Pub Date : 2018-09-02eCollection Date: 2018-01-01DOI: 10.1155/2018/9262847
Naoki Kawamura, Tatsuya Yokota, Hidekata Hontani
Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is to restore high-frequency components in frequency domain rather than upsampling in signal domain. In that sense, there is a close relationship between super-resolution of an image and extrapolation of the spectrum. In this study, we propose a novel framework for super-resolution, where the high-frequency components are theoretically restored with respect to the frequency fidelities. This framework helps to introduce multiple simultaneous regularizers in both signal and frequency domains. Furthermore, we propose a new super-resolution model where frequency fidelity, low-rank (LR) prior, low total variation (TV) prior, and boundary prior are considered at once. The proposed method is formulated as a convex optimization problem which can be solved by the alternating direction method of multipliers. The proposed method is the generalized form of the multiple super-resolution methods such as TV super-resolution, LR and TV super-resolution, and the Gerchberg method. Experimental results show the utility of the proposed method comparing with some existing methods using both simulational and practical images.
{"title":"Super-Resolution of Magnetic Resonance Images via Convex Optimization with Local and Global Prior Regularization and Spectrum Fitting.","authors":"Naoki Kawamura, Tatsuya Yokota, Hidekata Hontani","doi":"10.1155/2018/9262847","DOIUrl":"https://doi.org/10.1155/2018/9262847","url":null,"abstract":"<p><p>Given a low-resolution image, there are many challenges to obtain a super-resolved, high-resolution image. Many of those approaches try to simultaneously upsample and deblur an image in signal domain. However, the nature of the super-resolution is to restore high-frequency components in frequency domain rather than upsampling in signal domain. In that sense, there is a close relationship between super-resolution of an image and extrapolation of the spectrum. In this study, we propose a novel framework for super-resolution, where the high-frequency components are theoretically restored with respect to the frequency fidelities. This framework helps to introduce multiple simultaneous regularizers in both signal and frequency domains. Furthermore, we propose a new super-resolution model where frequency fidelity, low-rank (LR) prior, low total variation (TV) prior, and boundary prior are considered at once. The proposed method is formulated as a convex optimization problem which can be solved by the alternating direction method of multipliers. The proposed method is the generalized form of the multiple super-resolution methods such as TV super-resolution, LR and TV super-resolution, and the Gerchberg method. Experimental results show the utility of the proposed method comparing with some existing methods using both simulational and practical images.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"9262847"},"PeriodicalIF":7.6,"publicationDate":"2018-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9262847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36518770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-09eCollection Date: 2018-01-01DOI: 10.1155/2018/5932653
Thomas Weidinger, Thorsten M Buzug, Thomas G Flohr, Steffen Kappler, Karl Stierstorfer
[This corrects the article DOI: 10.1155/2016/5871604.].
[这更正了文章DOI: 10.1155/2016/5871604]。
{"title":"Corrigendum to \"Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography\".","authors":"Thomas Weidinger, Thorsten M Buzug, Thomas G Flohr, Steffen Kappler, Karl Stierstorfer","doi":"10.1155/2018/5932653","DOIUrl":"https://doi.org/10.1155/2018/5932653","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2016/5871604.].</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"5932653"},"PeriodicalIF":7.6,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5932653","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36455689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-07-02eCollection Date: 2018-01-01DOI: 10.1155/2018/2572431
Xu Zhang, Xilin Liu, Yang Chen, Huazhong Shu
A new blind integrity verification method for medical image is proposed in this paper. It is based on a new kind of image features, known as Krawtchouk moments, which we use to distinguish the original images from the modified ones. Basically, with our scheme, image integrity verification is accomplished by classifying images into the original and modified categories. Experiments conducted on medical images issued from different modalities verified the validity of the proposed method and demonstrated that it can be used to detect and discriminate image modifications of different types with high accuracy. We also compared the performance of our scheme with a state-of-the-art solution suggested for medical images-solution that is based on histogram statistical properties of reorganized block-based Tchebichef moments. Conducted tests proved the better behavior of our image feature set.
{"title":"Medical Image Blind Integrity Verification with Krawtchouk Moments.","authors":"Xu Zhang, Xilin Liu, Yang Chen, Huazhong Shu","doi":"10.1155/2018/2572431","DOIUrl":"https://doi.org/10.1155/2018/2572431","url":null,"abstract":"<p><p>A new blind integrity verification method for medical image is proposed in this paper. It is based on a new kind of image features, known as Krawtchouk moments, which we use to distinguish the original images from the modified ones. Basically, with our scheme, image integrity verification is accomplished by classifying images into the original and modified categories. Experiments conducted on medical images issued from different modalities verified the validity of the proposed method and demonstrated that it can be used to detect and discriminate image modifications of different types with high accuracy. We also compared the performance of our scheme with a state-of-the-art solution suggested for medical images-solution that is based on histogram statistical properties of reorganized block-based Tchebichef moments. Conducted tests proved the better behavior of our image feature set.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"2572431"},"PeriodicalIF":7.6,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2572431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36351567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-03eCollection Date: 2018-01-01DOI: 10.1155/2018/5237693
Meng-Yin Ho, Wei-Lung Tseng, Furen Xiao
Decompressive craniectomy (DC) is a neurosurgical procedure performed to relieve the intracranial pressure engendered by brain swelling. However, no easy and accurate method exists for determining the craniectomy surface area. In this study, we implemented and compared three methods of estimating the craniectomy surface area for evaluating the decompressive effort. We collected 118 sets of preoperative and postoperative brain computed tomography images from patients who underwent craniectomy procedures between April 2009 and April 2011. The surface area associated with each craniectomy was estimated using the marching cube and quasi-Monte Carlo methods. The surface area was also estimated using a simple AC method, in which the area is calculated by multiplying the craniectomy length (A) by its height (C). The estimated surface area ranged from 9.46 to 205.32 cm2, with a median of 134.80 cm2. The root-mean-square deviation (RMSD) between the marching cube and quasi-Monte Carlo methods was 7.53 cm2. Furthermore, the RMSD was 14.45 cm2 between the marching cube and AC methods and 12.70 cm2 between the quasi-Monte Carlo and AC methods. Paired t-tests indicated no statistically significant difference between these methods. The marching cube and quasi-Monte Carlo methods yield similar results. The results calculated using the AC method are also clinically acceptable for estimating the DC surface area. Our results can facilitate additional studies on the association of decompressive effort with the effect of craniectomy.
{"title":"Estimation of the Craniectomy Surface Area by Using Postoperative Images.","authors":"Meng-Yin Ho, Wei-Lung Tseng, Furen Xiao","doi":"10.1155/2018/5237693","DOIUrl":"https://doi.org/10.1155/2018/5237693","url":null,"abstract":"<p><p>Decompressive craniectomy (DC) is a neurosurgical procedure performed to relieve the intracranial pressure engendered by brain swelling. However, no easy and accurate method exists for determining the craniectomy surface area. In this study, we implemented and compared three methods of estimating the craniectomy surface area for evaluating the decompressive effort. We collected 118 sets of preoperative and postoperative brain computed tomography images from patients who underwent craniectomy procedures between April 2009 and April 2011. The surface area associated with each craniectomy was estimated using the marching cube and quasi-Monte Carlo methods. The surface area was also estimated using a simple AC method, in which the area is calculated by multiplying the craniectomy length (<i>A</i>) by its height (<i>C</i>). The estimated surface area ranged from 9.46 to 205.32 cm<sup>2</sup>, with a median of 134.80 cm<sup>2</sup>. The root-mean-square deviation (RMSD) between the marching cube and quasi-Monte Carlo methods was 7.53 cm<sup>2</sup>. Furthermore, the RMSD was 14.45 cm<sup>2</sup> between the marching cube and AC methods and 12.70 cm<sup>2</sup> between the quasi-Monte Carlo and AC methods. Paired <i>t</i>-tests indicated no statistically significant difference between these methods. The marching cube and quasi-Monte Carlo methods yield similar results. The results calculated using the AC method are also clinically acceptable for estimating the DC surface area. Our results can facilitate additional studies on the association of decompressive effort with the effect of craniectomy.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"5237693"},"PeriodicalIF":7.6,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5237693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36282726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-03eCollection Date: 2018-01-01DOI: 10.1155/2018/2046269
Maximilian Malek, Christoph W Sensen
Objective: We have created an open-source application and framework for rapid GPU-accelerated prototyping, targeting image analysis, including volumetric images such as CT or MRI data.
Methods: A visual graph editor enables the design of processing pipelines without programming. Run-time compiled compute shaders enable prototyping of complex operations in a matter of minutes.
Results: GPU-acceleration increases processing the speed by at least an order of magnitude when compared to traditional multithreaded CPU-based implementations, while offering the flexibility of scripted implementations.
Conclusion: Our framework enables real-time, intuition-guided accelerated algorithm and method development, supported by built-in scriptable visualization.
Significance: This is, to our knowledge, the first tool for medical data analysis that provides both high performance and rapid prototyping. As such, it has the potential to act as a force multiplier for further research, enabling handling of high-resolution datasets while providing quasi-instant feedback and visualization of results.
{"title":"Instant Feedback Rapid Prototyping for GPU-Accelerated Computation, Manipulation, and Visualization of Multidimensional Data.","authors":"Maximilian Malek, Christoph W Sensen","doi":"10.1155/2018/2046269","DOIUrl":"https://doi.org/10.1155/2018/2046269","url":null,"abstract":"<p><strong>Objective: </strong>We have created an open-source application and framework for rapid GPU-accelerated prototyping, targeting image analysis, including volumetric images such as CT or MRI data.</p><p><strong>Methods: </strong>A visual graph editor enables the design of processing pipelines without programming. Run-time compiled compute shaders enable prototyping of complex operations in a matter of minutes.</p><p><strong>Results: </strong>GPU-acceleration increases processing the speed by at least an order of magnitude when compared to traditional multithreaded CPU-based implementations, while offering the flexibility of scripted implementations.</p><p><strong>Conclusion: </strong>Our framework enables real-time, intuition-guided accelerated algorithm and method development, supported by built-in scriptable visualization.</p><p><strong>Significance: </strong>This is, to our knowledge, the first tool for medical data analysis that provides both high performance and rapid prototyping. As such, it has the potential to act as a force multiplier for further research, enabling handling of high-resolution datasets while providing quasi-instant feedback and visualization of results.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"2046269"},"PeriodicalIF":7.6,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2046269","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36282725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-16eCollection Date: 2018-01-01DOI: 10.1155/2018/7314612
Chang Wang, Qiongqiong Ren, Xin Qin, Yi Yu
Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.
{"title":"Adaptive Diffeomorphic Multiresolution Demons and Their Application to Same Modality Medical Image Registration with Large Deformation.","authors":"Chang Wang, Qiongqiong Ren, Xin Qin, Yi Yu","doi":"10.1155/2018/7314612","DOIUrl":"https://doi.org/10.1155/2018/7314612","url":null,"abstract":"<p><p>Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"7314612"},"PeriodicalIF":7.6,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7314612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36210374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic features including first-order features, shape features, and texture features is extracted. By using support vector machines with recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-F1 score of 90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the potential for clinical applications.
{"title":"Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics.","authors":"Wei Chen, Boqiang Liu, Suting Peng, Jiawei Sun, Xu Qiao","doi":"10.1155/2018/2512037","DOIUrl":"https://doi.org/10.1155/2018/2512037","url":null,"abstract":"<p><p>Gliomas are the most common primary brain tumors, and the objective grading is of great importance for treatment. This paper presents an automatic computer-aided diagnosis of gliomas that combines automatic segmentation and radiomics, which can improve the diagnostic ability. The MRI data containing 220 high-grade gliomas and 54 low-grade gliomas are used to evaluate our system. A multiscale 3D convolutional neural network is trained to segment whole tumor regions. A wide range of radiomic features including first-order features, shape features, and texture features is extracted. By using support vector machines with recursive feature elimination for feature selection, a CAD system that has an extreme gradient boosting classifier with a 5-fold cross-validation is constructed for the grading of gliomas. Our CAD system is highly effective for the grading of gliomas with an accuracy of 91.27%, a weighted macroprecision of 91.27%, a weighted macrorecall of 91.27%, and a weighted macro-<i>F</i>1 score of 90.64%. This demonstrates that the proposed CAD system can assist radiologists for high accurate grading of gliomas and has the potential for clinical applications.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"2512037"},"PeriodicalIF":7.6,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2512037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36181830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-02eCollection Date: 2018-01-01DOI: 10.1155/2018/1657073
Sollip Kwon, Seungjun Lee
[This corrects the article DOI: 10.1155/2016/5054912.].
[这更正了文章DOI: 10.1155/2016/5054912.]。
{"title":"Corrigendum to \"Recent Advances in Microwave Imaging for Breast Cancer Detection\".","authors":"Sollip Kwon, Seungjun Lee","doi":"10.1155/2018/1657073","DOIUrl":"https://doi.org/10.1155/2018/1657073","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2016/5054912.].</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"1657073"},"PeriodicalIF":7.6,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1657073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36181829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-12eCollection Date: 2018-01-01DOI: 10.1155/2018/4303161
Chun-Chih Liao, Ya-Fang Chen, Furen Xiao
Midline shift (MLS) of the brain is an important feature that can be measured using various imaging modalities including X-ray, ultrasound, computed tomography, and magnetic resonance imaging. Shift of midline intracranial structures helps diagnosing intracranial lesions, especially traumatic brain injury, stroke, brain tumor, and abscess. Being a sign of increased intracranial pressure, MLS is also an indicator of reduced brain perfusion caused by an intracranial mass or mass effect. We review studies that used the MLS to predict outcomes of patients with intracranial mass. In some studies, the MLS was also correlated to clinical features. Automated MLS measurement algorithms have significant potentials for assisting human experts in evaluating brain images. In symmetry-based algorithms, the deformed midline is detected and its distance from the ideal midline taken as the MLS. In landmark-based ones, MLS was measured following identification of specific anatomical landmarks. To validate these algorithms, measurements using these algorithms were compared to MLS measurements made by human experts. In addition to measuring the MLS on a given imaging study, there were newer applications of MLS that included comparing multiple MLS measurement before and after treatment and developing additional features to indicate mass effect. Suggestions for future research are provided.
{"title":"Brain Midline Shift Measurement and Its Automation: A Review of Techniques and Algorithms.","authors":"Chun-Chih Liao, Ya-Fang Chen, Furen Xiao","doi":"10.1155/2018/4303161","DOIUrl":"10.1155/2018/4303161","url":null,"abstract":"<p><p>Midline shift (MLS) of the brain is an important feature that can be measured using various imaging modalities including X-ray, ultrasound, computed tomography, and magnetic resonance imaging. Shift of midline intracranial structures helps diagnosing intracranial lesions, especially traumatic brain injury, stroke, brain tumor, and abscess. Being a sign of increased intracranial pressure, MLS is also an indicator of reduced brain perfusion caused by an intracranial mass or mass effect. We review studies that used the MLS to predict outcomes of patients with intracranial mass. In some studies, the MLS was also correlated to clinical features. Automated MLS measurement algorithms have significant potentials for assisting human experts in evaluating brain images. In symmetry-based algorithms, the deformed midline is detected and its distance from the ideal midline taken as the MLS. In landmark-based ones, MLS was measured following identification of specific anatomical landmarks. To validate these algorithms, measurements using these algorithms were compared to MLS measurements made by human experts. In addition to measuring the MLS on a given imaging study, there were newer applications of MLS that included comparing multiple MLS measurement before and after treatment and developing additional features to indicate mass effect. Suggestions for future research are provided.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"4303161"},"PeriodicalIF":7.6,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4303161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36177714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-01eCollection Date: 2018-01-01DOI: 10.1155/2018/9780349
Mohammed Q Qutaish, Zhuxian Zhou, David Prabhu, Yiqiao Liu, Mallory R Busso, Donna Izadnegahdar, Madhusudhana Gargesha, Hong Lu, Zheng-Rong Lu, David L Wilson
We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy.
{"title":"Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases.","authors":"Mohammed Q Qutaish, Zhuxian Zhou, David Prabhu, Yiqiao Liu, Mallory R Busso, Donna Izadnegahdar, Madhusudhana Gargesha, Hong Lu, Zheng-Rong Lu, David L Wilson","doi":"10.1155/2018/9780349","DOIUrl":"https://doi.org/10.1155/2018/9780349","url":null,"abstract":"<p><p>We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm<sup>2</sup> had visible signal and that some metastases as small as 0.1 mm<sup>2</sup> were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 <i>μ</i>m error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2018 ","pages":"9780349"},"PeriodicalIF":7.6,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9780349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36134918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}