In this paper, an adaptive neural network learning based nonsynchronous control method is developed for hidden Markov jump systems with unmodeled nonlinear dynamics. In particular, the system modes are not directly accessible and the limited mode information can be partly estimated by the nonsynchronous controller. More precisely, the mode information with partly accessible transition rates is utilized based on the transition probability matrix. Moreover, the unmodeled nonlinear dynamics are more general in practical applications. Based on the designed mode-dependent controllers with mode observation, sufficient conditions are first exploited by means of the Lyapunov method, such that the desired control performance could be ensured in the mean-square sense. Then, the nonsynchronous mode-dependent controllers are further determined in terms of convex optimization. In the end, our proposed control strategy is applied to a robotic manipulator with varying loads to validate the feasibility with simulation results.
{"title":"Adaptive learning nonsynchronous control of nonlinear hidden Markov jump systems with limited mode information","authors":"Chao Ma, Hang Gao, Wei Wu","doi":"10.3934/era.2023340","DOIUrl":"https://doi.org/10.3934/era.2023340","url":null,"abstract":"<abstract><p>In this paper, an adaptive neural network learning based nonsynchronous control method is developed for hidden Markov jump systems with unmodeled nonlinear dynamics. In particular, the system modes are not directly accessible and the limited mode information can be partly estimated by the nonsynchronous controller. More precisely, the mode information with partly accessible transition rates is utilized based on the transition probability matrix. Moreover, the unmodeled nonlinear dynamics are more general in practical applications. Based on the designed mode-dependent controllers with mode observation, sufficient conditions are first exploited by means of the Lyapunov method, such that the desired control performance could be ensured in the mean-square sense. Then, the nonsynchronous mode-dependent controllers are further determined in terms of convex optimization. In the end, our proposed control strategy is applied to a robotic manipulator with varying loads to validate the feasibility with simulation results.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135052013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez
The acquisition of antibiotic resistance due to the consumption of food contaminated with resistant strains is a public health problem that has been increasing in the last decades. Mathematical modeling is contributing to the solution of this problem. In this article we performed the qualitative analysis of a mathematical model that explores the competition dynamics in vivo of ceftiofur-resistant and sensitive commensal enteric Escherichia coli (E. coli) in the absence and during parenteral ceftiofur therapy within the gut of cattle, considering the therapeutic effects (pharmacokinetics (PK)/pharmacodynamics (PD)) in the outcome of infection. Through this analysis, empirical properties obtained through in vivo experimentation were verified, and it also evidenced other properties of bacterial dynamics that had not been previously shown. In addition, the impact of PD and PK has been evaluated.
{"title":"On the contribution of qualitative analysis in mathematical modeling of plasmid-mediated ceftiofur resistance","authors":"Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez","doi":"10.3934/era.2023337","DOIUrl":"https://doi.org/10.3934/era.2023337","url":null,"abstract":"<abstract><p>The acquisition of antibiotic resistance due to the consumption of food contaminated with resistant strains is a public health problem that has been increasing in the last decades. Mathematical modeling is contributing to the solution of this problem. In this article we performed the qualitative analysis of a mathematical model that explores the competition dynamics <italic>in vivo</italic> of ceftiofur-resistant and sensitive commensal enteric <italic>Escherichia coli</italic> (E. coli) in the absence and during parenteral ceftiofur therapy within the gut of cattle, considering the therapeutic effects (<italic>pharmacokinetics</italic> (PK)/<italic>pharmacodynamics</italic> (PD)) in the outcome of infection. Through this analysis, empirical properties obtained through <italic>in vivo</italic> experimentation were verified, and it also evidenced other properties of bacterial dynamics that had not been previously shown. In addition, the impact of PD and PK has been evaluated.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135057944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Midori is a lightweight block cipher designed by Banik et al. and presented at the ASIACRYPT 2015 conference. According to the block size, it consists of two algorithms, denoted as Midori-64 and Midori-128. Midori generates 8-bit S-Boxes from 4-bit S-Boxes and applies almost MDS matrices instead of MDS matrices. In this paper, we introduce the meet-in-the-middle fault attack model in the 4-round cell-oriented fault propagation trail and reduce the key space in the last round by $ 2^{45.71} $ and $ 2^{39.86} $ for Midori-64 and Midori-128, respectively. For Midori-64, we reduce the time complexity from $ 2^{80} $ to $ 2^{28} $, $ 2^{32} $ and $ 2^{56} $ for the different single fault injection approaches. For Midori-128, we provide a 4-round fault attack method, which slightly increases the complexity compared to previous attacks. Our results indicate that the first and last four rounds of Midori must be protected to achieve its security.
{"title":"Meet-in-the-middle differential fault analysis on Midori","authors":"Chunyan An, Wei Bai, Donglei Zhang","doi":"10.3934/era.2023344","DOIUrl":"https://doi.org/10.3934/era.2023344","url":null,"abstract":"<abstract><p>Midori is a lightweight block cipher designed by Banik et al. and presented at the ASIACRYPT 2015 conference. According to the block size, it consists of two algorithms, denoted as Midori-64 and Midori-128. Midori generates 8-bit S-Boxes from 4-bit S-Boxes and applies almost MDS matrices instead of MDS matrices. In this paper, we introduce the meet-in-the-middle fault attack model in the 4-round cell-oriented fault propagation trail and reduce the key space in the last round by $ 2^{45.71} $ and $ 2^{39.86} $ for Midori-64 and Midori-128, respectively. For Midori-64, we reduce the time complexity from $ 2^{80} $ to $ 2^{28} $, $ 2^{32} $ and $ 2^{56} $ for the different single fault injection approaches. For Midori-128, we provide a 4-round fault attack method, which slightly increases the complexity compared to previous attacks. Our results indicate that the first and last four rounds of Midori must be protected to achieve its security.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurately predicting lane-changing behaviors (lane keeping, left lane change and right lane change) in real-time is essential for ensuring traffic safety, particularly in mixed-traffic environments with both autonomous and manual vehicles. This paper proposes a fused model that predicts vehicle lane-changing behaviors based on the road traffic environment and vehicle motion parameters. The model combines the ensemble learning XGBoost algorithm with the deep learning Bi-GRU neural network. The XGBoost algorithm first checks whether the present environment is safe for the lane change and then evaluates the likelihood that the target vehicle will make a lane change. Subsequently, the Bi-GRU neural network is used to accurately forecast the lane-changing behaviors of nearby vehicles using the feasibility of lane-changing and the vehicle's motion status as input features. The highD trajectory dataset was utilized for training and testing the model. The model achieved an accuracy of 98.82%, accurately predicting lane changes with an accuracy exceeding 87% within a 2-second timeframe. By comparing with other methods and conducting experimental validation, we have demonstrated the superiority of the proposed model, thus, the research achievement is of utmost significance for the practical application of autonomous driving technology.
{"title":"Ensemble deep learning-based lane-changing behavior prediction of manually driven vehicles in mixed traffic environments","authors":"Boshuo Geng, Jianxiao Ma, Shaohu Zhang","doi":"10.3934/era.2023315","DOIUrl":"https://doi.org/10.3934/era.2023315","url":null,"abstract":"<abstract><p>Accurately predicting lane-changing behaviors (lane keeping, left lane change and right lane change) in real-time is essential for ensuring traffic safety, particularly in mixed-traffic environments with both autonomous and manual vehicles. This paper proposes a fused model that predicts vehicle lane-changing behaviors based on the road traffic environment and vehicle motion parameters. The model combines the ensemble learning XGBoost algorithm with the deep learning Bi-GRU neural network. The XGBoost algorithm first checks whether the present environment is safe for the lane change and then evaluates the likelihood that the target vehicle will make a lane change. Subsequently, the Bi-GRU neural network is used to accurately forecast the lane-changing behaviors of nearby vehicles using the feasibility of lane-changing and the vehicle's motion status as input features. The highD trajectory dataset was utilized for training and testing the model. The model achieved an accuracy of 98.82%, accurately predicting lane changes with an accuracy exceeding 87% within a 2-second timeframe. By comparing with other methods and conducting experimental validation, we have demonstrated the superiority of the proposed model, thus, the research achievement is of utmost significance for the practical application of autonomous driving technology.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135549905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ Vtimes C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.
{"title":"Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D","authors":"Lingrui Zhang, Xue-zhi Li, Keqin Su","doi":"10.3934/era.20233348","DOIUrl":"https://doi.org/10.3934/era.20233348","url":null,"abstract":"<abstract><p>We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of pullback attractors for the evolutionary processes generated by a global weak solution has been obtained, which is unique and minimal, via verifying asymptotic compactness in functional space with delay $ C_V $ and topological space $ Vtimes C_V $, where the energy equation method and a retarded Gronwall inequality are utilized.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134884969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A two-degree-of-freedom vehicle wheel-rail impact vibration system model is developed, and the equivalent impact stiffness and damping of the rail are fitted applying ABAQUS, taking into account the high and low irregularity generated by the welded joints of the rail. A wheel-rail periodic interface with fixed impact was selected as the Poincaré map, and the fourth-order Runge-Kutta numerical method with variable step size was used to solve the system response. The dynamic characteristics of the system are investigated using a combination of the Bifurcation diagram, Phase plane diagram, the Poincaré map, the Time-domain diagram and the Frequency-domain diagram. It is verified that the vehicle wheel-rail impact vibration system has Hopf bifurcation, Neimark-Sacker bifurcation, Period-doubling bifurcation and Boundary crisis, and there are rich and complex nonlinear dynamic behavior changes. The research on the bifurcation and chaos characteristics of vehicle wheel-rail impact vibration systems can provide a reference for improving the stability of vehicle operation in engineering practice as well as the prediction and control of chaos in vehicle vibration reduction design.
{"title":"Transition characteristics of the dynamic behavior of a vehicle wheel-rail vibro-impact system","authors":"Yang Jin, Wanxiang Li, Hongbing Zhang","doi":"10.3934/era.2023357","DOIUrl":"https://doi.org/10.3934/era.2023357","url":null,"abstract":"<abstract> <p>A two-degree-of-freedom vehicle wheel-rail impact vibration system model is developed, and the equivalent impact stiffness and damping of the rail are fitted applying ABAQUS, taking into account the high and low irregularity generated by the welded joints of the rail. A wheel-rail periodic interface with fixed impact was selected as the Poincaré map, and the fourth-order Runge-Kutta numerical method with variable step size was used to solve the system response. The dynamic characteristics of the system are investigated using a combination of the Bifurcation diagram, Phase plane diagram, the Poincaré map, the Time-domain diagram and the Frequency-domain diagram. It is verified that the vehicle wheel-rail impact vibration system has Hopf bifurcation, Neimark-Sacker bifurcation, Period-doubling bifurcation and Boundary crisis, and there are rich and complex nonlinear dynamic behavior changes. The research on the bifurcation and chaos characteristics of vehicle wheel-rail impact vibration systems can provide a reference for improving the stability of vehicle operation in engineering practice as well as the prediction and control of chaos in vehicle vibration reduction design.</p> </abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134888585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a two-stage method combining data envelopment analysis (DEA) and a Tobit model to analyze the comprehensive operating efficiency of 28 airports in China in 2016. At the first stage, the DEA-BCC (Banker-Charnes-Cooper) model was employed to obtain the comprehensive operating efficiency of the combination of flight departure punctuality, non-cancellations, landing bridge rates from the perspective of airport infrastructure, surrounding airspace, route layouts, flight volume and weather. At the second stage, a Tobit model was used to analyze the influence of nine input variables from four aspects on obtained comprehensive operating efficiency, ultimately providing a clear and straightforward basis for formulating and testing policies. The comprehensive operating efficiency with this combination was further compared with each of the three efficiencies respectively. The important findings included the following: (1) The comprehensive operation efficiencies of most airports were greater than the individual efficiency; (2) These four types of operation efficiencies for most airports did not achieved DEA validity (100% efficiency), except for six airports (i.e., Haikou, Dalian, Jinan, Fuzhou, Nanning and Lanzhou); (3) These factors affecting each of the four types of operation efficiencies were different in that the number of terminals, duration of impact and average daily inbound and outbound flights had a negative impact on airport operational efficiency, while the average number of overnight aircraft per day and peak hour sorties had positive effects.
{"title":"Comprehensive operating efficiency measurement of 28 Chinese airports using a two-stage DEA-Tobit method","authors":"Ming Wei, Shao-yun Zhang, Bo Sun","doi":"10.3934/era.2023078","DOIUrl":"https://doi.org/10.3934/era.2023078","url":null,"abstract":"This paper presents a two-stage method combining data envelopment analysis (DEA) and a Tobit model to analyze the comprehensive operating efficiency of 28 airports in China in 2016. At the first stage, the DEA-BCC (Banker-Charnes-Cooper) model was employed to obtain the comprehensive operating efficiency of the combination of flight departure punctuality, non-cancellations, landing bridge rates from the perspective of airport infrastructure, surrounding airspace, route layouts, flight volume and weather. At the second stage, a Tobit model was used to analyze the influence of nine input variables from four aspects on obtained comprehensive operating efficiency, ultimately providing a clear and straightforward basis for formulating and testing policies. The comprehensive operating efficiency with this combination was further compared with each of the three efficiencies respectively. The important findings included the following: (1) The comprehensive operation efficiencies of most airports were greater than the individual efficiency; (2) These four types of operation efficiencies for most airports did not achieved DEA validity (100% efficiency), except for six airports (i.e., Haikou, Dalian, Jinan, Fuzhou, Nanning and Lanzhou); (3) These factors affecting each of the four types of operation efficiencies were different in that the number of terminals, duration of impact and average daily inbound and outbound flights had a negative impact on airport operational efficiency, while the average number of overnight aircraft per day and peak hour sorties had positive effects.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70244212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the development of remote sensing technology, the resolution of remote sensing images is improving, and the presentation of geomorphic information is becoming more and more abundant, the difficulty of identifying and extracting edge information is also increasing. This paper demonstrates an algorithm to detect the edges of remote sensing images based on Grünwald–Letnikov fractional difference and Otsu threshold. First, a convolution difference mask with two parameters in four directions is constructed by using the definition of the Grünwald–Letnikov fractional derivative. Then, the mask is convolved with the gray image of the remote sensing image, and the edge detection image is obtained by binarization with Otsu threshold. Finally, the influence of two parameters and threshold values on detection results is discussed. Compared with the results of other detectors on the NWPU VHR-10 dataset, it is found that the algorithm not only has good visual effect but also shows good performance in quantitative evaluation indicators (binary graph similarity and edge pixel ratio).
{"title":"Edge detection of remote sensing image based on Grünwald-Letnikov fractional difference and Otsu threshold","authors":"Chao Chen, Hua Kong, Bin Wu","doi":"10.3934/era.2023066","DOIUrl":"https://doi.org/10.3934/era.2023066","url":null,"abstract":"With the development of remote sensing technology, the resolution of remote sensing images is improving, and the presentation of geomorphic information is becoming more and more abundant, the difficulty of identifying and extracting edge information is also increasing. This paper demonstrates an algorithm to detect the edges of remote sensing images based on Grünwald–Letnikov fractional difference and Otsu threshold. First, a convolution difference mask with two parameters in four directions is constructed by using the definition of the Grünwald–Letnikov fractional derivative. Then, the mask is convolved with the gray image of the remote sensing image, and the edge detection image is obtained by binarization with Otsu threshold. Finally, the influence of two parameters and threshold values on detection results is discussed. Compared with the results of other detectors on the NWPU VHR-10 dataset, it is found that the algorithm not only has good visual effect but also shows good performance in quantitative evaluation indicators (binary graph similarity and edge pixel ratio).","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70244415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The application of waste rubber powder (WRP) for asphalt pavement could achieve the harmless and resourceful utilization of solid waste, but the storage stability of waste rubber powder modified asphalt (RA) is one of the main problems restricting its application. Existing studies have demonstrated that graphene could enhance the storage stability of RA, but graphene's size effect on the modifying effect and its corresponding mechanism are still uncertain. In this research, the effects of graphene microstructural properties (i.e., molecular size and layer number) on the storage stability of RA were investigated by storage stability testing, dynamic shear rheometry (DSR) testing and fluorescence microscopy (FM) testing, in combination with molecular dynamics simulation (MD). The experimental results indicated that graphene improved the storage stability of RA significantly, with few-layer graphene being more effective in enhancing it. MD was used to investigate the graphene size effect on RA in compatibility, intermolecular binding energy and structural stability of the system. The simulation results revealed that small-sized graphene molecules were more compatible with RA. Meanwhile, few-layer, small-sized graphene can provide higher binding energy and better enhancement of storage stability of RA. The number of graphene layers mainly influences the binding energy rather than solubility parameters. The relative concentration distribution results demonstrated that graphene facilitated the spatial distribution of asphaltenes, rubber components and light components. This research provides theoretical support for the rational selection of microstructural properties of graphene to improve the modified asphalt storage stability performance.
{"title":"Study on the storage stability performance enhancement mechanism of graphene on rubber-modified asphalt based on size effect","authors":"Yutong Xie, Yingli Gao, M. Liao, Weiwei Tian","doi":"10.3934/era.2023105","DOIUrl":"https://doi.org/10.3934/era.2023105","url":null,"abstract":"The application of waste rubber powder (WRP) for asphalt pavement could achieve the harmless and resourceful utilization of solid waste, but the storage stability of waste rubber powder modified asphalt (RA) is one of the main problems restricting its application. Existing studies have demonstrated that graphene could enhance the storage stability of RA, but graphene's size effect on the modifying effect and its corresponding mechanism are still uncertain. In this research, the effects of graphene microstructural properties (i.e., molecular size and layer number) on the storage stability of RA were investigated by storage stability testing, dynamic shear rheometry (DSR) testing and fluorescence microscopy (FM) testing, in combination with molecular dynamics simulation (MD). The experimental results indicated that graphene improved the storage stability of RA significantly, with few-layer graphene being more effective in enhancing it. MD was used to investigate the graphene size effect on RA in compatibility, intermolecular binding energy and structural stability of the system. The simulation results revealed that small-sized graphene molecules were more compatible with RA. Meanwhile, few-layer, small-sized graphene can provide higher binding energy and better enhancement of storage stability of RA. The number of graphene layers mainly influences the binding energy rather than solubility parameters. The relative concentration distribution results demonstrated that graphene facilitated the spatial distribution of asphaltenes, rubber components and light components. This research provides theoretical support for the rational selection of microstructural properties of graphene to improve the modified asphalt storage stability performance.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70244632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In financial asset allocation, enterprises adjust their investment in R&D innovation according to their motives and the external environment. Based on a review of the literature related to enterprise financialization and R&D innovation, this paper proposes research hypotheses through theoretical analysis first; then, taking China's A-share non-financial listed companies from 2010 to 2019 as research objects, this paper explores the relationship between enterprise financialization and R&D innovation with a quantile panel data model; further, the heterogeneous relationship between the two under different business cycle phases is empirically analyzed. The following conclusions are drawn. First, there is a dynamic relationship between enterprise financialization and R&D innovation, varying with different financing constraints. Second, the dynamic relationship between enterprise financialization and R&D innovation stems from the motivation difference in enterprise asset allocation. Third, there are significant differences in the dynamic relationship at different business cycle phases.
{"title":"Enterprise financialization and R&D innovation: A case study of listed companies in China","authors":"Yue Liu, Jinzhi Liu, Lichang Zhang","doi":"10.3934/era.2023124","DOIUrl":"https://doi.org/10.3934/era.2023124","url":null,"abstract":"In financial asset allocation, enterprises adjust their investment in R&D innovation according to their motives and the external environment. Based on a review of the literature related to enterprise financialization and R&D innovation, this paper proposes research hypotheses through theoretical analysis first; then, taking China's A-share non-financial listed companies from 2010 to 2019 as research objects, this paper explores the relationship between enterprise financialization and R&D innovation with a quantile panel data model; further, the heterogeneous relationship between the two under different business cycle phases is empirically analyzed. The following conclusions are drawn. First, there is a dynamic relationship between enterprise financialization and R&D innovation, varying with different financing constraints. Second, the dynamic relationship between enterprise financialization and R&D innovation stems from the motivation difference in enterprise asset allocation. Third, there are significant differences in the dynamic relationship at different business cycle phases.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70244647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}