′]双[[1,2,5] -噻二唑](TPTz)为电子受体,用于多功能伤口敷料。利用手持式电纺丝装置在粗糙的伤口上原位沉积加入 VPS 的纳米纤维膜,可实现全覆盖,并且比纱布具有更好的亲和力,能快速止血和吸附渗出物。它们具有透气性、防水性,并因其疏水性和负电荷而具有驱菌能力。在光照射下,纳米纤维中的 VPS 会发生低聚集淬灭,并保持高荧光,对革兰氏阳性和革兰氏阴性细菌都能产生可重复的光动力杀菌作用。纳米纤维敷料还能促进细胞粘附和增殖,在血液生化和血液学方面具有很高的安全性。凭借上述优点,纳米纤维膜大大降低了血清和伤口组织中肿瘤坏死因子α和白细胞介素 6 的表达,加快了伤口愈合过程。这些伤口敷料结合了原位电纺、纤维膜和 VPS 的优点,将为紧急医疗行动提供策略。
{"title":"On-Site Electrospinning Nanofiber Membranes Incorporating V-Shaped Organic Semiconductors for Multifunctional Diabetic Wound Dressing","authors":"Ling Hong,&nbsp;Pu Qiu,&nbsp;Shining Niu,&nbsp;Qian Chen,&nbsp;Xiuqin Lu,&nbsp;Fengkun Chen,&nbsp;Mei Wen,&nbsp;Nuo Yu,&nbsp;Zhigang Chen","doi":"10.1007/s42765-024-00421-9","DOIUrl":"10.1007/s42765-024-00421-9","url":null,"abstract":"<div><p>Personalized wound dressings with on-site deposition, exudate suction, and reproducible sterilization are urged for treating diabetic wounds. Herein, we have developed nanofiber membranes incorporating a V-shaped photosensitizer (VPS), a donor-acceptor-donor type organic semiconductor with indacenodithienothiophene (IDTT) as the electron-donor and triphenyleno[1,2-<i>c</i>:7,8-<i>c</i>′]bis([1,2,5] -thiadiazole) (TPTz) as the electron-acceptor, for multifunctional wound dressing. The VPS-incorporated nanofiber membranes are in situ deposited on rough wounds by using a handheld electrospinning device, which offers full coverage and better affinity than gauze to stop bleeding and suck exudate rapidly. They are breathable, waterproof, and have bacteria repelling capacity due to their hydrophobicity and negative charges. Upon light irradiation, the VPS in nanofibers undergoes low aggregation-caused quenching and retains high fluorescence and reproducible photodynamic sterilization towards both Gram-positive and Gram-negative bacteria. The nanofiber dressing also promotes cell adhesion and proliferation and exhibits high security in blood biochemistry and hematology. With the above merits, the nanofiber membranes greatly reduce the expression of tumor necrosis factor α and interleukin 6 in serum and wound tissues, expediting the wound healing process. These wound dressings combine the benefits of in situ electrospinning, fiber membrane, and VPS, and will provide strategies for emergency medical operations.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1413 - 1427"},"PeriodicalIF":17.2,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breathable Wearable Electronics by 3D Liquid Diode 三维液体二极管的可呼吸穿戴式电子设备
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-06 DOI: 10.1007/s42765-024-00428-2
Dahua Shou, Jinhao Xu

Wearable electronics, poised to revolutionize real-time health monitoring, encounter significant challenges due to sweat accumulation, including skin irritation, peeling, short circuits, and corrosion. A groundbreaking study published in Nature presents a sustainable solution: three-dimensional (3D) liquid diodes that effectively pump sweat away, thereby maintaining the wearables’ breathability and stable sensing of biometrics or environments without getting messed up by perspiration. This advancement has immense potential for the development of comfortable and skin-friendly intelligent wearable technologies that seamlessly incorporate sophisticated electronics even in sweaty conditions.

可穿戴电子设备有望彻底改变实时健康监测的现状,但由于汗液积聚而面临着巨大的挑战,包括皮肤刺激、剥落、短路和腐蚀。发表在《自然》(Nature)杂志上的一项突破性研究提出了一种可持续的解决方案:三维(3D)液态二极管能有效地将汗液抽走,从而保持可穿戴设备的透气性和对生物识别或环境的稳定传感,而不会被汗液搅乱。这一进步对于开发舒适、亲肤的智能可穿戴技术具有巨大潜力,即使在出汗的情况下也能无缝集成精密的电子设备。
{"title":"Breathable Wearable Electronics by 3D Liquid Diode","authors":"Dahua Shou,&nbsp;Jinhao Xu","doi":"10.1007/s42765-024-00428-2","DOIUrl":"10.1007/s42765-024-00428-2","url":null,"abstract":"<div><p>Wearable electronics, poised to revolutionize real-time health monitoring, encounter significant challenges due to sweat accumulation, including skin irritation, peeling, short circuits, and corrosion. A groundbreaking study published in Nature presents a sustainable solution: three-dimensional (3D) liquid diodes that effectively pump sweat away, thereby maintaining the wearables’ breathability and stable sensing of biometrics or environments without getting messed up by perspiration. This advancement has immense potential for the development of comfortable and skin-friendly intelligent wearable technologies that seamlessly incorporate sophisticated electronics even in sweaty conditions.</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"940 - 942"},"PeriodicalIF":17.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wrinkled and Fibrous Conductive Bandages with Tunable Mechanoelectrical Response Toward Wearable Strain Sensors 具有可调机电响应的皱褶和纤维状导电绷带,可用于佩戴式应变传感器
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-03 DOI: 10.1007/s42765-024-00417-5
Xin Xu, Yang Liu, Hongwei Zhou, Zhong Li, Ruhai Wang, Birui Jin, Hao Liu, Qianqian Fan, Yunsheng Fang, Na Liu, Dong Wang, Feng Xu, Guoxu Zhao

Wearable strain sensors (WSSs) have found widespread applications, where the key is to optimize their sensing and wearing performances. However, the intricate material designs for developing WSSs often rely on costly reagents and/or complex processes, which bring barriers to their large-scale production and use. Herein, a facile and affordable (material cost of < $0.002/cm2) method is presented for fabricating conductive bandage (CB)-based WSSs by electrospraying a carbon nanotube (CNT) layer on commercial self-adhesive bandages with excellent biosafety, stretchability, mechanical compliance, breathability and cost effectiveness. The wrinkled and fibrous structures of self-adhesive bandages were rationally leverage to control the geometry of CNT layer, thereby ensuring tunable mechanoelectrical sensitivities (gauge factors of 2 ~ 850) of CBs. Moreover, a strain-sensing mechanism directly mediated by the highly wrinkled microstructure is unveiled, which can work in synergy with a training-loosened-fibrous microstructure. The excellent performance of CBs for monitoring full-range strain signals in human bodies was further demonstrated. CBs would possess great potential for being developed into WSSs because of their outstanding cost-performance ratio.

Graphical abstract

可穿戴应变传感器(WSS)已得到广泛应用,其关键在于优化传感和穿戴性能。然而,用于开发 WSS 的复杂材料设计往往依赖于昂贵的试剂和/或复杂的工艺,这给其大规模生产和使用带来了障碍。本文提出了一种简便、经济(材料成本为 0.002 美元/平方厘米)的方法,通过在商用自粘绷带上电喷涂碳纳米管(CNT)层来制造基于导电绷带(CB)的 WSS,该方法具有出色的生物安全性、伸展性、机械顺应性、透气性和成本效益。通过合理利用自粘绷带的褶皱和纤维结构来控制碳纳米管层的几何形状,从而确保了 CBs 的可调机电灵敏度(测量系数为 2 ~ 850)。此外,还揭示了一种由高度起皱的微结构直接介导的应变传感机制,它可以与训练松弛的纤维微结构协同工作。CBs 在监测人体全范围应变信号方面的卓越性能得到了进一步证实。由于 CBs 具有出色的性价比,因此具有开发成 WSS 的巨大潜力。
{"title":"Wrinkled and Fibrous Conductive Bandages with Tunable Mechanoelectrical Response Toward Wearable Strain Sensors","authors":"Xin Xu,&nbsp;Yang Liu,&nbsp;Hongwei Zhou,&nbsp;Zhong Li,&nbsp;Ruhai Wang,&nbsp;Birui Jin,&nbsp;Hao Liu,&nbsp;Qianqian Fan,&nbsp;Yunsheng Fang,&nbsp;Na Liu,&nbsp;Dong Wang,&nbsp;Feng Xu,&nbsp;Guoxu Zhao","doi":"10.1007/s42765-024-00417-5","DOIUrl":"10.1007/s42765-024-00417-5","url":null,"abstract":"<div><p>Wearable strain sensors (WSSs) have found widespread applications, where the key is to optimize their sensing and wearing performances. However, the intricate material designs for developing WSSs often rely on costly reagents and/or complex processes, which bring barriers to their large-scale production and use. Herein, a facile and affordable (material cost of &lt; $0.002/cm<sup>2</sup>) method is presented for fabricating conductive bandage (CB)-based WSSs by electrospraying a carbon nanotube (CNT) layer on commercial self-adhesive bandages with excellent biosafety, stretchability, mechanical compliance, breathability and cost effectiveness. The wrinkled and fibrous structures of self-adhesive bandages were rationally leverage to control the geometry of CNT layer, thereby ensuring tunable mechanoelectrical sensitivities (gauge factors of 2 ~ 850) of CBs. Moreover, a strain-sensing mechanism directly mediated by the highly wrinkled microstructure is unveiled, which can work in synergy with a training-loosened-fibrous microstructure. The excellent performance of CBs for monitoring full-range strain signals in human bodies was further demonstrated. CBs would possess great potential for being developed into WSSs because of their outstanding cost-performance ratio.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1174 - 1187"},"PeriodicalIF":17.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic Textile with Passive Thermal Management for Outdoor Health Monitoring 用于户外健康监测的带被动热管理功能的电子织物
IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-03 DOI: 10.1007/s42765-024-00412-w
He Yu, Shiliang Zhang, Yunlu Lian, Mingxiang Liu, Mingyuan Wang, Jiamin Jiang, Chong Yang, Shengwang Jia, Maoyi Wu, Yulong Liao, Jun Gou, Yadong Jiang, Jun Wang, Guangming Tao

Soft and wearable electronics for monitoring health in hot outdoor environments are highly desirable due to their effectiveness in safeguarding individuals against escalating heat-related illnesses associated with global climate change. However, traditional wearable devices have limitations when exposed to outdoor solar radiation, including reduced electrical performance, shortened lifespan, and the risk of skin burns. In this work, we introduce a novel approach known as the cooling E-textile (CET), which ensures reliable and accurate tracking of uninterrupted physiological signals in intense external conditions while maintaining the device at a consistently cool temperature. Through a co-designed architecture comprising a spectrally selective passive cooling structure and intricate hierarchical sensing construction, the monolithic integrated CET demonstrates superior sensitivity (6.67 × 103 kPa−1), remarkable stability, and excellent wearable properties, such as flexibility, lightweightness, and thermal comfort, while achieving maximum temperature reduction of 21 °C. In contrast to the limitations faced by existing devices that offer low signal quality during overheating, CET presents accurately stable performance output even in rugged external environments. This work presents an innovative method for effective thermal management in next-generation textile electronics tailored for outdoor applications.

摘要 在炎热的室外环境中监测健康状况的软性可穿戴电子设备非常受欢迎,因为它们能有效地保护个人免受与全球气候变化相关的热相关疾病的侵袭。然而,传统的可穿戴设备在暴露于室外太阳辐射时存在局限性,包括电气性能降低、寿命缩短和皮肤灼伤的风险。在这项工作中,我们引入了一种被称为冷却电子织物(CET)的新方法,它能确保在强烈的外部条件下可靠、准确地跟踪不间断的生理信号,同时保持设备始终处于低温状态。通过由光谱选择性被动冷却结构和错综复杂的分层传感结构组成的共同设计架构,单片集成式 CET 显示出卓越的灵敏度(6.67 × 103 kPa-1)、显著的稳定性和出色的可穿戴特性,如灵活性、轻便性和热舒适性,同时实现最高 21 °C的降温。与现有设备在过热时信号质量低的局限性相比,CET 即使在恶劣的外部环境中也能提供精确稳定的性能输出。这项研究提出了一种创新方法,可为户外应用量身定制的下一代纺织电子产品提供有效的热管理。
{"title":"Electronic Textile with Passive Thermal Management for Outdoor Health Monitoring","authors":"He Yu,&nbsp;Shiliang Zhang,&nbsp;Yunlu Lian,&nbsp;Mingxiang Liu,&nbsp;Mingyuan Wang,&nbsp;Jiamin Jiang,&nbsp;Chong Yang,&nbsp;Shengwang Jia,&nbsp;Maoyi Wu,&nbsp;Yulong Liao,&nbsp;Jun Gou,&nbsp;Yadong Jiang,&nbsp;Jun Wang,&nbsp;Guangming Tao","doi":"10.1007/s42765-024-00412-w","DOIUrl":"10.1007/s42765-024-00412-w","url":null,"abstract":"<p>Soft and wearable electronics for monitoring health in hot outdoor environments are highly desirable due to their effectiveness in safeguarding individuals against escalating heat-related illnesses associated with global climate change. However, traditional wearable devices have limitations when exposed to outdoor solar radiation, including reduced electrical performance, shortened lifespan, and the risk of skin burns. In this work, we introduce a novel approach known as the cooling E-textile (CET), which ensures reliable and accurate tracking of uninterrupted physiological signals in intense external conditions while maintaining the device at a consistently cool temperature. Through a co-designed architecture comprising a spectrally selective passive cooling structure and intricate hierarchical sensing construction, the monolithic integrated CET demonstrates superior sensitivity (6.67 × 10<sup>3</sup> kPa<sup>−1</sup>), remarkable stability, and excellent wearable properties, such as flexibility, lightweightness, and thermal comfort, while achieving maximum temperature reduction of 21 °C. In contrast to the limitations faced by existing devices that offer low signal quality during overheating, CET presents accurately stable performance output even in rugged external environments. This work presents an innovative method for effective thermal management in next-generation textile electronics tailored for outdoor applications.</p>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1241 - 1252"},"PeriodicalIF":17.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Fiber Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1