首页 > 最新文献

Materialia最新文献

英文 中文
High power factor and mechanical properties of Bi1-xSbx alloys enabled by redensification of crystal slabs 通过晶体片再强化实现 Bi1-xSbx 合金的高功率因数和机械性能
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1016/j.mtla.2024.102209

The low-cost Bi1-xSbx crystal has been considered the best low-temperature material for its high electrical properties, which also can generate high effective thermal conductivity, revealing a high potential in heat dissipation. However, the weak mechanical strength hinders practical applications. Herein, we firstly grew the Bi1-xSbx crystal by the Bridgeman method, then cleaved the crystal into slabs with different sizes for hot-pressing. The obtained materials exhibited a high bending strength of 72 MPa, which is twofold that of Bi1-xSbx [001]-direction. Furthermore, the hot-pressed Bi1-xSbx samples show high electrical conductivities, being similar to those of the single crystals, resulting in the high record power factor of 78 μW·cm-1·K-2 @110 K and 38 μW·cm-1·K-2 @300 K among the hot-pressed poly-crystalline Bi1-xSbx. This high electrical performance is beneficial to the applications of heat dissipation. Therefore, this work proves an effective way to simultaneously improve the mechanical and thermoelectric properties of Bi1-xSbx alloys.

低成本的 Bi1-xSbx 晶体因其高电性能而被认为是最佳的低温材料,它还能产生高有效热导率,在散热方面具有很大潜力。然而,较弱的机械强度阻碍了其实际应用。在此,我们首先利用布里奇曼法生长出 Bi1-xSbx 晶体,然后将晶体切割成不同尺寸的板坯进行热压。所得材料的弯曲强度高达 72 兆帕,是 Bi1-xSbx [001] 方向材料的两倍。此外,热压 Bi1-xSbx 样品还显示出与单晶相近的高导电性,从而使热压多晶 Bi1-xSbx 的功率因数在 110 K 时达到 78 μW-cm-1-K-2,在 300 K 时达到 38 μW-cm-1-K-2。这种高电气性能有利于散热应用。因此,这项工作证明了同时提高 Bi1-xSbx 合金的机械和热电性能的有效方法。
{"title":"High power factor and mechanical properties of Bi1-xSbx alloys enabled by redensification of crystal slabs","authors":"","doi":"10.1016/j.mtla.2024.102209","DOIUrl":"10.1016/j.mtla.2024.102209","url":null,"abstract":"<div><p>The low-cost Bi<sub>1-x</sub>Sb<sub>x</sub> crystal has been considered the best low-temperature material for its high electrical properties, which also can generate high effective thermal conductivity, revealing a high potential in heat dissipation. However, the weak mechanical strength hinders practical applications. Herein, we firstly grew the Bi<sub>1-x</sub>Sb<sub>x</sub> crystal by the Bridgeman method, then cleaved the crystal into slabs with different sizes for hot-pressing. The obtained materials exhibited a high bending strength of 72 MPa, which is twofold that of Bi<sub>1-x</sub>Sb<sub>x</sub> [001]-direction. Furthermore, the hot-pressed Bi<sub>1-x</sub>Sb<sub>x</sub> samples show high electrical conductivities, being similar to those of the single crystals, resulting in the high record power factor of 78 μW·cm<sup>-1</sup>·K<sup>-2</sup> @110 K and 38 μW·cm<sup>-1</sup>·K<sup>-2</sup> @300 K among the hot-pressed poly-crystalline Bi<sub>1-x</sub>Sb<sub>x</sub>. This high electrical performance is beneficial to the applications of heat dissipation. Therefore, this work proves an effective way to simultaneously improve the mechanical and thermoelectric properties of Bi<sub>1-x</sub>Sb<sub>x</sub> alloys.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface physics and chemistry of carbon fibers enhance dissimilar sheet joining of carbon fiber-reinforced plastic by copper electrodeposition 碳纤维的表面物理和化学性质通过电沉积铜提高碳纤维增强塑料的异种板材连接性能
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-10 DOI: 10.1016/j.mtla.2024.102208

Carbon fiber-reinforced plastic (CFRP) sheets were dissimilarly edge-joined with anodized A6061 Al alloy sheets by copper electrodeposition. A high bonding strength of 137 MPa was attained following a series of pretreatments including etching in KMnO4 + NaOH hot aqueous solution, anodization at 2 V vs. SUS316 cathode in 1 mol L˗1 H2SO4, and sulfonation in hot concentrated H2SO4. The anodization physically cleaned the carbon fiber (CF) surface in CFRP. The chemical surface properties of the CFs were modified by the anodization, introducing crystallographic defects and CO groups. This physical and chemical modification of CFs in CFRP resulted in good adhesion of the electrodeposited copper.

通过电沉积铜,将碳纤维增强塑料 (CFRP) 板材与阳极氧化 A6061 铝合金板材进行异种边缘连接。经过一系列预处理,包括在 KMnO4 + NaOH 热水溶液中蚀刻、在 1 mol L˗1 H2SO4 中以 2 V 对 SUS316 阴极进行阳极氧化,以及在热浓 H2SO4 中进行磺化,达到了 137 MPa 的高粘接强度。阳极氧化对 CFRP 中的碳纤维 (CF) 表面进行了物理清洗。阳极氧化还改变了碳纤维的化学表面特性,引入了结晶缺陷和 CO 基团。对 CFRP 中的碳纤维进行这种物理和化学修饰后,电沉积铜的附着力良好。
{"title":"Surface physics and chemistry of carbon fibers enhance dissimilar sheet joining of carbon fiber-reinforced plastic by copper electrodeposition","authors":"","doi":"10.1016/j.mtla.2024.102208","DOIUrl":"10.1016/j.mtla.2024.102208","url":null,"abstract":"<div><p>Carbon fiber-reinforced plastic (CFRP) sheets were dissimilarly edge-joined with anodized A6061 Al alloy sheets by copper electrodeposition. A high bonding strength of 137 MPa was attained following a series of pretreatments including etching in KMnO<sub>4</sub> + NaOH hot aqueous solution, anodization at 2 V vs. SUS316 cathode in 1 mol L<sup>˗1</sup> H<sub>2</sub>SO<sub>4</sub>, and sulfonation in hot concentrated H<sub>2</sub>SO<sub>4</sub>. The anodization physically cleaned the carbon fiber (CF) surface in CFRP. The chemical surface properties of the CFs were modified by the anodization, introducing crystallographic defects and C<img>O groups. This physical and chemical modification of CFs in CFRP resulted in good adhesion of the electrodeposited copper.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of tissue ingrowth in printable porous lattice structured implants: An in silico study 可打印多孔晶格结构植入物中组织生长的比较分析:硅学研究
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-09 DOI: 10.1016/j.mtla.2024.102207

The application of lattice structures in porous titanium implants has emerged as a promising approach in the load-bearing orthopaedic implant industry. Complex-shaped medical implants have been effectively produced using metal AM techniques. However, there remains ambiguity regarding the suitable porous lattice structure, which significantly influences bone formation. The study aims to evaluate and compare the tissue ingrowth capability of different porous lattice structure implants on their surface using mechanoregulatory tissue differentiation algorithm. Computer-aided design (CAD) models of five topologies, namely cubic, X-shape, cubic centre, face centre, and octet, were created using Solidworks with similar porosities (60 %). Further, the study entailed the 3D microscale modelling of regular porous structured implants with five distinct repeating cells on their surface were constructed using Solidworks. Additionally, five FE microscale models of bone-implant interface were modelled, with each model representing a distinct porous lattice structure implant. Lattice tissue ingrowth behaviour is evaluated by employing a mechanobiological algorithm to every FE microscale model. The bone ingrowth efficiencies of the five porous lattice structure implants were ranked. By observing the results, it was found that each lattice structure displays distinct tissue differentiation behaviour. Results demonstrate that highest bone tissue ingrowth was seen in implant with cubic lattice followed by FCC, octet, cubic centre, and X-shape lattice structure implant. Among the five lattice structure implants analysed, the X-shape lattice structure implant promotes lowest bone tissue ingrowth. Overall, the findings derived from this study have the potential to improve Ti6Al4V prosthetic devices inserted in different human anatomical regions.

在多孔钛植入物中应用晶格结构已成为承重矫形植入物行业中一种前景广阔的方法。利用金属 AM 技术已经有效地生产出了形状复杂的医疗植入物。然而,关于合适的多孔晶格结构仍不明确,因为它对骨形成有重大影响。本研究旨在利用机械调节组织分化算法,评估和比较不同多孔晶格结构植入体表面的组织生长能力。研究人员使用 Solidworks 制作了五种拓扑结构的计算机辅助设计(CAD)模型,即立方体、X 形、立方体中心、面中心和八面体,孔隙率(60%)相似。此外,研究还使用 Solidworks 构建了规则多孔结构植入体的三维微观模型,植入体表面有五个不同的重复单元。此外,还建立了五个骨-植入物界面的 FE 微尺度模型,每个模型都代表一个不同的多孔晶格结构植入物。通过对每个 FE 微尺度模型采用机械生物学算法,对晶格组织的生长行为进行了评估。对五种多孔格状结构种植体的骨生长效率进行了排名。通过观察结果发现,每种晶格结构都显示出不同的组织分化行为。结果表明,立方晶格种植体的骨组织生长率最高,其次是 FCC、八面体、立方中心和 X 形晶格结构种植体。在分析的五种晶格结构种植体中,X 形晶格结构种植体促进骨组织生长的作用最小。总之,这项研究的结果有望改善植入不同人体解剖区域的 Ti6Al4V 修复装置。
{"title":"Comparative analysis of tissue ingrowth in printable porous lattice structured implants: An in silico study","authors":"","doi":"10.1016/j.mtla.2024.102207","DOIUrl":"10.1016/j.mtla.2024.102207","url":null,"abstract":"<div><p>The application of lattice structures in porous titanium implants has emerged as a promising approach in the load-bearing orthopaedic implant industry. Complex-shaped medical implants have been effectively produced using metal AM techniques. However, there remains ambiguity regarding the suitable porous lattice structure, which significantly influences bone formation. The study aims to evaluate and compare the tissue ingrowth capability of different porous lattice structure implants on their surface using mechanoregulatory tissue differentiation algorithm. Computer-aided design (CAD) models of five topologies, namely cubic, X-shape, cubic centre, face centre, and octet, were created using Solidworks with similar porosities (60 %). Further, the study entailed the 3D microscale modelling of regular porous structured implants with five distinct repeating cells on their surface were constructed using Solidworks. Additionally, five FE microscale models of bone-implant interface were modelled, with each model representing a distinct porous lattice structure implant. Lattice tissue ingrowth behaviour is evaluated by employing a mechanobiological algorithm to every FE microscale model. The bone ingrowth efficiencies of the five porous lattice structure implants were ranked. By observing the results, it was found that each lattice structure displays distinct tissue differentiation behaviour. Results demonstrate that highest bone tissue ingrowth was seen in implant with cubic lattice followed by FCC, octet, cubic centre, and X-shape lattice structure implant. Among the five lattice structure implants analysed, the X-shape lattice structure implant promotes lowest bone tissue ingrowth. Overall, the findings derived from this study have the potential to improve Ti6Al4V prosthetic devices inserted in different human anatomical regions.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semi-phenomenological dynamics model for full-life predictions of stress corrosion cracking 用于应力腐蚀开裂全寿命预测的半现象动力学模型
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1016/j.mtla.2024.102206

A semi-phenomenological model mimicking the full-time process of stress corrosion cracking (SCC) is proposed, and its attractive characteristics can be summarised as follows. Firstly, the role played by the hydrostatic pressure gradient at a crack tip in anodic dissolution is centralised by the proposed partial differential equation system, so as to formulate the interplay of load and corrosion in a mechanistic manner. As a result, the model can naturally reproduce the repeated film rupture mechanism that is believed central to general SCC phenomena. Secondly, the model implementation is extremely efficient, outputting a full-life SCC prediction within a few seconds on a normal laptop computer. Thirdly, a general rule for model calibration is introduced against limited experimental data, enabling its predictability over SCC indices that are not experimentally trackable. The efficacy and the generality of the proposed model are examined with three SCC scenarios, including (a) Inconel 600 alloys in nuclear pipelines, (b) stainless steels in oil pipelines, and (c) magnesium alloys used as structural materials in blood vessels. It is shown that SCC indices such as the SCC incubation period, which may be too long to be experimentally measured, can be quickly predicted with the present model after being calibrated.

本文提出了一个模拟应力腐蚀开裂(SCC)全时过程的半现象学模型,其诱人之处可归纳如下。首先,裂纹尖端的静水压力梯度在阳极溶解中所起的作用被提出的偏微分方程系统所集中,从而以机理的方式阐述了载荷与腐蚀的相互作用。因此,该模型可以自然再现被认为是一般 SCC 现象核心的重复薄膜破裂机制。其次,该模型的执行效率极高,在普通笔记本电脑上几秒钟就能输出全寿命 SCC 预测结果。第三,根据有限的实验数据引入了模型校准的一般规则,使其能够预测无法通过实验跟踪的 SCC 指数。通过三种 SCC 情景检验了所提模型的有效性和通用性,包括 (a) 核管道中的铬镍铁合金 600,(b) 石油管道中的不锈钢,以及 (c) 血管中用作结构材料的镁合金。结果表明,SCC 指数(如 SCC 潜伏期)可能因时间过长而无法通过实验测量,但本模型经过校准后可以快速预测。
{"title":"A semi-phenomenological dynamics model for full-life predictions of stress corrosion cracking","authors":"","doi":"10.1016/j.mtla.2024.102206","DOIUrl":"10.1016/j.mtla.2024.102206","url":null,"abstract":"<div><p>A semi-phenomenological model mimicking the full-time process of stress corrosion cracking (SCC) is proposed, and its attractive characteristics can be summarised as follows. Firstly, the role played by the hydrostatic pressure gradient at a crack tip in anodic dissolution is centralised by the proposed partial differential equation system, so as to formulate the interplay of load and corrosion in a mechanistic manner. As a result, the model can naturally reproduce the repeated film rupture mechanism that is believed central to general SCC phenomena. Secondly, the model implementation is extremely efficient, outputting a full-life SCC prediction within a few seconds on a normal laptop computer. Thirdly, a general rule for model calibration is introduced against limited experimental data, enabling its predictability over SCC indices that are not experimentally trackable. The efficacy and the generality of the proposed model are examined with three SCC scenarios, including (a) Inconel 600 alloys in nuclear pipelines, (b) stainless steels in oil pipelines, and (c) magnesium alloys used as structural materials in blood vessels. It is shown that SCC indices such as the SCC incubation period, which may be too long to be experimentally measured, can be quickly predicted with the present model after being calibrated.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining critical Zn/Ca atomic ratio and its role in mechanical and corrosion properties of biodegradable Mg-Ca-Zn-Mn alloys 确定临界锌/钙原子比及其在可生物降解的镁-钙-锌-锰合金的机械和腐蚀特性中的作用
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.mtla.2024.102203

Mg-Ca-Zn-Mn alloys are promising for applications in biodegradable bone fixation devices. The Zn/Ca atomic ratio in the compositions of these alloys is important to their corrosion and mechanical properties. This paper investigated the Zn/Ca ratio using a phase-focused approach based on CALPHAD (CALculation of PHAse Diagrams) modeling and experimental validation. Six Mg-0.5Ca-xZn-0.5Mn (all wt.%) alloys were cast with x = 0.96, 1.15, 1.47, 1.69, 1.94, and 3.81 so that the Zn/Ca atomic ratio spanned from 1.18 to 4.66. The microstructure is studied in the as-cast, solution-treated, and as-rolled conditions. A critical ratio was determined to be 2.77, above which Mg2Ca phase can be suppressed in as-cast microstructure. In the solution-treated condition, a Zn/Ca ratio of less than 2.0 was required to dissolve the Ca2Mg6Zn3 phase. Alloys below 2.0 Zn/Ca were found to have yield strength of 300 MPa and a corrosion rate of 0.25 to 0.3 mg/cm2/day as measured by both weight loss and hydrogen evolution. In alloys above 2.0 Zn/Ca, the yield strength decreased to 280 MPa and the corrosion rate measured by weight-loss increased to 0.5 mg/cm2/day. Above the critical ratio, the yield strength was the highest at 347 MPa but a corrosion rate of 0.4 mg/cm2/day. The Zn/Ca region with the best combination of corrosion resistance and mechanical properties is between 1.18 and 1.8 (in rolled sheet condition), which provides important guidance for biomedical Mg-Ca-Zn alloy design and optimization.

镁-钙-锌-锰合金有望应用于生物可降解骨固定装置。这些合金成分中的锌/钙原子比对其腐蚀和机械性能非常重要。本文在 CALPHAD(CALculation of PHAse Diagrams,PHAse Diagrams)建模和实验验证的基础上,采用以相为重点的方法研究了 Zn/Ca 原子比。在 x = 0.96、1.15、1.47、1.69、1.94 和 3.81 的条件下铸造了六种 Mg-0.5Ca-xZn-0.5Mn(均为重量百分比)合金,使 Zn/Ca 原子比介于 1.18 到 4.66 之间。研究了铸造、固溶处理和轧制条件下的微观结构。临界比率被确定为 2.77,超过这一比率,Mg2Ca 相在原型铸造的微观结构中就会被抑制。在固溶处理条件下,需要低于 2.0 的 Zn/Ca 比率才能溶解 Ca2Mg6Zn3 相。低于 2.0 Zn/Ca 的合金屈服强度为 300 兆帕,通过重量损失和氢演化测量的腐蚀速率为 0.25 至 0.3 毫克/厘米2/天。在 Zn/Ca 高于 2.0 的合金中,屈服强度下降到 280 兆帕,通过重量损失测量的腐蚀率上升到 0.5 毫克/厘米2/天。在临界比率以上,屈服强度最高,为 347 兆帕,但腐蚀率为 0.4 毫克/厘米2/天。耐腐蚀性和机械性能最佳组合的 Zn/Ca 区域介于 1.18 和 1.8 之间(轧制板材状态),这为生物医学镁-钙-锌合金的设计和优化提供了重要指导。
{"title":"Determining critical Zn/Ca atomic ratio and its role in mechanical and corrosion properties of biodegradable Mg-Ca-Zn-Mn alloys","authors":"","doi":"10.1016/j.mtla.2024.102203","DOIUrl":"10.1016/j.mtla.2024.102203","url":null,"abstract":"<div><p>Mg-Ca-Zn-Mn alloys are promising for applications in biodegradable bone fixation devices. The Zn/Ca atomic ratio in the compositions of these alloys is important to their corrosion and mechanical properties. This paper investigated the Zn/Ca ratio using a phase-focused approach based on CALPHAD (CALculation of PHAse Diagrams) modeling and experimental validation. Six Mg-0.5Ca-xZn-0.5Mn (all wt.%) alloys were cast with <em>x</em> = 0.96, 1.15, 1.47, 1.69, 1.94, and 3.81 so that the Zn/Ca atomic ratio spanned from 1.18 to 4.66. The microstructure is studied in the as-cast, solution-treated, and as-rolled conditions. A critical ratio was determined to be 2.77, above which Mg<sub>2</sub>Ca phase can be suppressed in as-cast microstructure. In the solution-treated condition, a Zn/Ca ratio of less than 2.0 was required to dissolve the Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3</sub> phase. Alloys below 2.0 Zn/Ca were found to have yield strength of 300 MPa and a corrosion rate of 0.25 to 0.3 mg/cm<sup>2</sup>/day as measured by both weight loss and hydrogen evolution. In alloys above 2.0 Zn/Ca, the yield strength decreased to 280 MPa and the corrosion rate measured by weight-loss increased to 0.5 mg/cm<sup>2</sup>/day. Above the critical ratio, the yield strength was the highest at 347 MPa but a corrosion rate of 0.4 mg/cm<sup>2</sup>/day. The Zn/Ca region with the best combination of corrosion resistance and mechanical properties is between 1.18 and 1.8 (in rolled sheet condition), which provides important guidance for biomedical Mg-Ca-Zn alloy design and optimization.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258915292400200X/pdfft?md5=3df269c98e83e40371ffd3f1ded3fc67&pid=1-s2.0-S258915292400200X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermokinetics driven microstructure and phase evolution in laser-based additive manufacturing of Ti-25wt.%Nb and its performance in physiological solution 基于激光的钛-25wt.%铌增材制造过程中热动力学驱动的微结构和相演化及其在生理溶液中的性能
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.mtla.2024.102190

A bio-compatible Ti-25 wt% Nb alloy fabricated from a blend of pure elemental powders using laser powder bed fusion additive manufacturing technique. The present work investigated the effects of processing conditions on the evolution of microstructures and its consequential material attributes, such as mechanical properties and corrosion performance. Thermal management strategies comprising laser powers of 200 W and 300 W in complement with a shorter scan length (1 mm) and substrate preheating above β-transus temperature (1123 K) were considered to achieve complete dissolution of niobium particles. The microstructure in the 200 W sample showed thin α martensite needles in β matrix while martensite laths in the 300 W condition appear coarse and were twice the area fraction compared to that in 200 W build. On the other hand, microstructures in the heated substrate sample exhibited the evolution of α and β phases. A multi-scale finite element method based thermo-kinetic model spanning from melt pool scale to the component scale was incorporated to understand the mechanism of the evolution of microstructures during liquid–solid and solid–solid state transformation. Electrochemical performance in the simulated body fluid of the printed alloys was found to be significantly affected by the presence of martensite fractions. Both mechanical and corrosion behaviors were favorably influenced by adoption of the substrate preheating during additive manufacturing due to promotion of diffusional transformation of β to α transformation at the expense of martensitic transformation.

利用激光粉末床熔融增材制造技术,从纯元素粉末混合物中制造出生物相容性钛-25 wt% Nb 合金。本研究调查了加工条件对微结构演变的影响,以及由此产生的材料属性,如机械性能和腐蚀性能。为实现铌颗粒的完全溶解,考虑了热管理策略,包括 200 W 和 300 W 的激光功率以及较短的扫描长度(1 mm)和高于 β 传递温度(1123 K)的基底预热。200 W 试样的微观结构显示,在 β 基体中存在细长的 α "马氏体针状结构,而 300 W 条件下的马氏体板条则显得较粗,其面积分数是 200 W 条件下的两倍。另一方面,加热基体样品的微观结构表现出 α 和 β 相的演变。为了了解液-固和固-固状态转变过程中微结构的演变机制,我们采用了基于多尺度有限元法的热动力学模型,该模型涵盖了从熔池尺度到元件尺度。研究发现,印刷合金在模拟体液中的电化学性能会受到马氏体组分的显著影响。在增材制造过程中采用基底预热,可促进β向α转变的扩散转变,从而以马氏体转变为代价,这对机械和腐蚀行为都产生了有利影响。
{"title":"Thermokinetics driven microstructure and phase evolution in laser-based additive manufacturing of Ti-25wt.%Nb and its performance in physiological solution","authors":"","doi":"10.1016/j.mtla.2024.102190","DOIUrl":"10.1016/j.mtla.2024.102190","url":null,"abstract":"<div><p>A bio-compatible Ti-25 wt% Nb alloy fabricated from a blend of pure elemental powders using laser powder bed fusion additive manufacturing technique. The present work investigated the effects of processing conditions on the evolution of microstructures and its consequential material attributes, such as mechanical properties and corrosion performance. Thermal management strategies comprising laser powers of 200 W and 300 W in complement with a shorter scan length (1 mm) and substrate preheating above <span><math><mi>β</mi></math></span>-transus temperature (1123 K) were considered to achieve complete dissolution of niobium particles. The microstructure in the 200 W sample showed thin <span><math><mrow><mi>α</mi><mi>”</mi></mrow></math></span> martensite needles in <span><math><mi>β</mi></math></span> matrix while martensite laths in the 300 W condition appear coarse and were twice the area fraction compared to that in 200 W build. On the other hand, microstructures in the heated substrate sample exhibited the evolution of <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> phases. A multi-scale finite element method based thermo-kinetic model spanning from melt pool scale to the component scale was incorporated to understand the mechanism of the evolution of microstructures during liquid–solid and solid–solid state transformation. Electrochemical performance in the simulated body fluid of the printed alloys was found to be significantly affected by the presence of martensite fractions. Both mechanical and corrosion behaviors were favorably influenced by adoption of the substrate preheating during additive manufacturing due to promotion of diffusional transformation of <span><math><mi>β</mi></math></span> to <span><math><mi>α</mi></math></span> transformation at the expense of martensitic transformation.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Void and helium bubble interactions with dislocations in an FCC stainless steel alloy: anomalous hardening and cavity cross-slip locking FCC 不锈钢合金中的空隙和氦泡与位错的相互作用:异常硬化和空穴交叉滑动锁定
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-01 DOI: 10.1016/j.mtla.2024.102184

The critical stress for cutting of a void and He bubble (generically referred to as a cavity) by edge and screw dislocations has been determined for FCC Fe0.70Cr0.20Ni0.10—close to 300-series stainless steel—over a range of cavity spacings, diameters, pressures, and glide plane positions. The results exhibit anomalous trends with spacing, diameter, and pressure when compared with classical theories for obstacle hardening. These anomalies are attributed to elastic anisotropy and the wide extended dislocation core in low stacking fault energy metals, indicating that caution must be exercised when using perfect dislocations in isotropic solids to study void and bubble hardening. In many simulations with screw dislocations, cross-slip was observed at the void/bubble surface, leading to an additional contribution to strengthening. We refer to this phenomenon as cavity cross-slip locking, and argue that it may be an important contributor to void and bubble hardening.

针对 FCC Fe0.70Cr0.20Ni0.10(接近 300 系列不锈钢),在一定的空腔间距、直径、压力和滑行面位置范围内,确定了边缘和螺旋位错切割空腔和 He 气泡(一般称为空腔)的临界应力。与障碍硬化的经典理论相比,结果显示了间距、直径和压力的异常趋势。这些反常现象归因于弹性各向异性和低堆积断层能金属中宽扩展位错核心,表明在各向同性固体中使用完美位错研究空洞和气泡硬化时必须谨慎。在许多使用螺钉位错的模拟中,我们观察到空隙/气泡表面存在交叉滑移,这导致了对强化的额外贡献。我们将这种现象称为空腔交叉滑移锁定,并认为它可能是空洞和气泡硬化的一个重要因素。
{"title":"Void and helium bubble interactions with dislocations in an FCC stainless steel alloy: anomalous hardening and cavity cross-slip locking","authors":"","doi":"10.1016/j.mtla.2024.102184","DOIUrl":"10.1016/j.mtla.2024.102184","url":null,"abstract":"<div><p>The critical stress for cutting of a void and He bubble (generically referred to as a cavity) by edge and screw dislocations has been determined for FCC Fe<sub>0.70</sub>Cr<sub>0.20</sub>Ni<sub>0.10</sub>—close to 300-series stainless steel—over a range of cavity spacings, diameters, pressures, and glide plane positions. The results exhibit anomalous trends with spacing, diameter, and pressure when compared with classical theories for obstacle hardening. These anomalies are attributed to elastic anisotropy and the wide extended dislocation core in low stacking fault energy metals, indicating that caution must be exercised when using perfect dislocations in isotropic solids to study void and bubble hardening. In many simulations with screw dislocations, cross-slip was observed at the void/bubble surface, leading to an additional contribution to strengthening. We refer to this phenomenon as cavity cross-slip locking, and argue that it may be an important contributor to void and bubble hardening.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924001819/pdfft?md5=f8bf7bb8d498c89f89acdab9dea740f5&pid=1-s2.0-S2589152924001819-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
W-concentration dependent radiation-induced amorphization in M23C6 via atomic-scale analysis by Voronoi tessellation 通过 Voronoi 镶嵌法进行原子尺度分析,分析 M23C6 中与 W 浓度相关的辐射诱导非晶化现象
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-01 DOI: 10.1016/j.mtla.2024.102186

Voronoi tessellation was innovatively applied to interpret the high-resolution atomic-scale micrographs of the Cr-W-C ternary M23C6 with and without irradiation to provide mechanistic insight into the phase stability under irradiation. A W concentration-dependent radiation-induced amorphization behavior was observed and the amorphization was confirmed in the 4 W sample (∼12 at.%W). Analysis of the local crystal structure using Voronoi diagrams shows that the average size of each Voronoi cell and its standard deviation are affected by irradiation and W concentration. In addition, the standard deviation of the Voronoi cell size, which is considered an indicator of the uncertainty of the atomic column positions, is also plotted as a function of the lattice parameter change. This mathematical analysis indicates that a higher W concentration tends to cause a more severe disordering of the atomic distribution upon irradiation, which is directly correlated with the occurrence of amorphization.

创新性地应用 Voronoi tessellation 技术解释了有辐照和无辐照时 Cr-W-C 三元 M23C6 的高分辨率原子尺度显微照片,从而从机理上揭示了辐照下的相稳定性。在 4 W 样品(∼12 at.%W)中,观察到了与 W 浓度相关的辐照诱导的非晶化行为,并证实了非晶化。使用 Voronoi 图分析局部晶体结构表明,每个 Voronoi 单元的平均尺寸及其标准偏差都受到辐照和 W 浓度的影响。此外,Voronoi 单元大小的标准偏差也是晶格参数变化的函数,它被认为是原子列位置不确定性的指标。这一数学分析表明,较高的 W 浓度往往会在辐照时导致更严重的原子分布紊乱,这与非晶化的发生直接相关。
{"title":"W-concentration dependent radiation-induced amorphization in M23C6 via atomic-scale analysis by Voronoi tessellation","authors":"","doi":"10.1016/j.mtla.2024.102186","DOIUrl":"10.1016/j.mtla.2024.102186","url":null,"abstract":"<div><p>Voronoi tessellation was innovatively applied to interpret the high-resolution atomic-scale micrographs of the Cr-W-C ternary M<sub>23</sub>C<sub>6</sub> with and without irradiation to provide mechanistic insight into the phase stability under irradiation. A W concentration-dependent radiation-induced amorphization behavior was observed and the amorphization was confirmed in the 4 W sample (∼12 at.%W). Analysis of the local crystal structure using Voronoi diagrams shows that the average size of each Voronoi cell and its standard deviation are affected by irradiation and W concentration. In addition, the standard deviation of the Voronoi cell size, which is considered an indicator of the uncertainty of the atomic column positions, is also plotted as a function of the lattice parameter change. This mathematical analysis indicates that a higher W concentration tends to cause a more severe disordering of the atomic distribution upon irradiation, which is directly correlated with the occurrence of amorphization.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editors for Materialia 材料学》编辑
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-01 DOI: 10.1016/S2589-1529(24)00201-1
{"title":"Editors for Materialia","authors":"","doi":"10.1016/S2589-1529(24)00201-1","DOIUrl":"10.1016/S2589-1529(24)00201-1","url":null,"abstract":"","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924002011/pdfft?md5=6cc6febbca889f119a62afb2bf354161&pid=1-s2.0-S2589152924002011-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloys 揭示铝镁硅合金中添加铜和团块硬化的潜力
IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-01 DOI: 10.1016/j.mtla.2024.102188

With the aim of further exploiting the trade-off between formability and strength in Al alloys, this study addresses the influence of Cu in Al-Mg-Si alloys that achieve simultaneously high strength and high ductility via cluster hardening. The study carefully examines the mechanical properties and strain hardening behavior of various Mg/Si ratios with and without Cu and compares the effects of pre-aging and atypical long-term low-temperature aging treatments at 100°C to conventional heat treatments. Interestingly, in all cases adding Cu improved ductility. In the extremal case cluster hardening plus the addition of Cu quadruples elongation, while keeping yield strength similar to the classical T6 state. The results of the study are discussed with a focus on the dense distribution of clusters and partial hardening phases based on atom probe tomography data. Most importantly, the cluster-hardened alloys exhibit pronounced strain-hardening properties, which we evaluate using a Kocks-Mecking approach in combination with a microstructural analysis in the pre-aging and long-term aging condition. The key finding of the study involves the role of Cu in refining clusters/precipitates, where it causes a substantial increase in number density and volume fraction. This refinement, in combination with strain-induced clustering, contributes significantly to improving the alloys’ overall mechanical performance and underlines the central role of Cu in tailoring microstructural features, especially in alloys primarily strengthened by clusters.

为了进一步利用铝合金在成型性和强度之间的权衡,本研究探讨了铜在铝镁硅合金中的影响,这种合金通过集束硬化可同时获得高强度和高延展性。该研究仔细研究了含铜、不含铜的各种 Mg/Si 比率的机械性能和应变硬化行为,并比较了预时效和 100°C 非典型长期低温时效处理与传统热处理的效果。有趣的是,在所有情况下,添加 Cu 都能提高延展性。在极端情况下,集束硬化和添加铜可使伸长率翻两番,同时使屈服强度与传统的 T6 状态相似。研究结果的讨论重点是基于原子探针断层扫描数据的团簇和部分硬化相的密集分布。最重要的是,团簇硬化合金表现出明显的应变硬化特性,我们采用 Kocks-Mecking 方法,结合老化前和长期老化条件下的微观结构分析,对这些特性进行了评估。这项研究的主要发现涉及铜在细化团簇/沉淀物中的作用,铜会导致团簇/沉淀物的数量密度和体积分数大幅增加。这种细化与应变诱导的团聚相结合,极大地改善了合金的整体机械性能,并强调了铜在定制微观结构特征中的核心作用,尤其是在主要由团聚强化的合金中。
{"title":"Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloys","authors":"","doi":"10.1016/j.mtla.2024.102188","DOIUrl":"10.1016/j.mtla.2024.102188","url":null,"abstract":"<div><p>With the aim of further exploiting the trade-off between formability and strength in Al alloys, this study addresses the influence of Cu in Al-Mg-Si alloys that achieve simultaneously high strength and high ductility via cluster hardening. The study carefully examines the mechanical properties and strain hardening behavior of various Mg/Si ratios with and without Cu and compares the effects of pre-aging and atypical long-term low-temperature aging treatments at 100°C to conventional heat treatments. Interestingly, in all cases adding Cu improved ductility. In the extremal case cluster hardening plus the addition of Cu quadruples elongation, while keeping yield strength similar to the classical T6 state. The results of the study are discussed with a focus on the dense distribution of clusters and partial hardening phases based on atom probe tomography data. Most importantly, the cluster-hardened alloys exhibit pronounced strain-hardening properties, which we evaluate using a Kocks-Mecking approach in combination with a microstructural analysis in the pre-aging and long-term aging condition. The key finding of the study involves the role of Cu in refining clusters/precipitates, where it causes a substantial increase in number density and volume fraction. This refinement, in combination with strain-induced clustering, contributes significantly to improving the alloys’ overall mechanical performance and underlines the central role of Cu in tailoring microstructural features, especially in alloys primarily strengthened by clusters.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924001856/pdfft?md5=93bae8c23e75d556b3445cf894b94f05&pid=1-s2.0-S2589152924001856-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materialia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1