首页 > 最新文献

International Journal of Biomedical Imaging最新文献

英文 中文
Three-Dimensional Imaging of Pulmonary Fibrotic Foci at the Alveolar Scale Using Tissue-Clearing Treatment with Staining Techniques of Extracellular Matrix. 利用细胞外基质染色技术组织清除处理肺泡尺度肺纤维化病灶的三维成像。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-12-29 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8815231
Kohei Togami, Hiroaki Ozaki, Yuki Yumita, Anri Kitayama, Hitoshi Tada, Sumio Chono

Idiopathic pulmonary fibrosis is a progressive, chronic lung disease characterized by the accumulation of extracellular matrix proteins, including collagen and elastin. Imaging of extracellular matrix in fibrotic lungs is important for evaluating its pathological condition as well as the distribution of drugs to pulmonary focus sites and their therapeutic effects. In this study, we compared techniques of staining the extracellular matrix with optical tissue-clearing treatment for developing three-dimensional imaging methods for focus sites in pulmonary fibrosis. Mouse models of pulmonary fibrosis were prepared via the intrapulmonary administration of bleomycin. Fluorescent-labeled tomato lectin, collagen I antibody, and Col-F, which is a fluorescent probe for collagen and elastin, were used to compare the imaging of fibrotic foci in intact fibrotic lungs. These lung samples were cleared using the ClearT2 tissue-clearing technique. The cleared lungs were two dimensionally observed using laser-scanning confocal microscopy, and the images were compared with those of the lung tissue sections. Moreover, three-dimensional images were reconstructed from serial two-dimensional images. Fluorescent-labeled tomato lectin did not enable the visualization of fibrotic foci in cleared fibrotic lungs. Although collagen I in fibrotic lungs could be visualized via immunofluorescence staining, collagen I was clearly visible only until 40 μm from the lung surface. Col-F staining facilitated the visualization of collagen and elastin to a depth of 120 μm in cleared lung tissues. Furthermore, we visualized the three-dimensional extracellular matrix in cleared fibrotic lungs using Col-F, and the images provided better visualization than immunofluorescence staining. These results suggest that ClearT2 tissue-clearing treatment combined with Col-F staining represents a simple and rapid technique for imaging fibrotic foci in intact fibrotic lungs. This study provides important information for imaging various organs with extracellular matrix-related diseases.

特发性肺纤维化是一种进行性慢性肺部疾病,其特征是细胞外基质蛋白(包括胶原蛋白和弹性蛋白)的积累。纤维化肺的细胞外基质成像对于评价其病理状况、药物在肺病灶部位的分布及其治疗效果具有重要意义。在这项研究中,我们比较了细胞外基质染色技术和光学组织清除治疗技术,以开发肺纤维化病灶部位的三维成像方法。通过肺内给药博来霉素制备肺纤维化小鼠模型。采用荧光标记的番茄凝集素、I型胶原抗体和Col-F(胶原蛋白和弹性蛋白的荧光探针)比较完整纤维化肺中纤维化灶的影像学表现。使用ClearT2组织清除技术清除这些肺样本。用激光共聚焦显微镜对清除后的肺进行二维观察,并与肺组织切片图像进行比较。此外,将连续二维图像重构为三维图像。荧光标记的番茄凝集素不能在清除的纤维化肺中显示纤维化灶。虽然通过免疫荧光染色可以看到纤维化肺中的胶原I,但直到距离肺表面40 μm时才清晰可见胶原I。在清除后的肺组织中,Col-F染色使胶原蛋白和弹性蛋白的可见深度达到120 μm。此外,我们使用Col-F可视化清除纤维化肺的三维细胞外基质,其图像比免疫荧光染色提供更好的可视化效果。这些结果表明,在完整的纤维化肺中,ClearT2组织清除治疗联合Col-F染色是一种简单快速的成像纤维化灶的技术。本研究为细胞外基质相关疾病的各种器官成像提供了重要信息。
{"title":"Three-Dimensional Imaging of Pulmonary Fibrotic Foci at the Alveolar Scale Using Tissue-Clearing Treatment with Staining Techniques of Extracellular Matrix.","authors":"Kohei Togami,&nbsp;Hiroaki Ozaki,&nbsp;Yuki Yumita,&nbsp;Anri Kitayama,&nbsp;Hitoshi Tada,&nbsp;Sumio Chono","doi":"10.1155/2020/8815231","DOIUrl":"https://doi.org/10.1155/2020/8815231","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis is a progressive, chronic lung disease characterized by the accumulation of extracellular matrix proteins, including collagen and elastin. Imaging of extracellular matrix in fibrotic lungs is important for evaluating its pathological condition as well as the distribution of drugs to pulmonary focus sites and their therapeutic effects. In this study, we compared techniques of staining the extracellular matrix with optical tissue-clearing treatment for developing three-dimensional imaging methods for focus sites in pulmonary fibrosis. Mouse models of pulmonary fibrosis were prepared via the intrapulmonary administration of bleomycin. Fluorescent-labeled tomato lectin, collagen I antibody, and Col-F, which is a fluorescent probe for collagen and elastin, were used to compare the imaging of fibrotic foci in intact fibrotic lungs. These lung samples were cleared using the Clear<sup>T2</sup> tissue-clearing technique. The cleared lungs were two dimensionally observed using laser-scanning confocal microscopy, and the images were compared with those of the lung tissue sections. Moreover, three-dimensional images were reconstructed from serial two-dimensional images. Fluorescent-labeled tomato lectin did not enable the visualization of fibrotic foci in cleared fibrotic lungs. Although collagen I in fibrotic lungs could be visualized via immunofluorescence staining, collagen I was clearly visible only until 40 <i>μ</i>m from the lung surface. Col-F staining facilitated the visualization of collagen and elastin to a depth of 120 <i>μ</i>m in cleared lung tissues. Furthermore, we visualized the three-dimensional extracellular matrix in cleared fibrotic lungs using Col-F, and the images provided better visualization than immunofluorescence staining. These results suggest that Clear<sup>T2</sup> tissue-clearing treatment combined with Col-F staining represents a simple and rapid technique for imaging fibrotic foci in intact fibrotic lungs. This study provides important information for imaging various organs with extracellular matrix-related diseases.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8815231"},"PeriodicalIF":7.6,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38827591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Modified Phase Cycling Method for Complex-Valued MRI Reconstruction. 一种用于复值MRI重建的改进相位循环方法。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-11-18 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8846220
Wei He, Yu Zhang, Junling Ding, Linman Zhao

The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to "pre-process" the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.

相位循环法是目前最先进的复值磁共振图像重建方法。然而,当它遵循实际的二维(2D)子采样笛卡尔采集时,它只在相位编码方向强制随机采样,出现了一些幅度上的伪影。提出了一种改进的方法,通过在相位循环方法中加入一维总变差(TV)正则化,在幅度分量更新之前对其进行“预处理”,从而在实际MRI子采样中去除这些伪影。此外,采用了SFISTA中使用的一种操作来更新幅值和相位图像,以获得更好的解。实验结果表明,该方法能够有效地消除环形伪影,提高图像的震级重建效果。
{"title":"A Modified Phase Cycling Method for Complex-Valued MRI Reconstruction.","authors":"Wei He,&nbsp;Yu Zhang,&nbsp;Junling Ding,&nbsp;Linman Zhao","doi":"10.1155/2020/8846220","DOIUrl":"https://doi.org/10.1155/2020/8846220","url":null,"abstract":"<p><p>The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to \"pre-process\" the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to eliminate the ring artifacts and improve the magnitude reconstruction.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8846220"},"PeriodicalIF":7.6,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8846220","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38680662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ensemble Learning with Multiclassifiers on Pediatric Hand Radiograph Segmentation for Bone Age Assessment. 利用多分类器对小儿手部 X 光片进行集合学习,以评估骨龄。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-10-27 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8866700
Rui Liu, Yuanyuan Jia, Xiangqian He, Zhe Li, Jinhua Cai, Hao Li, Xiao Yang

In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.

在小儿骨龄自动评估(BAA)的临床实践研究中,手部X光片中物体区域的提取是一个重要环节,它直接影响到骨龄自动评估的预测准确性。但目前尚未找到完美的分割方案。本研究旨在开发一种高精度、高效率的手部 X 光片自动分割方法。我们将手部分割任务视为一个分类问题。每张图像的最佳分割阈值被视为预测目标。我们利用每张图像的归一化直方图、平均值和方差作为输入特征,基于多个分类器的集合学习来训练分类模型。数据集包括 600 张骨龄在 1 至 18 岁之间的左侧 X 光片。与传统的分割方法和最先进的 U-Net 网络相比,所提出的方法精度更高、计算量更小,平均 PSNR 为 52.43 dB,SSIM 为 0.97,DSC 为 0.97,JSI 为 0.91,更适合临床应用。此外,实验结果还验证了手部 X 光片分割可使 BAA 性能平均提高至少 13%。
{"title":"Ensemble Learning with Multiclassifiers on Pediatric Hand Radiograph Segmentation for Bone Age Assessment.","authors":"Rui Liu, Yuanyuan Jia, Xiangqian He, Zhe Li, Jinhua Cai, Hao Li, Xiao Yang","doi":"10.1155/2020/8866700","DOIUrl":"10.1155/2020/8866700","url":null,"abstract":"<p><p>In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could bring an average improvement for BAA performance of at least 13%.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8866700"},"PeriodicalIF":7.6,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38593312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases. 基于人工智能的胸部 X 光图像分类,将其分为 COVID-19 和其他传染病。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-10-06 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8889023
Arun Sharma, Sheeba Rani, Dinesh Gupta

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has led to global health and healthcare crisis, apart from the tremendous socioeconomic effects. One of the significant challenges in this crisis is to identify and monitor the COVID-19 patients quickly and efficiently to facilitate timely decisions for their treatment, monitoring, and management. Research efforts are on to develop less time-consuming methods to replace or to supplement RT-PCR-based methods. The present study is aimed at creating efficient deep learning models, trained with chest X-ray images, for rapid screening of COVID-19 patients. We used publicly available PA chest X-ray images of adult COVID-19 patients for the development of Artificial Intelligence (AI)-based classification models for COVID-19 and other major infectious diseases. To increase the dataset size and develop generalized models, we performed 25 different types of augmentations on the original images. Furthermore, we utilized the transfer learning approach for the training and testing of the classification models. The combination of two best-performing models (each trained on 286 images, rotated through 120° or 140° angle) displayed the highest prediction accuracy for normal, COVID-19, non-COVID-19, pneumonia, and tuberculosis images. AI-based classification models trained through the transfer learning approach can efficiently classify the chest X-ray images representing studied diseases. Our method is more efficient than previously published methods. It is one step ahead towards the implementation of AI-based methods for classification problems in biomedical imaging related to COVID-19.

冠状病毒病 2019(COVID-19)的持续大流行除了造成巨大的社会经济影响外,还引发了全球健康和医疗保健危机。这场危机的重大挑战之一是如何快速有效地识别和监测 COVID-19 患者,以便及时做出治疗、监测和管理决策。研究人员正在努力开发耗时较少的方法,以取代或补充基于 RT-PCR 的方法。本研究旨在利用胸部 X 光图像创建高效的深度学习模型,用于快速筛查 COVID-19 患者。我们使用公开的成人 COVID-19 患者的 PA 胸部 X 光图像来开发基于人工智能 (AI) 的 COVID-19 和其他主要传染病分类模型。为了扩大数据集规模并开发通用模型,我们对原始图像进行了 25 种不同类型的增强。此外,我们还利用迁移学习方法来训练和测试分类模型。两个表现最好的模型(每个模型都在旋转 120° 或 140° 角的 286 幅图像上进行了训练)的组合对正常图像、COVID-19 图像、非 COVID-19 图像、肺炎图像和肺结核图像的预测准确率最高。通过迁移学习方法训练的人工智能分类模型能有效地对代表所研究疾病的胸部 X 光图像进行分类。我们的方法比以前公布的方法更有效。这为基于人工智能的方法解决与 COVID-19 相关的生物医学成像分类问题迈出了一步。
{"title":"Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases.","authors":"Arun Sharma, Sheeba Rani, Dinesh Gupta","doi":"10.1155/2020/8889023","DOIUrl":"10.1155/2020/8889023","url":null,"abstract":"<p><p>The ongoing pandemic of coronavirus disease 2019 (COVID-19) has led to global health and healthcare crisis, apart from the tremendous socioeconomic effects. One of the significant challenges in this crisis is to identify and monitor the COVID-19 patients quickly and efficiently to facilitate timely decisions for their treatment, monitoring, and management. Research efforts are on to develop less time-consuming methods to replace or to supplement RT-PCR-based methods. The present study is aimed at creating efficient deep learning models, trained with chest X-ray images, for rapid screening of COVID-19 patients. We used publicly available PA chest X-ray images of adult COVID-19 patients for the development of Artificial Intelligence (AI)-based classification models for COVID-19 and other major infectious diseases. To increase the dataset size and develop generalized models, we performed 25 different types of augmentations on the original images. Furthermore, we utilized the transfer learning approach for the training and testing of the classification models. The combination of two best-performing models (each trained on 286 images, rotated through 120° or 140° angle) displayed the highest prediction accuracy for normal, COVID-19, non-COVID-19, pneumonia, and tuberculosis images. AI-based classification models trained through the transfer learning approach can efficiently classify the chest X-ray images representing studied diseases. Our method is more efficient than previously published methods. It is one step ahead towards the implementation of AI-based methods for classification problems in biomedical imaging related to COVID-19.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8889023"},"PeriodicalIF":7.6,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38498557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer Learning to Detect COVID-19 Automatically from X-Ray Images Using Convolutional Neural Networks 使用卷积神经网络从x射线图像中自动检测COVID-19的迁移学习
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-08-31 DOI: 10.1101/2020.08.25.20182170
Mundher Mohammed Taresh, N. Zhu, T. Ali, Asaad Shakir Hameed, Modhi Lafta Mutar
Novel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID- 19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images. Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was derived from several open sources of X-Rays, and the data available online. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PYCM was used to support the statistical parameters. The study revealed the superiority of Model vgg16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep Learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.
新型冠状病毒肺炎(新冠肺炎)是一种传染性疾病,已导致全球数千人死亡,数百万人感染。因此,所有能够高精度快速检测COVID-19感染的技术设备都可以为医疗保健专业人员提供帮助。本研究旨在探索人工智能(AI)在基于胸部X射线成像的新冠肺炎快速可靠检测中的有效性。在这项研究中,应用可靠的预先训练的深度学习算法,实现了从数字胸部X射线图像中自动检测COVID-19诱导的肺炎。此外,该研究旨在评估近年来为医学图像分类提出的先进神经结构的性能。实验中使用的数据集涉及274例新冠肺炎病例、380例病毒性肺炎病例和380例健康病例,这些数据来源于几个开放的X射线来源和在线数据。混淆矩阵为测试后分类模型提供了基础。此外,还使用了一个开源的PYCM库来支持统计参数。该研究揭示了vgg16模型与用于进行这项研究的其他模型相比的优势,在这些模型中,该模型在总分和基于班级的分数方面表现最好。根据研究结果,X射线成像的深度学习可用于收集与新冠肺炎感染相关的关键生物标志物。该技术有助于医生对新冠肺炎感染进行诊断。同时,这种计算机辅助诊断工具的高精度可以显著提高新冠肺炎诊断的速度和准确性。
{"title":"Transfer Learning to Detect COVID-19 Automatically from X-Ray Images Using Convolutional Neural Networks","authors":"Mundher Mohammed Taresh, N. Zhu, T. Ali, Asaad Shakir Hameed, Modhi Lafta Mutar","doi":"10.1101/2020.08.25.20182170","DOIUrl":"https://doi.org/10.1101/2020.08.25.20182170","url":null,"abstract":"Novel coronavirus pneumonia (COVID-19) is a contagious disease that has already caused thousands of deaths and infected millions of people worldwide. Thus, all technological gadgets that allow the fast detection of COVID- 19 infection with high accuracy can offer help to healthcare professionals. This study is purposed to explore the effectiveness of artificial intelligence (AI) in the rapid and reliable detection of COVID-19 based on chest X-ray imaging. In this study, reliable pre-trained deep learning algorithms were applied to achieve the automatic detection of COVID-19-induced pneumonia from digital chest X-ray images. Moreover, the study aims to evaluate the performance of advanced neural architectures proposed for the classification of medical images over recent years. The data set used in the experiments involves 274 COVID-19 cases, 380 viral pneumonia, and 380 healthy cases, which was derived from several open sources of X-Rays, and the data available online. The confusion matrix provided a basis for testing the post-classification model. Furthermore, an open-source library PYCM was used to support the statistical parameters. The study revealed the superiority of Model vgg16 over other models applied to conduct this research where the model performed best in terms of overall scores and based-class scores. According to the research results, deep Learning with X-ray imaging is useful in the collection of critical biological markers associated with COVID-19 infection. The technique is conducive for the physicians to make a diagnosis of COVID-19 infection. Meanwhile, the high accuracy of this computer-aided diagnostic tool can significantly improve the speed and accuracy of COVID-19 diagnosis.","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2021 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43397552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 72
An Algorithm of l 1-Norm and l 0-Norm Regularization Algorithm for CT Image Reconstruction from Limited Projection. 有限投影CT图像重构的1- 1范数和1- 0范数正则化算法。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-08-28 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8873865
Xiezhang Li, Guocan Feng, Jiehua Zhu

The l 1-norm regularization has attracted attention for image reconstruction in computed tomography. The l 0-norm of the gradients of an image provides a measure of the sparsity of gradients of the image. In this paper, we present a new combined l 1-norm and l 0-norm regularization model for image reconstruction from limited projection data in computed tomography. We also propose an algorithm in the algebraic framework to solve the optimization effectively using the nonmonotone alternating direction algorithm with hard thresholding method. Numerical experiments indicate that this new algorithm makes much improvement by involving l 0-norm regularization.

1.1范数正则化在计算机断层扫描图像重建中受到了广泛的关注。图像梯度的0范数提供了图像梯度稀疏度的度量。本文提出了一种新的l - 1范数和l - 0范数组合正则化模型,用于计算机断层扫描中有限投影数据的图像重建。在代数框架下,提出了一种采用硬阈值法的非单调交替方向算法来有效解决优化问题的算法。数值实验表明,通过引入0范数正则化,该算法有了很大的改进。
{"title":"An Algorithm of <i>l</i> <sub>1</sub>-Norm and <i>l</i> <sub>0</sub>-Norm Regularization Algorithm for CT Image Reconstruction from Limited Projection.","authors":"Xiezhang Li,&nbsp;Guocan Feng,&nbsp;Jiehua Zhu","doi":"10.1155/2020/8873865","DOIUrl":"https://doi.org/10.1155/2020/8873865","url":null,"abstract":"<p><p>The <i>l</i> <sub>1</sub>-norm regularization has attracted attention for image reconstruction in computed tomography. The <i>l</i> <sub>0</sub>-norm of the gradients of an image provides a measure of the sparsity of gradients of the image. In this paper, we present a new combined <i>l</i> <sub>1</sub>-norm and <i>l</i> <sub>0</sub>-norm regularization model for image reconstruction from limited projection data in computed tomography. We also propose an algorithm in the algebraic framework to solve the optimization effectively using the nonmonotone alternating direction algorithm with hard thresholding method. Numerical experiments indicate that this new algorithm makes much improvement by involving <i>l</i> <sub>0</sub>-norm regularization.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8873865"},"PeriodicalIF":7.6,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8873865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38361996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
COVID-19 Deep Learning Prediction Model Using Publicly Available Radiologist-Adjudicated Chest X-Ray Images as Training Data: Preliminary Findings. 使用公开可用的放射科医生评审的胸部x射线图像作为训练数据的COVID-19深度学习预测模型:初步发现。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-08-18 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8828855
Mohd Zulfaezal Che Azemin, Radhiana Hassan, Mohd Izzuddin Mohd Tamrin, Mohd Adli Md Ali

The key component in deep learning research is the availability of training data sets. With a limited number of publicly available COVID-19 chest X-ray images, the generalization and robustness of deep learning models to detect COVID-19 cases developed based on these images are questionable. We aimed to use thousands of readily available chest radiograph images with clinical findings associated with COVID-19 as a training data set, mutually exclusive from the images with confirmed COVID-19 cases, which will be used as the testing data set. We used a deep learning model based on the ResNet-101 convolutional neural network architecture, which was pretrained to recognize objects from a million of images and then retrained to detect abnormality in chest X-ray images. The performance of the model in terms of area under the receiver operating curve, sensitivity, specificity, and accuracy was 0.82, 77.3%, 71.8%, and 71.9%, respectively. The strength of this study lies in the use of labels that have a strong clinical association with COVID-19 cases and the use of mutually exclusive publicly available data for training, validation, and testing.

深度学习研究的关键部分是训练数据集的可用性。由于公开可用的COVID-19胸部x线图像数量有限,基于这些图像开发的深度学习模型检测COVID-19病例的泛化和鲁棒性值得怀疑。我们的目标是使用数千张现成的具有与COVID-19相关临床表现的胸片图像作为训练数据集,与已确诊的COVID-19病例的图像相互排斥,这些图像将用作测试数据集。我们使用了一个基于ResNet-101卷积神经网络架构的深度学习模型,该模型经过预训练,可以从一百万张图像中识别物体,然后再进行重新训练,以检测胸部x射线图像中的异常。该模型在受试者工作曲线下面积、灵敏度、特异度和准确度方面的表现分别为0.82、77.3%、71.8%和71.9%。本研究的优势在于使用与COVID-19病例具有强烈临床相关性的标签,并使用相互排斥的公开数据进行培训、验证和测试。
{"title":"COVID-19 Deep Learning Prediction Model Using Publicly Available Radiologist-Adjudicated Chest X-Ray Images as Training Data: Preliminary Findings.","authors":"Mohd Zulfaezal Che Azemin,&nbsp;Radhiana Hassan,&nbsp;Mohd Izzuddin Mohd Tamrin,&nbsp;Mohd Adli Md Ali","doi":"10.1155/2020/8828855","DOIUrl":"https://doi.org/10.1155/2020/8828855","url":null,"abstract":"<p><p>The key component in deep learning research is the availability of training data sets. With a limited number of publicly available COVID-19 chest X-ray images, the generalization and robustness of deep learning models to detect COVID-19 cases developed based on these images are questionable. We aimed to use thousands of readily available chest radiograph images with clinical findings associated with COVID-19 as a training data set, mutually exclusive from the images with confirmed COVID-19 cases, which will be used as the testing data set. We used a deep learning model based on the ResNet-101 convolutional neural network architecture, which was pretrained to recognize objects from a million of images and then retrained to detect abnormality in chest X-ray images. The performance of the model in terms of area under the receiver operating curve, sensitivity, specificity, and accuracy was 0.82, 77.3%, 71.8%, and 71.9%, respectively. The strength of this study lies in the use of labels that have a strong clinical association with COVID-19 cases and the use of mutually exclusive publicly available data for training, validation, and testing.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8828855"},"PeriodicalIF":7.6,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8828855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38313824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 96
Comparison of Low-Pass Filters for SPECT Imaging. SPECT成像低通滤波器的比较。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-04-01 eCollection Date: 2020-01-01 DOI: 10.1155/2020/9239753
Inayatullah S Sayed, Siti S Ismail

In single photon emission computed tomography (SPECT) imaging, the choice of a suitable filter and its parameters for noise reduction purposes is a big challenge. Adverse effects on image quality arise if an improper filter is selected. Filtered back projection (FBP) is the most popular technique for image reconstruction in SPECT. With this technique, different types of reconstruction filters are used, such as the Butterworth and the Hamming. In this study, the effects on the quality of reconstructed images of the Butterworth filter were compared with the ones of the Hamming filter. A Philips ADAC forte gamma camera was used. A low-energy, high-resolution collimator was installed on the gamma camera. SPECT data were acquired by scanning a phantom with an insert composed of hot and cold regions. A Technetium-99m radioactive solution was homogenously mixed into the phantom. Furthermore, a symmetrical energy window (20%) centered at 140 keV was adjusted. Images were reconstructed by the FBP method. Various cutoff frequency values, namely, 0.35, 0.40, 0.45, and 0.50 cycles/cm, were selected for both filters, whereas for the Butterworth filter, the order was set at 7. Images of hot and cold regions were analyzed in terms of detectability, contrast, and signal-to-noise ratio (SNR). The findings of our study indicate that the Butterworth filter was able to expose more hot and cold regions in reconstructed images. In addition, higher contrast values were recorded, as compared to the Hamming filter. However, with the Butterworth filter, the decrease in SNR for both types of regions with the increase in cutoff frequency as compared to the Hamming filter was obtained. Overall, the Butterworth filter under investigation provided superior results than the Hamming filter. Effects of both filters on the quality of hot and cold region images varied with the change in cutoff frequency.

在单光子发射计算机断层扫描(SPECT)成像中,选择合适的滤波器及其参数以达到降噪目的是一个很大的挑战。如果选择不合适的滤镜,会对图像质量产生不利影响。滤波反投影(FBP)是SPECT中最常用的图像重建技术。利用这种技术,使用不同类型的重建滤波器,如巴特沃斯和汉明。本研究比较了巴特沃斯滤波器与汉明滤波器对重建图像质量的影响。使用飞利浦ADAC强光伽马相机。在伽马照相机上安装了一个低能量、高分辨率的准直器。SPECT数据是通过扫描一个由冷热区组成的插入体来获得的。将锝-99m放射性溶液均匀地混合到幻影中。此外,调节了以140 keV为中心的对称能量窗(20%)。采用FBP方法重建图像。不同的截止频率值,即0.35,0.40,0.45和0.50周期/厘米,被选择为两个滤波器,而巴特沃斯滤波器,顺序设置为7。根据可检测性、对比度和信噪比(SNR)对冷热地区的图像进行分析。我们的研究结果表明,巴特沃斯滤波器能够在重建图像中暴露更多的冷热区域。此外,与汉明滤波器相比,记录了更高的对比度值。然而,与汉明滤波器相比,使用巴特沃斯滤波器,两种类型的区域的信噪比都随着截止频率的增加而降低。总的来说,所研究的巴特沃斯滤波器比汉明滤波器提供了更好的结果。两种滤波器对冷热区图像质量的影响随截止频率的变化而变化。
{"title":"Comparison of Low-Pass Filters for SPECT Imaging.","authors":"Inayatullah S Sayed,&nbsp;Siti S Ismail","doi":"10.1155/2020/9239753","DOIUrl":"https://doi.org/10.1155/2020/9239753","url":null,"abstract":"<p><p>In single photon emission computed tomography (SPECT) imaging, the choice of a suitable filter and its parameters for noise reduction purposes is a big challenge. Adverse effects on image quality arise if an improper filter is selected. Filtered back projection (FBP) is the most popular technique for image reconstruction in SPECT. With this technique, different types of reconstruction filters are used, such as the Butterworth and the Hamming. In this study, the effects on the quality of reconstructed images of the Butterworth filter were compared with the ones of the Hamming filter. A Philips ADAC forte gamma camera was used. A low-energy, high-resolution collimator was installed on the gamma camera. SPECT data were acquired by scanning a phantom with an insert composed of hot and cold regions. A Technetium-99m radioactive solution was homogenously mixed into the phantom. Furthermore, a symmetrical energy window (20%) centered at 140 keV was adjusted. Images were reconstructed by the FBP method. Various cutoff frequency values, namely, 0.35, 0.40, 0.45, and 0.50 cycles/cm, were selected for both filters, whereas for the Butterworth filter, the order was set at 7. Images of hot and cold regions were analyzed in terms of detectability, contrast, and signal-to-noise ratio (SNR). The findings of our study indicate that the Butterworth filter was able to expose more hot and cold regions in reconstructed images. In addition, higher contrast values were recorded, as compared to the Hamming filter. However, with the Butterworth filter, the decrease in SNR for both types of regions with the increase in cutoff frequency as compared to the Hamming filter was obtained. Overall, the Butterworth filter under investigation provided superior results than the Hamming filter. Effects of both filters on the quality of hot and cold region images varied with the change in cutoff frequency.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"9239753"},"PeriodicalIF":7.6,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9239753","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37849424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Fully Automated Bone Age Assessment on Large-Scale Hand X-Ray Dataset. 基于大规模手部x射线数据集的全自动骨龄评估。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-03-03 eCollection Date: 2020-01-01 DOI: 10.1155/2020/8460493
Xiaoying Pan, Yizhe Zhao, Hao Chen, De Wei, Chen Zhao, Zhi Wei

Bone age assessment (BAA) is an essential topic in the clinical practice of evaluating the biological maturity of children. Because the manual method is time-consuming and prone to observer variability, it is attractive to develop computer-aided and automated methods for BAA. In this paper, we present a fully automatic BAA method. To eliminate noise in a raw X-ray image, we start with using U-Net to precisely segment hand mask image from a raw X-ray image. Even though U-Net can perform the segmentation with high precision, it needs a bigger annotated dataset. To alleviate the annotation burden, we propose to use deep active learning (AL) to select unlabeled data samples with sufficient information intentionally. These samples are given to Oracle for annotation. After that, they are then used for subsequential training. In the beginning, only 300 data are manually annotated and then the improved U-Net within the AL framework can robustly segment all the 12611 images in RSNA dataset. The AL segmentation model achieved a Dice score at 0.95 in the annotated testing set. To optimize the learning process, we employ six off-the-shell deep Convolutional Neural Networks (CNNs) with pretrained weights on ImageNet. We use them to extract features of preprocessed hand images with a transfer learning technique. In the end, a variety of ensemble regression algorithms are applied to perform BAA. Besides, we choose a specific CNN to extract features and explain why we select that CNN. Experimental results show that the proposed approach achieved discrepancy between manual and predicted bone age of about 6.96 and 7.35 months for male and female cohorts, respectively, on the RSNA dataset. These accuracies are comparable to state-of-the-art performance.

骨龄评估(BAA)是评估儿童生物学成熟度的重要课题。由于手工方法耗时长,且易受观测者变化的影响,因此开发BAA的计算机辅助和自动化方法是很有吸引力的。本文提出了一种全自动BAA方法。为了消除原始x射线图像中的噪声,我们首先使用U-Net从原始x射线图像中精确分割手掩膜图像。尽管U-Net可以实现高精度的分割,但它需要更大的标注数据集。为了减轻标注负担,我们建议使用深度主动学习(deep active learning, AL)来有意地选择具有足够信息的未标记数据样本。这些示例提供给Oracle进行注释。之后,它们被用于后续的训练。最初,只有300张数据需要手工标注,然后在人工智能框架下改进的U-Net可以鲁棒分割RSNA数据集中的所有12611张图像。人工智能分割模型在标注测试集中的Dice得分为0.95。为了优化学习过程,我们在ImageNet上使用了六个具有预训练权值的现成深度卷积神经网络(cnn)。我们使用迁移学习技术提取预处理手图像的特征。最后,应用了多种集成回归算法来执行BAA。此外,我们选择一个特定的CNN来提取特征,并解释为什么我们选择该CNN。实验结果表明,该方法在RSNA数据集上实现了男性和女性队列的人工骨龄和预测骨龄分别约为6.96个月和7.35个月的差异。这些精度可与最先进的性能相媲美。
{"title":"Fully Automated Bone Age Assessment on Large-Scale Hand X-Ray Dataset.","authors":"Xiaoying Pan,&nbsp;Yizhe Zhao,&nbsp;Hao Chen,&nbsp;De Wei,&nbsp;Chen Zhao,&nbsp;Zhi Wei","doi":"10.1155/2020/8460493","DOIUrl":"https://doi.org/10.1155/2020/8460493","url":null,"abstract":"<p><p>Bone age assessment (BAA) is an essential topic in the clinical practice of evaluating the biological maturity of children. Because the manual method is time-consuming and prone to observer variability, it is attractive to develop computer-aided and automated methods for BAA. In this paper, we present a fully automatic BAA method. To eliminate noise in a raw X-ray image, we start with using U-Net to precisely segment hand mask image from a raw X-ray image. Even though U-Net can perform the segmentation with high precision, it needs a bigger annotated dataset. To alleviate the annotation burden, we propose to use deep active learning (AL) to select unlabeled data samples with sufficient information intentionally. These samples are given to Oracle for annotation. After that, they are then used for subsequential training. In the beginning, only 300 data are manually annotated and then the improved U-Net within the AL framework can robustly segment all the 12611 images in RSNA dataset. The AL segmentation model achieved a Dice score at 0.95 in the annotated testing set. To optimize the learning process, we employ six off-the-shell deep Convolutional Neural Networks (CNNs) with pretrained weights on ImageNet. We use them to extract features of preprocessed hand images with a transfer learning technique. In the end, a variety of ensemble regression algorithms are applied to perform BAA. Besides, we choose a specific CNN to extract features and explain why we select that CNN. Experimental results show that the proposed approach achieved discrepancy between manual and predicted bone age of about 6.96 and 7.35 months for male and female cohorts, respectively, on the RSNA dataset. These accuracies are comparable to state-of-the-art performance.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"8460493"},"PeriodicalIF":7.6,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8460493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37752031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Microvascular Ultrasonic Imaging of Angiogenesis Identifies Tumors in a Murine Spontaneous Breast Cancer Model. 血管生成的微血管超声成像识别小鼠自发性乳腺癌模型中的肿瘤。
IF 7.6 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2020-02-06 eCollection Date: 2020-01-01 DOI: 10.1155/2020/7862089
Sarah E Shelton, Jodi Stone, Fei Gao, Donglin Zeng, Paul A Dayton

The purpose of this study is to determine if microvascular tortuosity can be used as an imaging biomarker for the presence of tumor-associated angiogenesis and if imaging this biomarker can be used as a specific and sensitive method of locating solid tumors. Acoustic angiography, an ultrasound-based microvascular imaging technology, was used to visualize angiogenesis development of a spontaneous mouse model of breast cancer (n = 48). A reader study was used to assess visual discrimination between image types, and quantitative methods utilized metrics of tortuosity and spatial clustering for tumor detection. The reader study resulted in an area under the curve of 0.8, while the clustering approach resulted in the best classification with an area under the curve of 0.95. Both the qualitative and quantitative methods produced a correlation between sensitivity and tumor diameter. Imaging of vascular geometry with acoustic angiography provides a robust method for discriminating between tumor and healthy tissue in a mouse model of breast cancer. Multiple methods of analysis have been presented for a wide range of tumor sizes. Application of these techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues. The clustering approach may be beneficial for other types of morphological analysis beyond vascular ultrasound images.

本研究的目的是确定微血管扭曲是否可以作为肿瘤相关血管生成的成像生物标志物,以及这种生物标志物的成像是否可以作为定位实体肿瘤的一种特异性和敏感性方法。声学血管造影是一种基于超声的微血管成像技术,用于观察自发性乳腺癌小鼠模型(n = 48)的血管生成发育。一项读者研究用于评估图像类型之间的视觉区分,定量方法利用扭曲度和空间聚类指标进行肿瘤检测。读者研究的曲线下面积为0.8,聚类方法的最佳分类曲线下面积为0.95。定性和定量方法均得出敏感性与肿瘤直径的相关性。超声血管造影血管几何成像提供了一个强大的方法来区分肿瘤和健康组织的小鼠乳腺癌模型。多种分析方法已经提出了广泛的肿瘤大小范围。将这些技术应用于临床影像学,可以提高乳腺癌的诊断,也可以提高其他组织中癌症评估的特异性。聚类方法可能有利于血管超声图像以外的其他类型的形态学分析。
{"title":"Microvascular Ultrasonic Imaging of Angiogenesis Identifies Tumors in a Murine Spontaneous Breast Cancer Model.","authors":"Sarah E Shelton,&nbsp;Jodi Stone,&nbsp;Fei Gao,&nbsp;Donglin Zeng,&nbsp;Paul A Dayton","doi":"10.1155/2020/7862089","DOIUrl":"https://doi.org/10.1155/2020/7862089","url":null,"abstract":"<p><p>The purpose of this study is to determine if microvascular tortuosity can be used as an imaging biomarker for the presence of tumor-associated angiogenesis and if imaging this biomarker can be used as a specific and sensitive method of locating solid tumors. Acoustic angiography, an ultrasound-based microvascular imaging technology, was used to visualize angiogenesis development of a spontaneous mouse model of breast cancer (<i>n</i> = 48). A reader study was used to assess visual discrimination between image types, and quantitative methods utilized metrics of tortuosity and spatial clustering for tumor detection. The reader study resulted in an area under the curve of 0.8, while the clustering approach resulted in the best classification with an area under the curve of 0.95. Both the qualitative and quantitative methods produced a correlation between sensitivity and tumor diameter. Imaging of vascular geometry with acoustic angiography provides a robust method for discriminating between tumor and healthy tissue in a mouse model of breast cancer. Multiple methods of analysis have been presented for a wide range of tumor sizes. Application of these techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues. The clustering approach may be beneficial for other types of morphological analysis beyond vascular ultrasound images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"7862089"},"PeriodicalIF":7.6,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/7862089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37670230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
International Journal of Biomedical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1