首页 > 最新文献

Infomat最新文献

英文 中文
Phase separation and domain crystallinity control enable open-air-printable highly efficient and sustainable organic photovoltaics 相分离和域结晶度控制实现了可露天打印的高效和可持续有机光伏技术
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-31 DOI: 10.1002/inf2.12530
Jie Lv, Xiaokang Sun, Hua Tang, Fei Wang, Guangye Zhang, Liangxiang Zhu, Jiaming Huang, Qianguang Yang, Shirong Lu, Gang Li, Frédéric Laquai, Hanlin Hu

Organic solar cells (OSCs) have emerged as a promising solution for sustainable energy production, offering advantages such as a low carbon footprint, short energy payback period, and compatibility with eco-solvents. However, the use of hazardous solvents continues to dominate the best-performing OSCs, mainly because of the challenges of controlling phase separation and domain crystallinity in eco-solvents. In this study, we combined the solvent vapor treatment of CS2 and thermal annealing to precisely control the phase separation and domain crystallinity in PM6:M-Cl and PM6:O-Cl systems processed with the eco-solvent o-xylene. This method resulted in a maximum power conversion efficiency (PCE) of 18.4%, which is among the highest values reported for sustainable binary OSCs. Furthermore, the fabrication techniques were transferred from spin coating in a nitrogen environment to blade printing in ambient air, retaining a PCE of 16.0%, showing its potential for high-throughput and scalable production. In addition, a comparative analysis of OSCs processed with hazardous and green solvents was conducted to reveal the differences in phase aggregation. This work not only underscores the significance of sustainability in OSCs but also lays the groundwork for unlocking the full potential of open-air-printable sustainable OSCs for commercialization.

有机太阳能电池(OSCs)具有碳足迹小、能源回收期短、与生态溶剂兼容等优点,已成为一种有前途的可持续能源生产解决方案。然而,在性能最佳的 OSCs 中,有害溶剂的使用仍然占主导地位,这主要是因为在生态溶剂中控制相分离和域结晶度面临挑战。在本研究中,我们将 CS2 的溶剂气相处理与热退火相结合,精确控制了使用生态溶剂邻二甲苯处理的 PM6:M-Cl 和 PM6:O-Cl 系统中的相分离和畴结晶度。通过这种方法,最大功率转换效率(PCE)达到了 18.4%,是目前报道的可持续二元 OSC 最高值之一。此外,制造技术从氮气环境中的旋涂转移到了环境空气中的叶片印刷,保留了 16.0% 的 PCE,显示了其高通量和可扩展生产的潜力。此外,还对使用有害溶剂和绿色溶剂加工的 OSC 进行了对比分析,以揭示相聚集的差异。这项工作不仅强调了可持续有机碳酸钙的重要性,而且为释放可露天打印的可持续有机碳酸钙的全部商业化潜力奠定了基础。
{"title":"Phase separation and domain crystallinity control enable open-air-printable highly efficient and sustainable organic photovoltaics","authors":"Jie Lv,&nbsp;Xiaokang Sun,&nbsp;Hua Tang,&nbsp;Fei Wang,&nbsp;Guangye Zhang,&nbsp;Liangxiang Zhu,&nbsp;Jiaming Huang,&nbsp;Qianguang Yang,&nbsp;Shirong Lu,&nbsp;Gang Li,&nbsp;Frédéric Laquai,&nbsp;Hanlin Hu","doi":"10.1002/inf2.12530","DOIUrl":"10.1002/inf2.12530","url":null,"abstract":"<p>Organic solar cells (OSCs) have emerged as a promising solution for sustainable energy production, offering advantages such as a low carbon footprint, short energy payback period, and compatibility with eco-solvents. However, the use of hazardous solvents continues to dominate the best-performing OSCs, mainly because of the challenges of controlling phase separation and domain crystallinity in eco-solvents. In this study, we combined the solvent vapor treatment of CS<sub>2</sub> and thermal annealing to precisely control the phase separation and domain crystallinity in PM6:M-Cl and PM6:O-Cl systems processed with the eco-solvent o-xylene. This method resulted in a maximum power conversion efficiency (PCE) of 18.4%, which is among the highest values reported for sustainable binary OSCs. Furthermore, the fabrication techniques were transferred from spin coating in a nitrogen environment to blade printing in ambient air, retaining a PCE of 16.0%, showing its potential for high-throughput and scalable production. In addition, a comparative analysis of OSCs processed with hazardous and green solvents was conducted to reveal the differences in phase aggregation. This work not only underscores the significance of sustainability in OSCs but also lays the groundwork for unlocking the full potential of open-air-printable sustainable OSCs for commercialization.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12530","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal reconstruction of V2O3/carbon heterointerfaces via anodic hydration for ultrafast and reversible Mg-ion battery cathodes 通过阳极水合重构 V2O3/碳异质界面的晶体,实现超快和可逆的镁离子电池阴极
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-30 DOI: 10.1002/inf2.12517
Gun Jang, Yun Sang Joe, Sang Joon Lee, Hyun Gyu Cho, Sang Ha Baek, Peixun Xiong, Kang Ho Shin, Jeong Seok Yeon, Min Su Kang, Si Hyoung Oh, Ho Seok Park

Magnesium-ion batteries (MIBs) have promising applications because of their high theoretical capacity and the natural abundance of magnesium Mg. However, the kinetic performance and cyclic stability of cathode materials are limited by the strong interactions between Mg ions and the crystal lattice. Here, we demonstrate the unique Mg2+-ion storage mechanism of a hierarchical accordion-like vanadium oxide/carbon heterointerface (V2O3@C), where the V2O3 crystalline structure is reconstructed into a MgV3O7∙H2O phase through an anodic hydration reaction upon first cycle, for the improved kinetic and cyclic performances. As verified by in situ/ex situ spectroscopic and electrochemical analyses, the fast charge transfer kinetics of the V2O3@C cathode were due to the crystal-reconstruction and chemically coupled heterointerface. The V2O3@C demonstrated an ultrahigh rate capacity of 130.4 mAh g−1 at 50 000 mA g−1 and 1000 cycles, achieving a Coulombic efficiency of 99.6%. The high capacity of 381.0 mA h g−1 can be attributed to the reversible Mg2+-ion intercalation mechanism observed in the MgV3O7∙H2O phase using a 0.3 M Mg(TFSI)2/ACN(H2O) electrolyte. Additionally, within the voltage range of 2.25 V versus Mg/Mg2+, the V2O3@C exhibited a capacity of 245.1 mAh g−1 when evaluated with magnesium metal in a 0.3 M Mg(TFSI)2 + 0.25 M MgCl2/DME electrolyte. These research findings have important implications for understanding the relationship between the Mg-ion storage mechanism and reconstructed crystal phase of vanadium oxides as well as the heterointerface reconstruction for the rational design of MIB cathode materials.

镁离子电池(MIBs)具有很高的理论容量和天然丰富的镁。然而,正极材料的动力学性能和循环稳定性受到镁离子与晶格之间强烈相互作用的限制。在这里,我们展示了分层风琴状氧化钒/碳异质界面(V2O3@C)独特的 Mg2+ 离子存储机制,即 V2O3 晶体结构在第一次循环后通过阳极水合反应重构为 MgV3O7∙H2O 相,从而改善了动力学性能和循环性能。经原位/原位光谱和电化学分析验证,V2O3@C 阴极的快速电荷转移动力学归功于晶体重构和化学耦合异质界面。在 50 000 mA g-1 和 1000 次循环条件下,V2O3@C 显示出 130.4 mAh g-1 的超高速率容量,库仑效率达到 99.6%。381.0 mA h g-1 的高容量可归因于使用 0.3 M Mg(TFSI)2/ACN(H2O) 电解质在 MgV3O7∙H2O 相中观察到的可逆 Mg2+ 离子插层机制。此外,在 0.3 Mg(TFSI)2 + 0.25 MgCl2/DME 电解质中,V2O3@C 在 2.25 V 与 Mg/Mg2+ 的电压范围内,与金属镁一起表现出 245.1 mAh g-1 的容量。这些研究成果对于理解镁离子存储机制与钒氧化物重构晶相之间的关系以及异质界面重构对合理设计 MIB 阴极材料具有重要意义。
{"title":"Crystal reconstruction of V2O3/carbon heterointerfaces via anodic hydration for ultrafast and reversible Mg-ion battery cathodes","authors":"Gun Jang,&nbsp;Yun Sang Joe,&nbsp;Sang Joon Lee,&nbsp;Hyun Gyu Cho,&nbsp;Sang Ha Baek,&nbsp;Peixun Xiong,&nbsp;Kang Ho Shin,&nbsp;Jeong Seok Yeon,&nbsp;Min Su Kang,&nbsp;Si Hyoung Oh,&nbsp;Ho Seok Park","doi":"10.1002/inf2.12517","DOIUrl":"10.1002/inf2.12517","url":null,"abstract":"<p>Magnesium-ion batteries (MIBs) have promising applications because of their high theoretical capacity and the natural abundance of magnesium Mg. However, the kinetic performance and cyclic stability of cathode materials are limited by the strong interactions between Mg ions and the crystal lattice. Here, we demonstrate the unique Mg<sup>2+</sup>-ion storage mechanism of a hierarchical accordion-like vanadium oxide/carbon heterointerface (V<sub>2</sub>O<sub>3</sub>@C), where the V<sub>2</sub>O<sub>3</sub> crystalline structure is reconstructed into a MgV<sub>3</sub>O<sub>7</sub>∙H<sub>2</sub>O phase through an anodic hydration reaction upon first cycle, for the improved kinetic and cyclic performances. As verified by in situ/ex situ spectroscopic and electrochemical analyses, the fast charge transfer kinetics of the V<sub>2</sub>O<sub>3</sub>@C cathode were due to the crystal-reconstruction and chemically coupled heterointerface. The V<sub>2</sub>O<sub>3</sub>@C demonstrated an ultrahigh rate capacity of 130.4 mAh g<sup>−1</sup> at 50 000 mA g<sup>−1</sup> and 1000 cycles, achieving a Coulombic efficiency of 99.6%. The high capacity of 381.0 mA h g<sup>−1</sup> can be attributed to the reversible Mg<sup>2+</sup>-ion intercalation mechanism observed in the MgV<sub>3</sub>O<sub>7</sub>∙H<sub>2</sub>O phase using a 0.3 M Mg(TFSI)<sub>2</sub>/ACN(H<sub>2</sub>O) electrolyte. Additionally, within the voltage range of 2.25 V versus Mg/Mg<sup>2+</sup>, the V<sub>2</sub>O<sub>3</sub>@C exhibited a capacity of 245.1 mAh g<sup>−1</sup> when evaluated with magnesium metal in a 0.3 M Mg(TFSI)<sub>2</sub> + 0.25 M MgCl<sub>2</sub>/DME electrolyte. These research findings have important implications for understanding the relationship between the Mg-ion storage mechanism and reconstructed crystal phase of vanadium oxides as well as the heterointerface reconstruction for the rational design of MIB cathode materials.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover image 封面图片
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-25 DOI: 10.1002/inf2.12525
Chaojun Zhang, Yang Tang, Tianyu Guo, Yizhou Sang, Ding Li, Xiaoling Wang, Orlando J. Rojas, Junling Guo

Natural polyphenol-functionalized liquid metal to dissipate CPU interfacial heat for efficient thermal management systems

天然多酚功能化液态金属为高效热管理系统分散 CPU 接口热量
{"title":"Front Cover image","authors":"Chaojun Zhang,&nbsp;Yang Tang,&nbsp;Tianyu Guo,&nbsp;Yizhou Sang,&nbsp;Ding Li,&nbsp;Xiaoling Wang,&nbsp;Orlando J. Rojas,&nbsp;Junling Guo","doi":"10.1002/inf2.12525","DOIUrl":"10.1002/inf2.12525","url":null,"abstract":"<p>Natural polyphenol-functionalized liquid metal to dissipate CPU interfacial heat for efficient thermal management systems\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back cover image 封底图片
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-25 DOI: 10.1002/inf2.12526
Mengyu Hong, Xiankun Zhang, Yu Geng, Yunan Wang, Xiaofu Wei, Li Gao, Huihui Yu, Zhihong Cao, Zheng Zhang, Yue Zhang

Universal van der Waals integrated metal electrode approach drives integrated circuit advanced process development

通用范德华集成金属电极方法推动集成电路先进工艺开发
{"title":"Back cover image","authors":"Mengyu Hong,&nbsp;Xiankun Zhang,&nbsp;Yu Geng,&nbsp;Yunan Wang,&nbsp;Xiaofu Wei,&nbsp;Li Gao,&nbsp;Huihui Yu,&nbsp;Zhihong Cao,&nbsp;Zheng Zhang,&nbsp;Yue Zhang","doi":"10.1002/inf2.12526","DOIUrl":"10.1002/inf2.12526","url":null,"abstract":"<p>Universal van der Waals integrated metal electrode approach drives integrated circuit advanced process development\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry 用于反向设计具有有效掺杂和精确化学计量的高 Tc 超导材料的高性能扩散模型
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-22 DOI: 10.1002/inf2.12519
Chengquan Zhong, Jingzi Zhang, Yuelin Wang, Yanwu Long, Pengzhou Zhu, Jiakai Liu, Kailong Hu, Junjie Chen, Xi Lin

The pursuit of designing superconductors with high Tc has been a long-standing endeavor. However, the widespread incorporation of doping in high Tc superconductors significantly impacts electronic structure, intricately influencing Tc. The complex interplay between the structural composition and material performance presents a formidable challenge in superconductor design. Based on a novel generative model, diffusion model, and doping adaptive representation: three-channel matrix, we have designed a high Tc superconductors inverse design model called Supercon-Diffusion. It has achieved remarkable success in accurately generating chemical formulas for doped high Tc superconductors. Supercon-Diffusion is capable of generating superconductors that exhibit high Tc and excels at identifying the optimal doping ratios that yield the peak Tc. The doping effectiveness (55%) and electrical neutrality (55%) of the generated doped superconductors exceed those of traditional GAN models by more than tenfold. Density of state calculations on the structures further confirm the validity of the generated superconductors. Additionally, we have proposed 200 potential high Tc superconductors that have not been documented yet. This groundbreaking contribution effectively reduces the search space for high Tc superconductors. Moreover, it successfully establishes a bridge between the interrelated aspects of composition, structure, and property in superconductors, providing a novel solution for designing other doped materials.

设计具有高 Tc 的超导体是一项长期的工作。然而,在高 Tc 超导材料中广泛掺入掺杂剂会对电子结构产生重大影响,从而错综复杂地影响 Tc。结构组成与材料性能之间复杂的相互作用给超导体设计带来了严峻的挑战。基于新颖的生成模型、扩散模型和掺杂自适应表示:三通道矩阵,我们设计了一种名为 Supercon-Diffusion 的高 Tc 超导反向设计模型。该模型在精确生成掺杂高锝超导体的化学公式方面取得了巨大成功。Supercon-Diffusion 能够生成表现出高 Tc 的超导体,并擅长确定产生峰值 Tc 的最佳掺杂比。生成的掺杂超导体的掺杂有效性(55%)和电中性(55%)超过传统 GAN 模型的 10 倍以上。对这些结构进行的状态密度计算进一步证实了所生成超导体的有效性。此外,我们还提出了 200 种尚未记录在案的潜在高 Tc 超导物。这一突破性贡献有效地缩小了高锝超导体的搜索空间。此外,它还成功地在超导体的组成、结构和性质等相互关联的方面之间架起了一座桥梁,为设计其他掺杂材料提供了新颖的解决方案。
{"title":"High-performance diffusion model for inverse design of high Tc superconductors with effective doping and accurate stoichiometry","authors":"Chengquan Zhong,&nbsp;Jingzi Zhang,&nbsp;Yuelin Wang,&nbsp;Yanwu Long,&nbsp;Pengzhou Zhu,&nbsp;Jiakai Liu,&nbsp;Kailong Hu,&nbsp;Junjie Chen,&nbsp;Xi Lin","doi":"10.1002/inf2.12519","DOIUrl":"10.1002/inf2.12519","url":null,"abstract":"<p>The pursuit of designing superconductors with high <i>T</i><sub>c</sub> has been a long-standing endeavor. However, the widespread incorporation of doping in high <i>T</i><sub>c</sub> superconductors significantly impacts electronic structure, intricately influencing <i>T</i><sub>c</sub>. The complex interplay between the structural composition and material performance presents a formidable challenge in superconductor design. Based on a novel generative model, diffusion model, and doping adaptive representation: three-channel matrix, we have designed a high <i>T</i><sub>c</sub> superconductors inverse design model called Supercon-Diffusion. It has achieved remarkable success in accurately generating chemical formulas for doped high <i>T</i><sub>c</sub> superconductors. Supercon-Diffusion is capable of generating superconductors that exhibit high <i>T</i><sub>c</sub> and excels at identifying the optimal doping ratios that yield the peak <i>T</i><sub>c</sub>. The doping effectiveness (55%) and electrical neutrality (55%) of the generated doped superconductors exceed those of traditional GAN models by more than tenfold. Density of state calculations on the structures further confirm the validity of the generated superconductors. Additionally, we have proposed 200 potential high <i>T</i><sub>c</sub> superconductors that have not been documented yet. This groundbreaking contribution effectively reduces the search space for high <i>T</i><sub>c</sub> superconductors. Moreover, it successfully establishes a bridge between the interrelated aspects of composition, structure, and property in superconductors, providing a novel solution for designing other doped materials.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139552689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8 范德华巡回铁磁性 Cr7Te8 中的栅极可调贝里曲率
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-16 DOI: 10.1002/inf2.12524
Kui Meng, Zeya Li, Zhansheng Gao, Xiangyu Bi, Peng Chen, Feng Qin, Caiyu Qiu, Lingyun Xu, Junwei Huang, Jinxiong Wu, Feng Luo, Hongtao Yuan

The anomalous Hall effect (AHE) that associated with the Berry curvature of occupied electronic states in momentum-space is one of the intriguing aspects in condensed matter physics, and provides an alternative for potential applications in topological electronics. Previous experiments reported the tunable Berry curvature and the resulting magnetization switching process in the AHE based on strain engineering or chemical doping. However, the AHE modulation by these strategies are usually irreversible, making it difficult to realize switchable control of the AHE and the resultant spintronic applications. Here, we demonstrated the switchable control of the Berry-curvature-related AHE by electrical gating in itinerant ferromagnetic Cr7Te8 with excellent ambient stability. The gate-tunable sign reversal of the AHE can be attributed to the redistribution of the Berry curvature in the band structure of Cr7Te8 due to the intercalation-induced change in the Fermi level. Our work facilitates the applications of magnetic switchable devices based on gate-tunable Berry curvature.

反常霍尔效应(AHE)与动量空间中占位电子态的贝里曲率有关,是凝聚态物理学中引人入胜的方面之一,并为拓扑电子学的潜在应用提供了另一种选择。之前的实验报告了基于应变工程或化学掺杂的可调贝里曲率以及由此产生的 AHE 磁化切换过程。然而,这些策略对 AHE 的调制通常是不可逆的,因此很难实现对 AHE 的可切换控制以及由此产生的自旋电子应用。在这里,我们展示了通过在具有出色环境稳定性的巡回铁磁性 Cr7Te8 中进行电门控,实现贝里曲率相关 AHE 的可切换控制。AHE的门控可调符号反转可归因于插层引起的费米级变化导致的Cr7Te8带状结构中贝里曲率的重新分布。我们的工作促进了基于门控可调贝里曲率的磁开关器件的应用。
{"title":"Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8","authors":"Kui Meng,&nbsp;Zeya Li,&nbsp;Zhansheng Gao,&nbsp;Xiangyu Bi,&nbsp;Peng Chen,&nbsp;Feng Qin,&nbsp;Caiyu Qiu,&nbsp;Lingyun Xu,&nbsp;Junwei Huang,&nbsp;Jinxiong Wu,&nbsp;Feng Luo,&nbsp;Hongtao Yuan","doi":"10.1002/inf2.12524","DOIUrl":"10.1002/inf2.12524","url":null,"abstract":"<p>The anomalous Hall effect (AHE) that associated with the Berry curvature of occupied electronic states in momentum-space is one of the intriguing aspects in condensed matter physics, and provides an alternative for potential applications in topological electronics. Previous experiments reported the tunable Berry curvature and the resulting magnetization switching process in the AHE based on strain engineering or chemical doping. However, the AHE modulation by these strategies are usually irreversible, making it difficult to realize switchable control of the AHE and the resultant spintronic applications. Here, we demonstrated the switchable control of the Berry-curvature-related AHE by electrical gating in itinerant ferromagnetic Cr<sub>7</sub>Te<sub>8</sub> with excellent ambient stability. The gate-tunable sign reversal of the AHE can be attributed to the redistribution of the Berry curvature in the band structure of Cr<sub>7</sub>Te<sub>8</sub> due to the intercalation-induced change in the Fermi level. Our work facilitates the applications of magnetic switchable devices based on gate-tunable Berry curvature.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12524","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A self-adaptive, data-driven method to predict the cycling life of lithium-ion batteries 预测锂离子电池循环寿命的自适应数据驱动方法
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-07 DOI: 10.1002/inf2.12521
Chao Han, Yu-Chen Gao, Xiang Chen, Xinyan Liu, Nan Yao, Legeng Yu, Long Kong, Qiang Zhang

Accurately forecasting the nonlinear degradation of lithium-ion batteries (LIBs) using early-cycle data can obviously shorten the battery test time, which accelerates battery optimization and production. In this work, a self-adaptive long short-term memory (SA-LSTM) method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data. Specifically, two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model. The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model. The proposed method achieved an average online prediction error of 6.00% and 6.74% for discharge capacity and end of life, respectively, when using the early-cycle discharge information until 90% capacity retention. Furthermore, the importance of temperature control was highlighted by correlating the features with the average temperature in each cycle. This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs, and unveils the underlying degradation mechanism and the importance of controlling environmental temperature.

利用早期循环数据准确预测锂离子电池(LIB)的非线性退化,可以明显缩短电池测试时间,从而加快电池优化和生产。本研究提出了一种自适应长短期记忆(SA-LSTM)方法,仅利用早期循环数据预测电池退化轨迹和电池寿命。具体来说,通过基于时间序列的方法从放电电压曲线中提取了两个特征,并利用 SA-LSTM 模型对进一步的循环进行了预测。获得的特征与容量相关联,通过广义多元线性回归模型预测容量衰减轨迹。当使用早期循环放电信息直至 90% 容量保持率时,所提出的方法对放电容量和寿命终止的平均在线预测误差分别为 6.00% 和 6.74%。此外,通过将特征与每个周期的平均温度相关联,突出了温度控制的重要性。这项工作开发了一种自适应数据驱动方法,可准确预测锂电池的循环寿命,并揭示了潜在的降解机制和控制环境温度的重要性。
{"title":"A self-adaptive, data-driven method to predict the cycling life of lithium-ion batteries","authors":"Chao Han,&nbsp;Yu-Chen Gao,&nbsp;Xiang Chen,&nbsp;Xinyan Liu,&nbsp;Nan Yao,&nbsp;Legeng Yu,&nbsp;Long Kong,&nbsp;Qiang Zhang","doi":"10.1002/inf2.12521","DOIUrl":"10.1002/inf2.12521","url":null,"abstract":"<p>Accurately forecasting the nonlinear degradation of lithium-ion batteries (LIBs) using early-cycle data can obviously shorten the battery test time, which accelerates battery optimization and production. In this work, a self-adaptive long short-term memory (SA-LSTM) method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data. Specifically, two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model. The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model. The proposed method achieved an average online prediction error of 6.00% and 6.74% for discharge capacity and end of life, respectively, when using the early-cycle discharge information until 90% capacity retention. Furthermore, the importance of temperature control was highlighted by correlating the features with the average temperature in each cycle. This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs, and unveils the underlying degradation mechanism and the importance of controlling environmental temperature.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12521","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139410227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active pixel image sensor array for dual vision using large-area bilayer WS2 使用大面积双层 WS2 的双视觉主动像素图像传感器阵列
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-04 DOI: 10.1002/inf2.12513
Arindam Bala, Mayuri Sritharan, Na Liu, Muhammad Naqi, Anamika Sen, Gyuchull Han, Hyun Yeol Rho, Youngki Yoon, Sunkook Kim

Transition metal dichalcogenides (TMDs) are a promising candidate for developing advanced sensors, particularly for day and night vision systems in vehicles, drones, and security surveillance. While traditional systems rely on separate sensors for different lighting conditions, TMDs can absorb light across a broad-spectrum range. In this study, a dual vision active pixel image sensor array based on bilayer WS2 phototransistors was implemented. The bilayer WS2 film was synthesized using a combined process of radio-frequency sputtering and chemical vapor deposition. The WS2-based thin-film transistors (TFTs) exhibit high average mobility, excellent Ion/Ioff, and uniform electrical properties. The optoelectronic properties of the TFTs array exhibited consistent behavior and can detect visible to near-infrared light with the highest responsivity of 1821 A W−1 (at a wavelength of 405 nm) owing to the photogating effect. Finally, red, green, blue, and near-infrared image sensing capabilities of active pixel image sensor array utilizing light stencil projection were demonstrated. The proposed image sensor array utilizing WS2 phototransistors has the potential to revolutionize the field of vision sensing, which could lead to a range of new opportunities in various applications, including night vision, pedestrian detection, various surveillance, and security systems.

过渡金属二钙化层(TMD)是开发先进传感器的理想候选材料,尤其适用于车辆、无人机和安全监控中的日夜视觉系统。传统系统依赖于不同光照条件下的独立传感器,而 TMD 可在宽光谱范围内吸收光线。在这项研究中,实现了一种基于双层 WS2 光电晶体管的双视觉主动像素图像传感器阵列。双层 WS2 薄膜是通过射频溅射和化学气相沉积的组合工艺合成的。基于 WS2 的薄膜晶体管(TFT)具有高平均迁移率、优异的离子/离子交换和均匀的电气特性。TFT 阵列的光电特性表现一致,可以检测可见光至近红外光,由于光ogating 效应,最高响应度达到 1821 A W-1(波长为 405 纳米)。最后,演示了利用光模板投影的有源像素图像传感器阵列的红、绿、蓝和近红外图像传感能力。所提出的利用 WS2 光电晶体管的图像传感器阵列有可能彻底改变视觉传感领域,从而为各种应用带来一系列新机遇,包括夜视、行人检测、各种监控和安全系统。
{"title":"Active pixel image sensor array for dual vision using large-area bilayer WS2","authors":"Arindam Bala,&nbsp;Mayuri Sritharan,&nbsp;Na Liu,&nbsp;Muhammad Naqi,&nbsp;Anamika Sen,&nbsp;Gyuchull Han,&nbsp;Hyun Yeol Rho,&nbsp;Youngki Yoon,&nbsp;Sunkook Kim","doi":"10.1002/inf2.12513","DOIUrl":"10.1002/inf2.12513","url":null,"abstract":"<p>Transition metal dichalcogenides (TMDs) are a promising candidate for developing advanced sensors, particularly for day and night vision systems in vehicles, drones, and security surveillance. While traditional systems rely on separate sensors for different lighting conditions, TMDs can absorb light across a broad-spectrum range. In this study, a dual vision active pixel image sensor array based on bilayer WS<sub>2</sub> phototransistors was implemented. The bilayer WS<sub>2</sub> film was synthesized using a combined process of radio-frequency sputtering and chemical vapor deposition. The WS<sub>2</sub>-based thin-film transistors (TFTs) exhibit high average mobility, excellent <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub>, and uniform electrical properties. The optoelectronic properties of the TFTs array exhibited consistent behavior and can detect visible to near-infrared light with the highest responsivity of 1821 A W<sup>−1</sup> (at a wavelength of 405 nm) owing to the photogating effect. Finally, red, green, blue, and near-infrared image sensing capabilities of active pixel image sensor array utilizing light stencil projection were demonstrated. The proposed image sensor array utilizing WS<sub>2</sub> phototransistors has the potential to revolutionize the field of vision sensing, which could lead to a range of new opportunities in various applications, including night vision, pedestrian detection, various surveillance, and security systems.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances and opportunities in MXene-based liquid crystals 基于 MXene 的液晶的最新进展和机遇
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-04 DOI: 10.1002/inf2.12516
Ken Aldren S. Usman, Jizhen Zhang, Kevinilo P. Marquez, Mia Angela N. Judicpa, Peter A. Lynch, Annabelle Bedford, Babak Anasori, Joselito M. Razal

The recent progress on the liquid crystalline (LC) dispersion of two-dimensional (2D) transition metal carbides (MXenes) has propelled this unique nanomaterial into a realm of high-performance architectures, such as films and fibers. Additionally, compared to architectures made from typical non-LC dispersions, those derived from LC MXene possess tunable ion transport routes and enhanced conductivity and physical properties, demonstrating great potential for a wide range of applications, such as electronic displays, smart glasses, and thermal camouflage devices. This review provides an overview of the progress achieved in the production and processing of LC MXenes, including critical discussions on satisfying the required conditions for LC formation. It also highlights how acquiring LC MXenes has broadened the current solution-based manufacturing paradigm of MXene-based architectures, resulting in unprecedented performances in their conventional applications (e.g., energy storage and strain sensing) and in their emerging uses (e.g., tribology). Opportunities for innovation and foreseen challenges are also discussed, offering future research directions on how to further benefit from the exciting potential of LC MXenes with the aim of promoting their widespread use in designing and manufacturing advanced materials and applications.

二维(2D)过渡金属碳化物(MXenes)的液晶(LC)分散最近取得了进展,推动这种独特的纳米材料进入薄膜和纤维等高性能结构领域。此外,与典型的非液相分散体相比,由液相 MXene 制成的结构具有可调的离子传输路径,并增强了导电性和物理性能,在电子显示屏、智能眼镜和热伪装设备等广泛应用中展现出巨大的潜力。本综述概述了在生产和加工低浓六亚甲基烯方面取得的进展,包括对满足形成低浓六亚甲基烯所需条件的关键讨论。综述还重点介绍了获取低浓二氧化二烯烃如何拓宽了当前基于二氧化二烯烃架构的溶液制造模式,从而在其传统应用(如能量存储和应变传感)和新兴应用(如摩擦学)中实现了前所未有的性能。此外,还讨论了创新机遇和可预见的挑战,为如何进一步受益于低浓二氧化二烯令人兴奋的潜力提供了未来的研究方向,目的是促进其在先进材料和应用的设计与制造中的广泛应用。
{"title":"Recent advances and opportunities in MXene-based liquid crystals","authors":"Ken Aldren S. Usman,&nbsp;Jizhen Zhang,&nbsp;Kevinilo P. Marquez,&nbsp;Mia Angela N. Judicpa,&nbsp;Peter A. Lynch,&nbsp;Annabelle Bedford,&nbsp;Babak Anasori,&nbsp;Joselito M. Razal","doi":"10.1002/inf2.12516","DOIUrl":"10.1002/inf2.12516","url":null,"abstract":"<p>The recent progress on the liquid crystalline (LC) dispersion of two-dimensional (2D) transition metal carbides (MXenes) has propelled this unique nanomaterial into a realm of high-performance architectures, such as films and fibers. Additionally, compared to architectures made from typical non-LC dispersions, those derived from LC MXene possess tunable ion transport routes and enhanced conductivity and physical properties, demonstrating great potential for a wide range of applications, such as electronic displays, smart glasses, and thermal camouflage devices. This review provides an overview of the progress achieved in the production and processing of LC MXenes, including critical discussions on satisfying the required conditions for LC formation. It also highlights how acquiring LC MXenes has broadened the current solution-based manufacturing paradigm of MXene-based architectures, resulting in unprecedented performances in their conventional applications (e.g., energy storage and strain sensing) and in their emerging uses (e.g., tribology). Opportunities for innovation and foreseen challenges are also discussed, offering future research directions on how to further benefit from the exciting potential of LC MXenes with the aim of promoting their widespread use in designing and manufacturing advanced materials and applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139376018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring 用于自供电物联网人体运动监测的三电步态传感分析系统
IF 22.7 1区 材料科学 Q1 Materials Science Pub Date : 2024-01-04 DOI: 10.1002/inf2.12520
Leilei Zhao, Xiao Guo, Yusen Pan, Shouchuang Jia, Liqiang Liu, Walid A. Daoud, Peter Poechmueller, Xiya Yang

Quantitative analysis of gait parameters, such as stride frequency and step speed, is essential for optimizing physical exercise for the human body. However, the current electronic sensors used in human motion monitoring remain constrained by factors such as battery life and accuracy. This study developed a self-powered gait analysis system (SGAS) based on a triboelectric nanogenerator (TENG) fabricated electrospun composite nanofibers for motion monitoring and gait analysis for regulating exercise programs. The SGAS consists of a sensing module, a charging module, a data acquisition and processing module, and an Internet of Things (IoT) platform. Within the sensing module, two specialized sensing units, TENG-S1 and TENG-S2, are positioned at the forefoot and heel to generate synchronized signals in tandem with the user's footsteps. These signals are instrumental for real-time step count and step speed monitoring. The output of the two TENG units is significantly improved by systematically investigating and optimizing the electrospun composite nanofibers' composition, strength, and wear resistance. Additionally, a charge amplifier circuit is implemented to process the raw voltage signal, consequently bolstering the reliability of the sensing signal. This refined data is then ready for further reading and calculation by the micro-controller unit (MCU) during the signal transmission process. Finally, the well-conditioned signals are wirelessly transmitted to the IoT platform for data analysis, storage, and visualization, enhancing human motion monitoring.

步频和步速等步态参数的定量分析对于优化人体运动至关重要。然而,目前用于人体运动监测的电子传感器仍然受到电池寿命和精度等因素的限制。本研究开发了一种自供电步态分析系统(SGAS),该系统基于电纺复合纳米纤维制成的三电纳米发电机(TENG),用于运动监测和步态分析,以调节锻炼计划。SGAS 由传感模块、充电模块、数据采集和处理模块以及物联网(IoT)平台组成。在传感模块中,两个专门的传感单元 TENG-S1 和 TENG-S2 分别位于前脚掌和后脚跟处,与用户的脚步同步产生信号。这些信号有助于实时监测步数和步速。通过系统地研究和优化电纺复合纳米纤维的成分、强度和耐磨性,两个 TENG 单元的输出得到了显著改善。此外,还采用了电荷放大器电路来处理原始电压信号,从而提高了传感信号的可靠性。在信号传输过程中,微控制器单元(MCU)可进一步读取和计算这些细化数据。最后,经过处理的信号会以无线方式传输到物联网平台,用于数据分析、存储和可视化,从而加强对人体运动的监测。
{"title":"Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring","authors":"Leilei Zhao,&nbsp;Xiao Guo,&nbsp;Yusen Pan,&nbsp;Shouchuang Jia,&nbsp;Liqiang Liu,&nbsp;Walid A. Daoud,&nbsp;Peter Poechmueller,&nbsp;Xiya Yang","doi":"10.1002/inf2.12520","DOIUrl":"10.1002/inf2.12520","url":null,"abstract":"<p>Quantitative analysis of gait parameters, such as stride frequency and step speed, is essential for optimizing physical exercise for the human body. However, the current electronic sensors used in human motion monitoring remain constrained by factors such as battery life and accuracy. This study developed a self-powered gait analysis system (SGAS) based on a triboelectric nanogenerator (TENG) fabricated electrospun composite nanofibers for motion monitoring and gait analysis for regulating exercise programs. The SGAS consists of a sensing module, a charging module, a data acquisition and processing module, and an Internet of Things (IoT) platform. Within the sensing module, two specialized sensing units, TENG-S1 and TENG-S2, are positioned at the forefoot and heel to generate synchronized signals in tandem with the user's footsteps. These signals are instrumental for real-time step count and step speed monitoring. The output of the two TENG units is significantly improved by systematically investigating and optimizing the electrospun composite nanofibers' composition, strength, and wear resistance. Additionally, a charge amplifier circuit is implemented to process the raw voltage signal, consequently bolstering the reliability of the sensing signal. This refined data is then ready for further reading and calculation by the micro-controller unit (MCU) during the signal transmission process. Finally, the well-conditioned signals are wirelessly transmitted to the IoT platform for data analysis, storage, and visualization, enhancing human motion monitoring.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12520","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Infomat
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1