With the progress of flexible wearables, electronic devices have evolved from three-dimensional bulk materials and two-dimensional films to flexible one-dimensional fiber structures. Amongst all, alternating current electroluminescent (ACEL) fibers have received increasing attention due to their flexibility, weavability, and human-body compatibility. Nevertheless, ACEL still faces great challenges in achieving efficient color modulation, continuous preparation and device integration. Herein, a novel color-tunable ACEL fiber based on fluorescent dye-mediated omnidirectional color conversion is presented, where continuous deposition of functional materials is achieved by conjugated electrospinning and solution dip-coating techniques. Such fiber achieves uniform omnidirectional light emission while maintaining exceptional flexibility, mechanical durability, and water resistance, with additional color conversion capability. Together, these synergistic properties make them ideally suited for integration into smart textiles through weaving or hand embroidery processes. In addition, these ACEL fibers have been successfully integrated with sound sensors featuring speech recognition and volume detection, an advancement that paves the way for visual and barrier-free communication solutions for the hearing-impaired individuals, as well as early warning systems in high-noise environments. Overall, this work provides a new technological paradigm for textile-based wearable full-color displays with significant scientific and practical value in smart wearables, interactive e-textiles, and intelligent human–machine interfaces.
{"title":"Fluorescent Dye-Enhanced ACEL Fibers for Omnidirectional Luminescence and Voice-Interactive Human–Machine Interfaces","authors":"Ying Zhang, Mingyu Liu, Xun Wang, Yi Chen, Chao Zhang, Ziqing Li, Shilin Xu, Panpan Shen, Yaoxi Shen, Yingzhen Gong, Dehua Li, Xiao Yang, Chao Li, Yuting Lin, Tucongying Qian, Yi Hu","doi":"10.1007/s42765-025-00579-w","DOIUrl":"10.1007/s42765-025-00579-w","url":null,"abstract":"<p>With the progress of flexible wearables, electronic devices have evolved from three-dimensional bulk materials and two-dimensional films to flexible one-dimensional fiber structures. Amongst all, alternating current electroluminescent (ACEL) fibers have received increasing attention due to their flexibility, weavability, and human-body compatibility. Nevertheless, ACEL still faces great challenges in achieving efficient color modulation, continuous preparation and device integration. Herein, a novel color-tunable ACEL fiber based on fluorescent dye-mediated omnidirectional color conversion is presented, where continuous deposition of functional materials is achieved by conjugated electrospinning and solution dip-coating techniques. Such fiber achieves uniform omnidirectional light emission while maintaining exceptional flexibility, mechanical durability, and water resistance, with additional color conversion capability. Together, these synergistic properties make them ideally suited for integration into smart textiles through weaving or hand embroidery processes. In addition, these ACEL fibers have been successfully integrated with sound sensors featuring speech recognition and volume detection, an advancement that paves the way for visual and barrier-free communication solutions for the hearing-impaired individuals, as well as early warning systems in high-noise environments. Overall, this work provides a new technological paradigm for textile-based wearable full-color displays with significant scientific and practical value in smart wearables, interactive e-textiles, and intelligent human–machine interfaces.</p>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 6","pages":"1788 - 1802"},"PeriodicalIF":21.3,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-09DOI: 10.1007/s42765-025-00569-y
Xiang Dong, Yan Ma, Shidai Zhang, Caiyu Rong, Xiaoyu Jiang, Yan Li, Shibin Nie, Konghu Tian
Smart firefighting clothing is in urgent need of rigorous fire resistance. Here, a novel 2D nanomaterial, silver nanoparticle@polydopamine@M(OH)(OCH3) (M=Co, Ni) (AgNP@PDA@M(OH)(OCH3)), was utilized to construct self-assembled nano-coated aramid fiber (NCANF). Through phase interface catalysis and high-temperature reduction, NCANF forms a distinctive “metal–carbon–air” honeycomb-like buffer that enables NCANF to withstand the butane flame (1300 °C) for at least 60 s, exceeding the performance of firefighting uniform (FU, Nomex) in service. In this process, the back temperature of NCANF decreased by more than 50% compared to FU, with a maximum difference of 236.1 °C. NCANF offers a rapid fire alarm response under 3 s with a maximum resistance change rate of 15%, and supports the graded indication using arithmetic amplifier circuit. NCANF maintained a maximum resistance change rate of approximately 63% during 50 repeated bends of the manipulator joint. Leveraging the relationship between the joint bending angle and resistance change rate, an “attitude code” system can be established as the initial parameter matrix of a neural network and can enable the recognition of the firefighters’ body language. NCANF well solves the problem of current smart firefighting clothing that lacks rigorous fireproofing and is promising to establish a linked rescue mode based on real-time on-site information collection.