Pub Date : 2023-12-01Epub Date: 2023-11-29DOI: 10.1080/17513758.2023.2287077
Xiangjun Dai, Qi Quan, Jianjun Jiao
In this paper, we formulate a population suppression model and a population replacement model with periodic impulsive releases of Nilaparvatalugens infected with wStri. The conditions for the stability of wild--eradication periodic solution of two systems are obtained by applying the Floquet theorem and comparison theorem. And the sufficient conditions for the persistence in the mean of wild are also given. In addition, the sufficient conditions for the extinction and persistence of the wild in the subsystem without wLug are also obtained. Finally, we give numerical analysis which shows that increasing the release amount or decreasing the release period are beneficial for controlling the wild , and the efficiency of population replacement strategy in controlling wild populations is higher than that of population suppression strategy under the same release conditions.
{"title":"Modelling and analysis of periodic impulsive releases of the <i>Nilaparvata</i> <i>lugens</i> infected with <i>wStri</i>-<i>Wolbachia</i>.","authors":"Xiangjun Dai, Qi Quan, Jianjun Jiao","doi":"10.1080/17513758.2023.2287077","DOIUrl":"10.1080/17513758.2023.2287077","url":null,"abstract":"<p><p>In this paper, we formulate a population suppression model and a population replacement model with periodic impulsive releases of <i>Nilaparvata</i> <i>lugens</i> infected with <i>wStri</i>. The conditions for the stability of wild-<math><mi>N</mi><mo>.</mo><mspace></mspace><mi>l</mi><mi>u</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>s</mi></math>-eradication periodic solution of two systems are obtained by applying the <i>Floquet</i> theorem and comparison theorem. And the sufficient conditions for the persistence in the mean of wild <math><mi>N</mi><mo>.</mo><mspace></mspace><mi>l</mi><mi>u</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>s</mi></math> are also given. In addition, the sufficient conditions for the extinction and persistence of the wild <math><mi>N</mi><mo>.</mo><mspace></mspace><mi>l</mi><mi>u</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>s</mi></math> in the subsystem without <i>wLug</i> are also obtained. Finally, we give numerical analysis which shows that increasing the release amount or decreasing the release period are beneficial for controlling the wild <math><mi>N</mi><mo>.</mo><mspace></mspace><mi>l</mi><mi>u</mi><mi>g</mi><mi>e</mi><mi>n</mi><mi>s</mi></math>, and the efficiency of population replacement strategy in controlling wild populations is higher than that of population suppression strategy under the same release conditions.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2287077"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-10-24DOI: 10.1080/17513758.2023.2269986
Allison Cruikshank, H Frederik Nijhout, Janet Best, Michael Reed
In volume transmission (or neuromodulation) neurons do not make one-to-one connections to other neurons, but instead simply release neurotransmitter into the extracellular space from numerous varicosities. Many well-known neurotransmitters including serotonin (5HT), dopamine (DA), histamine (HA), Gamma-Aminobutyric Acid (GABA) and acetylcholine (ACh) participate in volume transmission. Typically, the cell bodies are in one volume and the axons project to a distant volume in the brain releasing the neurotransmitter there. We introduce volume transmission and describe mathematically two natural homeostatic mechanisms. In some brain regions several neurotransmitters in the extracellular space affect each other's release. We investigate the dynamics created by this comodulation in two different cases: serotonin and histamine; and the comodulation of 4 neurotransmitters in the striatum and we compare to experimental data. This kind of comodulation poses new dynamical questions as well as the question of how these biochemical networks influence the electrophysiological networks in the brain.
{"title":"Dynamical questions in volume transmission.","authors":"Allison Cruikshank, H Frederik Nijhout, Janet Best, Michael Reed","doi":"10.1080/17513758.2023.2269986","DOIUrl":"10.1080/17513758.2023.2269986","url":null,"abstract":"<p><p>In volume transmission (or neuromodulation) neurons do not make one-to-one connections to other neurons, but instead simply release neurotransmitter into the extracellular space from numerous varicosities. Many well-known neurotransmitters including serotonin (5HT), dopamine (DA), histamine (HA), Gamma-Aminobutyric Acid (GABA) and acetylcholine (ACh) participate in volume transmission. Typically, the cell bodies are in one volume and the axons project to a distant volume in the brain releasing the neurotransmitter there. We introduce volume transmission and describe mathematically two natural homeostatic mechanisms. In some brain regions several neurotransmitters in the extracellular space affect each other's release. We investigate the dynamics created by this comodulation in two different cases: serotonin and histamine; and the comodulation of 4 neurotransmitters in the striatum and we compare to experimental data. This kind of comodulation poses new dynamical questions as well as the question of how these biochemical networks influence the electrophysiological networks in the brain.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2269986"},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50159074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-14DOI: 10.1080/17513758.2023.2272852
Qing Guo, Lijun Wang, He Liu, Yi Wang, Jianbing Li, Pankaj Kumar Tiwari, Min Zhao, Chuanjun Dai
In this paper, we investigate a reaction-diffusion model incorporating dynamic variables for nutrient, phytoplankton, and zooplankton. Moreover, we account for the impact of time delay in the growth of phytoplankton following nutrient uptake. Our theoretical analysis reveals that the time delay can trigger the emergence of persistent oscillations in the model via a Hopf bifurcation. We also analytically track the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions. Our simulation results demonstrate stability switches occurring for the positive equilibrium with an increasing time lag. Furthermore, the model exhibits homogeneous periodic-2 and 3 solutions, as well as chaotic behaviour. These findings highlight that the presence of time delay in the phytoplankton growth can bring forth dynamical complexity to the nutrient-plankton system of aquatic habitats.
{"title":"Stability switches and chaos induced by delay in a reaction-diffusion nutrient-plankton model.","authors":"Qing Guo, Lijun Wang, He Liu, Yi Wang, Jianbing Li, Pankaj Kumar Tiwari, Min Zhao, Chuanjun Dai","doi":"10.1080/17513758.2023.2272852","DOIUrl":"10.1080/17513758.2023.2272852","url":null,"abstract":"<p><p>In this paper, we investigate a reaction-diffusion model incorporating dynamic variables for nutrient, phytoplankton, and zooplankton. Moreover, we account for the impact of time delay in the growth of phytoplankton following nutrient uptake. Our theoretical analysis reveals that the time delay can trigger the emergence of persistent oscillations in the model via a Hopf bifurcation. We also analytically track the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions. Our simulation results demonstrate stability switches occurring for the positive equilibrium with an increasing time lag. Furthermore, the model exhibits homogeneous periodic-2 and 3 solutions, as well as chaotic behaviour. These findings highlight that the presence of time delay in the phytoplankton growth can bring forth dynamical complexity to the nutrient-plankton system of aquatic habitats.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2272852"},"PeriodicalIF":2.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92157010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/17513758.2023.2257734
Xuming Xie
Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), β cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.
{"title":"Steady solution and its stability of a mathematical model of diabetic atherosclerosis.","authors":"Xuming Xie","doi":"10.1080/17513758.2023.2257734","DOIUrl":"10.1080/17513758.2023.2257734","url":null,"abstract":"<p><p>Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), <i>β</i> cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2257734"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10337421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-28DOI: 10.1080/17513758.2023.2285749
Jianshe Yu, Jia Li
We formulate simple differential equation models to study the impact of releases of transgenic sterile mosquitoes carrying a dominant lethal on mosquito control based on the modified sterile insects technique. The early acting bisex, late acting bisex, early acting female-killing, and late acting female-killing lethality strategies are all considered. We determine release thresholds of the transgenic sterile mosquitoes, respectively, for these models by investigating the existence of positive equilibria and their stability. We compare the model dynamics, in particular, the thresholds of the models numerically. The late acting lethality strategies are generally more effective than their corresponding early acting lethality strategies, but the comparison between the late acting bisex and early acting female-killing lethality strategies depends on different parameter settings.
{"title":"Mathematical modelling and release thresholds of transgenic sterile mosquitoes.","authors":"Jianshe Yu, Jia Li","doi":"10.1080/17513758.2023.2285749","DOIUrl":"10.1080/17513758.2023.2285749","url":null,"abstract":"<p><p>We formulate simple differential equation models to study the impact of releases of transgenic sterile mosquitoes carrying a dominant lethal on mosquito control based on the modified sterile insects technique. The early acting bisex, late acting bisex, early acting female-killing, and late acting female-killing lethality strategies are all considered. We determine release thresholds of the transgenic sterile mosquitoes, respectively, for these models by investigating the existence of positive equilibria and their stability. We compare the model dynamics, in particular, the thresholds of the models numerically. The late acting lethality strategies are generally more effective than their corresponding early acting lethality strategies, but the comparison between the late acting bisex and early acting female-killing lethality strategies depends on different parameter settings.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2285749"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-12-05DOI: 10.1080/17513758.2023.2287084
Alexanderia Lacy, Morganne Igoe, Praachi Das, Trevor Farthing, Alun L Lloyd, Cristina Lanzas, Agricola Odoi, Suzanne Lenhart
The region of St. Louis, Missouri, has displayed a high level of heterogeneity in COVID-19 cases, hospitalization, and vaccination coverage. We investigate how human mobility, vaccination, and time-varying transmission rates influenced SARS-CoV-2 transmission in five counties in the St. Louis area. A COVID-19 model with a system of ordinary differential equations was developed to illustrate the dynamics with a fully vaccinated class. Using the weekly number of vaccinations, cases, and hospitalization data from five counties in the greater St. Louis area in 2021, parameter estimation for the model was completed. The transmission coefficients for each county changed four times in that year to fit the model and the changing behaviour. We predicted the changes in disease spread under scenarios with increased vaccination coverage. SafeGraph local movement data were used to connect the forces of infection across various counties.
{"title":"Modeling impact of vaccination on COVID-19 dynamics in St. Louis.","authors":"Alexanderia Lacy, Morganne Igoe, Praachi Das, Trevor Farthing, Alun L Lloyd, Cristina Lanzas, Agricola Odoi, Suzanne Lenhart","doi":"10.1080/17513758.2023.2287084","DOIUrl":"10.1080/17513758.2023.2287084","url":null,"abstract":"<p><p>The region of St. Louis, Missouri, has displayed a high level of heterogeneity in COVID-19 cases, hospitalization, and vaccination coverage. We investigate how human mobility, vaccination, and time-varying transmission rates influenced SARS-CoV-2 transmission in five counties in the St. Louis area. A COVID-19 model with a system of ordinary differential equations was developed to illustrate the dynamics with a fully vaccinated class. Using the weekly number of vaccinations, cases, and hospitalization data from five counties in the greater St. Louis area in 2021, parameter estimation for the model was completed. The transmission coefficients for each county changed four times in that year to fit the model and the changing behaviour. We predicted the changes in disease spread under scenarios with increased vaccination coverage. SafeGraph local movement data were used to connect the forces of infection across various counties.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2287084"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A computational approach is adapted to analyze the parameter identifiability of a compartmental model. The model is intended to describe the progression of the COVID-19 pandemic in Chile during the initial phase in early 2020 when government declared quarantine measures. The computational approach to analyze the structural and practical identifiability is applied in two parts, one for synthetic data and another for some Chilean regional data. The first part defines the identifiable parameter sets when these recover the true parameters used to create the synthetic data. The second part compares the results derived from synthetic data, estimating the identifiable parameter sets from regional Chilean epidemic data. Experiments provide evidence of the loss of identifiability if some initial conditions are estimated, the period of time used to fit is before the peak, and if a significant proportion of the population is involved in quarantine periods.
{"title":"A computational approach to identifiability analysis for a model of the propagation and control of COVID-19 in Chile.","authors":"Raimund Bürger, Gerardo Chowell, Ilja Kröker, Leidy Yissedt Lara-Díaz","doi":"10.1080/17513758.2023.2256774","DOIUrl":"10.1080/17513758.2023.2256774","url":null,"abstract":"<p><p>A computational approach is adapted to analyze the parameter identifiability of a compartmental model. The model is intended to describe the progression of the COVID-19 pandemic in Chile during the initial phase in early 2020 when government declared quarantine measures. The computational approach to analyze the structural and practical identifiability is applied in two parts, one for synthetic data and another for some Chilean regional data. The first part defines the identifiable parameter sets when these recover the true parameters used to create the synthetic data. The second part compares the results derived from synthetic data, estimating the identifiable parameter sets from regional Chilean epidemic data. Experiments provide evidence of the loss of identifiability if some initial conditions are estimated, the period of time used to fit is before the peak, and if a significant proportion of the population is involved in quarantine periods.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2256774"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10649857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-09-19DOI: 10.1080/17513758.2023.2242720
Najat Ziyadi
Populations are generally censused daily, weekly, monthly or annually. In this paper, we introduce a discrete-time nutrients-phytoplankton-oysters (NPO) model that describes the interactions of nutrients, phytoplankton and oysters in a bay ecosystem. We compute the threshold parameter for persistence of phytoplankton with or without oysters. When , then both phytoplankton and oysters populations go extinct. However, when , we show that the model may exhibit two scenarios: (1) a locally asymptotically stable equilibrium with positive values of nutrients and phytoplankton with oysters missing, and (2) a locally asymptotically stable interior equilibrium with positive values of nutrients, phytoplankton and oysters. We use sensitivity analysis to study the impact of human and environmental factors on the model. We use examples to illustrate that some human activities and environmental factors can force the interior equilibrium to undergo a Neimark-Sacker bifurcation which generates phytoplankton blooms with oscillations in oysters population and nutrients level.
{"title":"A discrete-time nutrients-phytoplankton-oysters mathematical model of a bay ecosystem.","authors":"Najat Ziyadi","doi":"10.1080/17513758.2023.2242720","DOIUrl":"10.1080/17513758.2023.2242720","url":null,"abstract":"<p><p>Populations are generally censused daily, weekly, monthly or annually. In this paper, we introduce a discrete-time nutrients-phytoplankton-oysters (NPO) model that describes the interactions of nutrients, phytoplankton and oysters in a bay ecosystem. We compute the threshold parameter <math><msub><mrow><mi>R</mi></mrow><mi>N</mi></msub></math> for persistence of phytoplankton with or without oysters. When <math><msub><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msub><mo><</mo><mn>1</mn></math>, then both phytoplankton and oysters populations go extinct. However, when <math><msub><mrow><mi>R</mi></mrow><mi>N</mi></msub><mo>></mo><mn>1</mn></math>, we show that the model may exhibit two scenarios: (1) a locally asymptotically stable equilibrium with positive values of nutrients and phytoplankton with oysters missing, and (2) a locally asymptotically stable interior equilibrium with positive values of nutrients, phytoplankton and oysters. We use sensitivity analysis to study the impact of human and environmental factors on the model. We use examples to illustrate that some human activities and environmental factors can force the interior equilibrium to undergo a Neimark-Sacker bifurcation which generates phytoplankton blooms with oscillations in oysters population and nutrients level.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2242720"},"PeriodicalIF":2.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-28DOI: 10.1080/17513758.2023.2287087
Tharusha Bandara, Maia Martcheva, Calistus N Ngonghala
HIV continues to be a major global health issue, having claimed millions of lives in the last few decades. While several empirical studies support the fact that proper nutrition is useful in the fight against HIV, very few studies have focused on developing and using mathematical modelling approaches to assess the association between HIV, human immune response to the disease, and nutrition. We develop a within-host model for HIV that captures the dynamic interactions between HIV, the immune system and nutrition. We find that increased viral activity leads to increased serum protein levels. We also show that the viral production rate is positively correlated with HIV viral loads, as is the enhancement rate of protein by virus. Although our numerical simulations indicate a direct correlation between dietary protein intake and serum protein levels in HIV-infected individuals, further modelling and clinical studies are necessary to gain comprehensive understanding of the relationship.
{"title":"Mathematical model on HIV and nutrition.","authors":"Tharusha Bandara, Maia Martcheva, Calistus N Ngonghala","doi":"10.1080/17513758.2023.2287087","DOIUrl":"10.1080/17513758.2023.2287087","url":null,"abstract":"<p><p>HIV continues to be a major global health issue, having claimed millions of lives in the last few decades. While several empirical studies support the fact that proper nutrition is useful in the fight against HIV, very few studies have focused on developing and using mathematical modelling approaches to assess the association between HIV, human immune response to the disease, and nutrition. We develop a within-host model for HIV that captures the dynamic interactions between HIV, the immune system and nutrition. We find that increased viral activity leads to increased serum protein levels. We also show that the viral production rate is positively correlated with HIV viral loads, as is the enhancement rate of protein by virus. Although our numerical simulations indicate a direct correlation between dietary protein intake and serum protein levels in HIV-infected individuals, further modelling and clinical studies are necessary to gain comprehensive understanding of the relationship.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2287087"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2111468
Toshikazu Kuniya
In this paper, we are concerned with an epidemic model with quarantine and distributed time delay. We define the basic reproduction number and show that if , then the disease-free equilibrium is globally asymptotically stable, whereas if , then it is unstable and there exists a unique endemic equilibrium. We obtain sufficient conditions for a Hopf bifurcation that induces a nontrivial periodic solution which represents recurrent epidemic waves. By numerical simulations, we illustrate stability and instability parameter regions. Our results suggest that the quarantine and time delay play important roles in the occurrence of recurrent epidemic waves.
{"title":"Recurrent epidemic waves in a delayed epidemic model with quarantine.","authors":"Toshikazu Kuniya","doi":"10.1080/17513758.2022.2111468","DOIUrl":"https://doi.org/10.1080/17513758.2022.2111468","url":null,"abstract":"<p><p>In this paper, we are concerned with an epidemic model with quarantine and distributed time delay. We define the basic reproduction number <math><msub><mrow><mrow><mi>R</mi></mrow></mrow><mn>0</mn></msub></math> and show that if <math><msub><mrow><mrow><mi>R</mi></mrow></mrow><mn>0</mn></msub><mo>≤</mo><mn>1</mn></math>, then the disease-free equilibrium is globally asymptotically stable, whereas if <math><msub><mrow><mrow><mi>R</mi></mrow></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math>, then it is unstable and there exists a unique endemic equilibrium. We obtain sufficient conditions for a Hopf bifurcation that induces a nontrivial periodic solution which represents recurrent epidemic waves. By numerical simulations, we illustrate stability and instability parameter regions. Our results suggest that the quarantine and time delay play important roles in the occurrence of recurrent epidemic waves.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":" ","pages":"619-639"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40685141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}