Voronoi tessellation was innovatively applied to interpret the high-resolution atomic-scale micrographs of the Cr-W-C ternary M23C6 with and without irradiation to provide mechanistic insight into the phase stability under irradiation. A W concentration-dependent radiation-induced amorphization behavior was observed and the amorphization was confirmed in the 4 W sample (∼12 at.%W). Analysis of the local crystal structure using Voronoi diagrams shows that the average size of each Voronoi cell and its standard deviation are affected by irradiation and W concentration. In addition, the standard deviation of the Voronoi cell size, which is considered an indicator of the uncertainty of the atomic column positions, is also plotted as a function of the lattice parameter change. This mathematical analysis indicates that a higher W concentration tends to cause a more severe disordering of the atomic distribution upon irradiation, which is directly correlated with the occurrence of amorphization.
创新性地应用 Voronoi tessellation 技术解释了有辐照和无辐照时 Cr-W-C 三元 M23C6 的高分辨率原子尺度显微照片,从而从机理上揭示了辐照下的相稳定性。在 4 W 样品(∼12 at.%W)中,观察到了与 W 浓度相关的辐照诱导的非晶化行为,并证实了非晶化。使用 Voronoi 图分析局部晶体结构表明,每个 Voronoi 单元的平均尺寸及其标准偏差都受到辐照和 W 浓度的影响。此外,Voronoi 单元大小的标准偏差也是晶格参数变化的函数,它被认为是原子列位置不确定性的指标。这一数学分析表明,较高的 W 浓度往往会在辐照时导致更严重的原子分布紊乱,这与非晶化的发生直接相关。
{"title":"W-concentration dependent radiation-induced amorphization in M23C6 via atomic-scale analysis by Voronoi tessellation","authors":"Sho Kano , Huilong Yang , Masami Ando , Dai Hamaguchi , Takashi Nozawa , Hiroyasu Tanigawa , Tamaki Shibayama , Hiroaki Abe","doi":"10.1016/j.mtla.2024.102186","DOIUrl":"10.1016/j.mtla.2024.102186","url":null,"abstract":"<div><p>Voronoi tessellation was innovatively applied to interpret the high-resolution atomic-scale micrographs of the Cr-W-C ternary M<sub>23</sub>C<sub>6</sub> with and without irradiation to provide mechanistic insight into the phase stability under irradiation. A W concentration-dependent radiation-induced amorphization behavior was observed and the amorphization was confirmed in the 4 W sample (∼12 at.%W). Analysis of the local crystal structure using Voronoi diagrams shows that the average size of each Voronoi cell and its standard deviation are affected by irradiation and W concentration. In addition, the standard deviation of the Voronoi cell size, which is considered an indicator of the uncertainty of the atomic column positions, is also plotted as a function of the lattice parameter change. This mathematical analysis indicates that a higher W concentration tends to cause a more severe disordering of the atomic distribution upon irradiation, which is directly correlated with the occurrence of amorphization.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102186"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.mtla.2024.102188
Philip Aster , Phillip Dumitraschkewitz , Peter J. Uggowitzer , Matheus A. Tunes , Florian Schmid , Lukas Stemper , Stefan Pogatscher
With the aim of further exploiting the trade-off between formability and strength in Al alloys, this study addresses the influence of Cu in Al-Mg-Si alloys that achieve simultaneously high strength and high ductility via cluster hardening. The study carefully examines the mechanical properties and strain hardening behavior of various Mg/Si ratios with and without Cu and compares the effects of pre-aging and atypical long-term low-temperature aging treatments at 100°C to conventional heat treatments. Interestingly, in all cases adding Cu improved ductility. In the extremal case cluster hardening plus the addition of Cu quadruples elongation, while keeping yield strength similar to the classical T6 state. The results of the study are discussed with a focus on the dense distribution of clusters and partial hardening phases based on atom probe tomography data. Most importantly, the cluster-hardened alloys exhibit pronounced strain-hardening properties, which we evaluate using a Kocks-Mecking approach in combination with a microstructural analysis in the pre-aging and long-term aging condition. The key finding of the study involves the role of Cu in refining clusters/precipitates, where it causes a substantial increase in number density and volume fraction. This refinement, in combination with strain-induced clustering, contributes significantly to improving the alloys’ overall mechanical performance and underlines the central role of Cu in tailoring microstructural features, especially in alloys primarily strengthened by clusters.
{"title":"Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloys","authors":"Philip Aster , Phillip Dumitraschkewitz , Peter J. Uggowitzer , Matheus A. Tunes , Florian Schmid , Lukas Stemper , Stefan Pogatscher","doi":"10.1016/j.mtla.2024.102188","DOIUrl":"10.1016/j.mtla.2024.102188","url":null,"abstract":"<div><p>With the aim of further exploiting the trade-off between formability and strength in Al alloys, this study addresses the influence of Cu in Al-Mg-Si alloys that achieve simultaneously high strength and high ductility via cluster hardening. The study carefully examines the mechanical properties and strain hardening behavior of various Mg/Si ratios with and without Cu and compares the effects of pre-aging and atypical long-term low-temperature aging treatments at 100°C to conventional heat treatments. Interestingly, in all cases adding Cu improved ductility. In the extremal case cluster hardening plus the addition of Cu quadruples elongation, while keeping yield strength similar to the classical T6 state. The results of the study are discussed with a focus on the dense distribution of clusters and partial hardening phases based on atom probe tomography data. Most importantly, the cluster-hardened alloys exhibit pronounced strain-hardening properties, which we evaluate using a Kocks-Mecking approach in combination with a microstructural analysis in the pre-aging and long-term aging condition. The key finding of the study involves the role of Cu in refining clusters/precipitates, where it causes a substantial increase in number density and volume fraction. This refinement, in combination with strain-induced clustering, contributes significantly to improving the alloys’ overall mechanical performance and underlines the central role of Cu in tailoring microstructural features, especially in alloys primarily strengthened by clusters.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102188"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924001856/pdfft?md5=93bae8c23e75d556b3445cf894b94f05&pid=1-s2.0-S2589152924001856-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.mtla.2024.102185
Tao Feng , Wei Guo , Kui Yan , Feng Zhao , Fankun Zeng , Jialong Zhao
In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.
{"title":"Investigation of foaming and mechanical properties of olefin block copolymer/talc/polypropylene composites in IMD/MIM processes","authors":"Tao Feng , Wei Guo , Kui Yan , Feng Zhao , Fankun Zeng , Jialong Zhao","doi":"10.1016/j.mtla.2024.102185","DOIUrl":"10.1016/j.mtla.2024.102185","url":null,"abstract":"<div><p>In advancing towards carbon neutrality in the automotive industry, polypropylene (PP) plays a crucial role in improving fuel efficiency and reducing carbon emissions as a pivotal lightweight material. However, PP faces challenges in microcellular foaming, including surface quality concerns, intricate molding parameters, and compromised mechanical strength, limiting its broader application. This research introduces an innovative strategy by integrating Olefin Block Copolymer (OBC) into the Talc/PP composite framework using In-mold Decoration/Microcellular Injection Molding (IMD/MIM) techniques to overcome these limitations. Experimental findings reveal that modulating the OBC proportion substantially enhances the PP composites' functionality. Notably, an inclusion of 10 wt% OBC decreases the material's viscosity, and raising the OBC level to 30 wt% markedly improves surface quality with fewer defects. Analyzing cell configuration confirms OBC's beneficial effect on cell size and distribution, particularly in the homogeneity of cells across the material's layers. For mechanical performance, incorporating OBC increased the impact strength from 13.2 kJ/m² to 17.9 kJ/m², highlighting OBC's potential in enhancing PP's toughness. This study enriches our understanding of optimizing PP-based microcellular foamed materials, supporting the development of next-generation lightweight materials. Future efforts will focus on further refinement of the OBC/Talc/PP system for superior performance and practical industrial viability.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102185"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.mtla.2024.102187
Yongkang Li , Qingqing Ding , Xiao Wei , Ze Zhang , Yanfei Gao , Hongbin Bei
Mo, W and Re are all important strengthening elements in either single phase solid solution (SS) alloys or the SS phases in precipitation-strengthened Ni/Co-based superalloys, of which the compositions are usually complicated. To directly compare the effects of Mo, W and Re on the mechanical properties of concentrated SS alloys, a model CoCrNiFe concentrated SS alloy as the base and three alloys with 3 at.% Mo, W and Re additions are fabricated and their mechanical properties are examined in both quasi-static tensile and creep tests at room and two high temperatures. Experimental and modeling results demonstrate that at room and low temperatures, the order of strengthening effect is W > Mo > Re, in accordance with solid solution strengthening model and thermal activation analysis. On the other hand, Re can significantly decrease the minimum creep rate at 1273 K, primarily due to the reduced diffusivity as confirmed from the diffusion couple analysis.
钼、钨和铼都是单相固溶(SS)合金或沉淀强化镍/钴基超级合金中 SS 相的重要强化元素,这些合金的成分通常比较复杂。为了直接比较 Mo、W 和 Re 对浓缩 SS 合金机械性能的影响,我们制造了一种模型 CoCrNiFe 浓缩 SS 合金作为基体,以及三种添加了 3%Mo、W 和 Re 的合金,并在室温和两种高温下通过准静态拉伸和蠕变试验检验了它们的机械性能。实验和建模结果表明,在室温和低温条件下,根据固溶强化模型和热活化分析,强化效果的顺序为 W > Mo > Re。另一方面,Re 能显著降低 1273 K 时的最小蠕变速率,这主要是由于扩散耦合分析证实了扩散率的降低。
{"title":"The effects of refractory elements on mechanical properties in CoCrNiFe concentrated solid solution alloys across different temperatures","authors":"Yongkang Li , Qingqing Ding , Xiao Wei , Ze Zhang , Yanfei Gao , Hongbin Bei","doi":"10.1016/j.mtla.2024.102187","DOIUrl":"10.1016/j.mtla.2024.102187","url":null,"abstract":"<div><p>Mo, W and Re are all important strengthening elements in either single phase solid solution (SS) alloys or the SS phases in precipitation-strengthened Ni/Co-based superalloys, of which the compositions are usually complicated. To directly compare the effects of Mo, W and Re on the mechanical properties of concentrated SS alloys, a model CoCrNiFe concentrated SS alloy as the base and three alloys with 3 at.% Mo, W and Re additions are fabricated and their mechanical properties are examined in both quasi-static tensile and creep tests at room and two high temperatures. Experimental and modeling results demonstrate that at room and low temperatures, the order of strengthening effect is W > Mo > Re, in accordance with solid solution strengthening model and thermal activation analysis. On the other hand, Re can significantly decrease the minimum creep rate at 1273 K, primarily due to the reduced diffusivity as confirmed from the diffusion couple analysis.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102187"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.mtla.2024.102189
A. Chetouani, F. Richomme, J.M. Le Breton
Recycling computer hard disk drives from Waste Electrical and Electronic Equipment (WEEE) has been achieved according to a two-step approach that combines solvothermal treatment and CaH2 reduction-diffusion, resulting in the production of a single-phase material. The magnets underwent solvothermal treatment, followed by CaH2 reduction at varying temperatures (200°C, 250°C and 300°C). We examined the impact of CaH2 as a reducing agent on the final product, using X-ray diffraction, Mössbauer spectrometry and SQUID magnetometry. After the solvothermal treatment, the powder contains both Nd2Fe14BHx and Nd(OH)3 phases. At 200°C, Nd(OH)3 was reduced without degradation of the magnetic Nd2Fe14BHx phase, as confirmed by Mössbauer spectrometry. Furthermore, an analysis of the magnetic properties indicates an increase in magnetization after CaO removal, confirming its successful elimination.
{"title":"Recycling of Nd−Fe−B sintered magnets into a single phase by solvothermal treatment and CaH2 reduction-diffusion","authors":"A. Chetouani, F. Richomme, J.M. Le Breton","doi":"10.1016/j.mtla.2024.102189","DOIUrl":"10.1016/j.mtla.2024.102189","url":null,"abstract":"<div><p>Recycling computer hard disk drives from Waste Electrical and Electronic Equipment (WEEE) has been achieved according to a two-step approach that combines solvothermal treatment and CaH<sub>2</sub> reduction-diffusion, resulting in the production of a single-phase material. The magnets underwent solvothermal treatment, followed by CaH<sub>2</sub> reduction at varying temperatures (200°C, 250°C and 300°C). We examined the impact of CaH<sub>2</sub> as a reducing agent on the final product, using X-ray diffraction, Mössbauer spectrometry and SQUID magnetometry. After the solvothermal treatment, the powder contains both Nd<sub>2</sub>Fe<sub>14</sub>BH<sub>x</sub> and Nd(OH)<sub>3</sub> phases. At 200°C, Nd(OH)<sub>3</sub> was reduced without degradation of the magnetic Nd<sub>2</sub>Fe<sub>14</sub>BH<sub>x</sub> phase, as confirmed by Mössbauer spectrometry. Furthermore, an analysis of the magnetic properties indicates an increase in magnetization after CaO removal, confirming its successful elimination.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102189"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924001868/pdfft?md5=fa53b01586da50182203663cf64e31c7&pid=1-s2.0-S2589152924001868-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.mtla.2024.102196
Animesh K. Basak , Alokesh Pramanik , Yeong X. Chen , Chander Prakash , N. Radhika , S. Shankar
The influence of printing variables on microstructural and mechanical behaviors on the 316 L stainless steel (316 L SS), produced via an additive manufacturing process, named as bound metal deposition (BMD), was investigated in this study. The printing parameters varied were infill density, diameter of the nozzle, and thickness of layers, which dictate the mechanical properties, surface roughness, and crack morphology of the samples. Based on the experimental investigation, it was found that the tensile properties were increased when the nozzle diameter and infill density were higher. The highest obtained ultimate tensile strength (UTS) was 402 ± 17 MPa, where the sample was fabricated with the following parameters: 0.40 mm nozzle diameter, 25% infill density, and 0.10 mm layer. The influence of the nozzle diameter also impacted the surface roughness, where a worse surface finish was noticed for the larger nozzle diameter.
本研究调查了印刷变量对 316 L 不锈钢(316 L SS)微观结构和机械性能的影响,该不锈钢是通过一种名为 "结合金属沉积"(BMD)的快速成型工艺生产的。打印参数包括填充密度、喷嘴直径和层厚度,这些参数决定了样品的机械性能、表面粗糙度和裂纹形态。实验研究发现,喷嘴直径和填充密度越大,拉伸性能越高。最高极限拉伸强度(UTS)为 402 ± 17 兆帕,样品的制造参数如下:喷嘴直径为 0.40 毫米,填充密度为 25%,层厚为 0.10 毫米。喷嘴直径对表面粗糙度也有影响,喷嘴直径越大,表面粗糙度越差。
{"title":"Bound metal deposition of stainless steel 316L: Effect of process variables on microstructural and mechanical behaviors","authors":"Animesh K. Basak , Alokesh Pramanik , Yeong X. Chen , Chander Prakash , N. Radhika , S. Shankar","doi":"10.1016/j.mtla.2024.102196","DOIUrl":"10.1016/j.mtla.2024.102196","url":null,"abstract":"<div><p>The influence of printing variables on microstructural and mechanical behaviors on the 316 L stainless steel (316 L SS), produced via an additive manufacturing process, named as bound metal deposition (BMD), was investigated in this study. The printing parameters varied were infill density, diameter of the nozzle, and thickness of layers, which dictate the mechanical properties, surface roughness, and crack morphology of the samples. Based on the experimental investigation, it was found that the tensile properties were increased when the nozzle diameter and infill density were higher. The highest obtained ultimate tensile strength (UTS) was 402 ± 17 MPa, where the sample was fabricated with the following parameters: 0.40 mm nozzle diameter, 25% infill density, and 0.10 mm layer. The influence of the nozzle diameter also impacted the surface roughness, where a worse surface finish was noticed for the larger nozzle diameter.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"36 ","pages":"Article 102196"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924001935/pdfft?md5=17ded095dbb36747e71b07aeab1ac546&pid=1-s2.0-S2589152924001935-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.mtla.2024.102192
K.G. Wang , X. Li
Microgravity experiments on phase coarsening in solid-liquid mixtures provided an ideal tool to closely and accurately explore the kinetics of phase coarsening because the sedimentation and convective melt flow are eliminated in the International Space Station. In this study, we employed phase-field simulations to systematically investigate the microstructure evolution during phase coarsening at various volume fractions. Simulated microstructure evolution during phase coarsening are compared quantitatively with the microstructure evolution archived from microgravity experiments. Furthermore, kinetics of phase coarsening in Pb-Sn solid-liquid mixtures at various volume fractions is studied theoretically and numerically, which is compared with microgravity experiments. In particular, particle size distribution, relative coarsening rate constants, and scaled maximum particle radii, are predicted from theories, and deduced from microgravity experiments, then calculated from phase-field simulations. This systematic and quantitative study of phase coarsening confirms the consistency to the results from phase-field simulation, microgravity experiments and theories at lower volume fractions, and stimulates more careful microgravity experiments at higher volume fractions ().
{"title":"Systematic and quantitative testing simulations and theories on phase coarsening by experiments","authors":"K.G. Wang , X. Li","doi":"10.1016/j.mtla.2024.102192","DOIUrl":"10.1016/j.mtla.2024.102192","url":null,"abstract":"<div><p>Microgravity experiments on phase coarsening in solid-liquid mixtures provided an ideal tool to closely and accurately explore the kinetics of phase coarsening because the sedimentation and convective melt flow are eliminated in the International Space Station. In this study, we employed phase-field simulations to systematically investigate the microstructure evolution during phase coarsening at various volume fractions. Simulated microstructure evolution during phase coarsening are compared quantitatively with the microstructure evolution archived from microgravity experiments. Furthermore, kinetics of phase coarsening in Pb-Sn solid-liquid mixtures at various volume fractions is studied theoretically and numerically, which is compared with microgravity experiments. In particular, particle size distribution, relative coarsening rate constants, and scaled maximum particle radii, are predicted from theories, and deduced from microgravity experiments, then calculated from phase-field simulations. This systematic and quantitative study of phase coarsening confirms the consistency to the results from phase-field simulation, microgravity experiments and theories at lower volume fractions, and stimulates more careful microgravity experiments at higher volume fractions (<span><math><mrow><mo>≥</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>).</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"37 ","pages":"Article 102192"},"PeriodicalIF":3.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grain boundary (GB) segregation of solute atoms is a key factor affecting the microstructure and macroscopic properties of materials. In this study, first-principles calculations were carried out to investigate the effect of solute atoms (Mg and Cu) segregation on the structural evolution and mechanical response of Al ground-state Σ5(210) GB (GB-Ⅰ) and metastable Σ5(210) GBs (GB-Ⅱ and GB-Ⅲ). The GB energy, segregation energy, and the theoretical tensile strength of the multiple Σ5(210) GBs were calculated. The results show that both Mg and Cu atoms tend to segregate in the boundary plane, thus reducing GB energy and improving GB stability. The segregation of Cu atoms reduced the GB energy more significantly than that of Mg atoms. The segregation of solute atoms can change the symmetric GB structure into an asymmetric one or induce GB phase transformation. The theoretical strength of GB-I is weaker than that of the metastable GB-II with higher GB energy, suggesting that grain boundaries with higher energy are not necessarily unstable. In addition, the effect of solute atom segregation on the GB strength depends not only on the type of element but also on the specific GB structure. The weakening effect of Mg segregation in GB-I and GB-II is due to the weak MgAl bond which enlarges the low charge density region of GB and increases the free volume of GB. The strengthening of GB-I and GB-II by Cu segregation mainly depends on the stronger AlCu bond than AlAl bond along the GB fracture path. The enhanced strength of GB-III with Mg and Cu segregation is attributed to the GB structural phase transformation caused by the segregation of solute atoms. The calculation results further elucidate the relationship between element segregation and grain boundary characteristics.
{"title":"Structural evolution and mechanical response of multiple Al Σ5(210) grain boundaries with segregation of solute atoms: First-principles study","authors":"Liang Zhang , Zhihui Zhang , Xuan Zhang , Yasushi Shibuta , Xiaoxu Huang","doi":"10.1016/j.mtla.2024.102193","DOIUrl":"10.1016/j.mtla.2024.102193","url":null,"abstract":"<div><p>Grain boundary (GB) segregation of solute atoms is a key factor affecting the microstructure and macroscopic properties of materials. In this study, first-principles calculations were carried out to investigate the effect of solute atoms (Mg and Cu) segregation on the structural evolution and mechanical response of Al ground-state Σ5(210) GB (GB-Ⅰ) and metastable Σ5(210) GBs (GB-Ⅱ and GB-Ⅲ). The GB energy, segregation energy, and the theoretical tensile strength of the multiple Σ5(210) GBs were calculated. The results show that both Mg and Cu atoms tend to segregate in the boundary plane, thus reducing GB energy and improving GB stability. The segregation of Cu atoms reduced the GB energy more significantly than that of Mg atoms. The segregation of solute atoms can change the symmetric GB structure into an asymmetric one or induce GB phase transformation. The theoretical strength of GB-I is weaker than that of the metastable GB-II with higher GB energy, suggesting that grain boundaries with higher energy are not necessarily unstable. In addition, the effect of solute atom segregation on the GB strength depends not only on the type of element but also on the specific GB structure. The weakening effect of Mg segregation in GB-I and GB-II is due to the weak Mg<img>Al bond which enlarges the low charge density region of GB and increases the free volume of GB. The strengthening of GB-I and GB-II by Cu segregation mainly depends on the stronger Al<img>Cu bond than Al<img>Al bond along the GB fracture path. The enhanced strength of GB-III with Mg and Cu segregation is attributed to the GB structural phase transformation caused by the segregation of solute atoms. The calculation results further elucidate the relationship between element segregation and grain boundary characteristics.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"37 ","pages":"Article 102193"},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shape memory alloys (SMAs) have attracted much attention due to the great demand for biomedical materials. Among the SMAs, the Ti-based SMAs are promising materials owing to their high biocompatibility, non-toxicity, excellent functionalities, and proper mechanical properties. Concerning the Ti-based SMAs, adding other elements is an often-used strategy, and the combinations of the addition materials are unlimited. Among the various Ti-based alloy systems, the Ti-Mo-Al-Zr alloy is one fundamental alloy system, since Mo and Al are served as the specific metals for the calculations of the Mo equivalent and Al equivalent for the evaluation of the alloy stability. While Zr is a neutral element for fine-tuning the properties of the alloys. This fundamental quaternary alloy was thus chosen in this study. In this research series, it has been found that the Ti-5.5Mo-8Al-6Zr alloy performed proper mechanical properties. Therefore, this specific alloy was further subjected to various thermomechanical treatments to further improve its properties. In addition to the Ti-5.5Mo-8Al-6Zr alloy, pseudo-binary alloys of (Ti-Zr)-Mo were also investigated due to their intrinsic low phase transformation temperature compared to the pure Ti and Zr elements. Strategies for the development of these SMAs by conducting thermomechanical treatments have been proposed in this study.
由于对生物医学材料的巨大需求,形状记忆合金(SMA)备受关注。在 SMAs 中,钛基 SMAs 具有很高的生物相容性、无毒性、优异的功能性和适当的机械性能,是一种很有前途的材料。对于钛基 SMA,添加其他元素是一种常用的策略,而且添加材料的组合是无限的。在各种钛基合金体系中,Ti-Mo-Al-Zr 合金是一种基本的合金体系,因为 Mo 和 Al 可作为特定金属,用于计算 Mo 当量和 Al 当量,以评估合金的稳定性。而 Zr 是一种中性元素,用于微调合金的性能。因此,本研究选择了这种基本的四元合金。在这一系列研究中,发现 Ti-5.5Mo-8Al-6Zr 合金具有适当的机械性能。因此,对这种特定合金进一步进行了各种热机械处理,以进一步提高其性能。除 Ti-5.5Mo-8Al-6Zr 合金外,还研究了 (Ti-Zr)-Mo 的假二元合金,因为与纯 Ti 和 Zr 元素相比,它们的固有相变温度较低。本研究提出了通过热机械处理开发这些 SMA 的策略。
{"title":"Mechanical properties of various thermomechanical processed Ti-Mo-Al-Zr and pseudo-binary (Ti-Zr)-Mo shape memory alloys for biomedical applications","authors":"Wan-Ting Chiu , Ryunosuke Hayakawa , Naoki Nohira , Masaki Tahara , Tomonari Inamura , Hideki Hosoda","doi":"10.1016/j.mtla.2024.102194","DOIUrl":"10.1016/j.mtla.2024.102194","url":null,"abstract":"<div><p>Shape memory alloys (SMAs) have attracted much attention due to the great demand for biomedical materials. Among the SMAs, the Ti-based SMAs are promising materials owing to their high biocompatibility, non-toxicity, excellent functionalities, and proper mechanical properties. Concerning the Ti-based SMAs, adding other elements is an often-used strategy, and the combinations of the addition materials are unlimited. Among the various Ti-based alloy systems, the Ti-Mo-Al-Zr alloy is one fundamental alloy system, since Mo and Al are served as the specific metals for the calculations of the Mo equivalent and Al equivalent for the evaluation of the alloy stability. While Zr is a neutral element for fine-tuning the properties of the alloys. This fundamental quaternary alloy was thus chosen in this study. In this research series, it has been found that the Ti-5.5Mo-8Al-6Zr alloy performed proper mechanical properties. Therefore, this specific alloy was further subjected to various thermomechanical treatments to further improve its properties. In addition to the Ti-5.5Mo-8Al-6Zr alloy, pseudo-binary alloys of (Ti-Zr)-Mo were also investigated due to their intrinsic low phase transformation temperature compared to the pure Ti and Zr elements. Strategies for the development of these SMAs by conducting thermomechanical treatments have been proposed in this study.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"37 ","pages":"Article 102194"},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}