Pub Date : 2024-12-01Epub Date: 2024-03-17DOI: 10.1080/17513758.2024.2323724
Saber Elaydi, René Lozi
In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional which is based on the disease-free equilibrium, and a new net reproduction number based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if and unstable if . Moreover, the endemic equilibrium is locally asymptotically stable if .
在本文中,我们建立了结核病(TB)的离散模型。其中包括无治疗的 SEI 内生模型和外生模型。然后将这些模型扩展到有治疗的 SEIT 模型。我们建立了两种净繁殖数,一种是基于无病平衡的传统 R0,另一种是基于地方病平衡的新净繁殖数 R0(E∗)。结果表明,如果 R0≤ 1,无病均衡是全局渐近稳定的,如果 R0>1 则不稳定。此外,如果 R0(E∗)1R0,则地方病均衡是局部渐近稳定的。
{"title":"Global dynamics of discrete mathematical models of tuberculosis.","authors":"Saber Elaydi, René Lozi","doi":"10.1080/17513758.2024.2323724","DOIUrl":"10.1080/17513758.2024.2323724","url":null,"abstract":"<p><p>In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> which is based on the disease-free equilibrium, and a new net reproduction number <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo></math> based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mtext> </mtext><mn>1</mn></math> and unstable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math>. Moreover, the endemic equilibrium is locally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo><mo><</mo><mn>1</mn><mo><</mo><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2323724"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-05DOI: 10.1080/17513758.2024.2367892
Abba B Gumel, Shandelle Henson
{"title":"Introduction.","authors":"Abba B Gumel, Shandelle Henson","doi":"10.1080/17513758.2024.2367892","DOIUrl":"10.1080/17513758.2024.2367892","url":null,"abstract":"","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2367892"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-13DOI: 10.1080/17513758.2024.2423956
Hesham A Elkaranshawy, Hossam M Ezzat
In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.
{"title":"An ODEs multiscale model with cell proliferation for hepatitis C virus infection treated with direct acting antiviral agents.","authors":"Hesham A Elkaranshawy, Hossam M Ezzat","doi":"10.1080/17513758.2024.2423956","DOIUrl":"10.1080/17513758.2024.2423956","url":null,"abstract":"<p><p>In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2423956"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-22DOI: 10.1080/17513758.2024.2332279
Yoichi Enatsu, Jyotirmoy Roy, Malay Banerjee
We investigate the dynamics of a prey-predator model with cooperative hunting among specialist predators and maturation delay in predator growth. First, we consider a model without delay and explore the effect of hunting time on the coexistence of predator and their prey. When the hunting time is long enough and the cooperation rate among predators is weak, prey and predator species tend to coexist. Furthermore, we observe the occurrences of a series of bifurcations that depend on the cooperation rate and the hunting time. Second, we introduce a maturation delay for predator growth and analyse its impact on the system's dynamics. We find that as the delay becomes larger, predator species become more likely to go extinct, as the long maturation delay hinders the growth of the predator population. Our numerical exploration reveals that the delay causes shifts in both the bifurcation curves and bifurcation thresholds of the non-delayed system.
{"title":"Hunting cooperation in a prey-predator model with maturation delay.","authors":"Yoichi Enatsu, Jyotirmoy Roy, Malay Banerjee","doi":"10.1080/17513758.2024.2332279","DOIUrl":"10.1080/17513758.2024.2332279","url":null,"abstract":"<p><p>We investigate the dynamics of a prey-predator model with cooperative hunting among specialist predators and maturation delay in predator growth. First, we consider a model without delay and explore the effect of hunting time on the coexistence of predator and their prey. When the hunting time is long enough and the cooperation rate among predators is weak, prey and predator species tend to coexist. Furthermore, we observe the occurrences of a series of bifurcations that depend on the cooperation rate and the hunting time. Second, we introduce a maturation delay for predator growth and analyse its impact on the system's dynamics. We find that as the delay becomes larger, predator species become more likely to go extinct, as the long maturation delay hinders the growth of the predator population. Our numerical exploration reveals that the delay causes shifts in both the bifurcation curves and bifurcation thresholds of the non-delayed system.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2332279"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-06DOI: 10.1080/17513758.2024.2397404
Anju Susan Anish, Bernard De Baets, Shodhan Rao
We consider different anti-symmetric Lotka-Volterra systems governing the pairwise interactions among the same n species inhabiting m spatially discrete habitat patches, with each patch having infinitely many equilibria. In the absence of inter-patch species migration, the species densities in each isolated patch evolve in periodic orbits. A central idea of this work is to design a control action to make the trajectories of the system asymptotically converge to a desired coexistence equilibrium among the infinitely many equilibrium points. We propose a scheme to simultaneously control different anti-symmetric Lotka-Volterra systems in multiple habitat patches by designing a metapopulation model. By introducing a suitable inter-patch migration of species, we prove that the trajectories of the resulting metapopulation model are effectively asymptotically converging to the desired coexistence equilibrium. The stability of the coexistence equilibrium is proved using Lyapunov methods coupled with LaSalle's invariance principle.
我们考虑了不同的反对称洛特卡-伏特拉(Lotka-Volterra)系统,该系统支配着栖息在 m 个空间离散的生境斑块中的 n 个相同物种之间的成对相互作用,每个斑块有无限多个均衡点。在没有斑块间物种迁移的情况下,每个孤立斑块中的物种密度会以周期性轨道演化。这项工作的核心思想是设计一种控制行动,使系统的轨迹在无限多个平衡点中渐近收敛到一个理想的共存平衡点。我们提出了一种方案,通过设计一个元种群模型来同时控制多个栖息地斑块中不同的反对称洛特卡-伏特拉(Lotka-Volterra)系统。通过引入适当的物种斑块间迁移,我们证明了所得到的元种群模型的轨迹能有效地渐近收敛到所需的共存均衡。共存平衡的稳定性是利用李亚普诺夫方法和拉萨尔不变性原理来证明的。
{"title":"Metapopulation models with anti-symmetric Lotka-Volterra systems.","authors":"Anju Susan Anish, Bernard De Baets, Shodhan Rao","doi":"10.1080/17513758.2024.2397404","DOIUrl":"10.1080/17513758.2024.2397404","url":null,"abstract":"<p><p>We consider different anti-symmetric Lotka-Volterra systems governing the pairwise interactions among the same <i>n</i> species inhabiting <i>m</i> spatially discrete habitat patches, with each patch having infinitely many equilibria. In the absence of inter-patch species migration, the species densities in each isolated patch evolve in periodic orbits. A central idea of this work is to design a control action to make the trajectories of the system asymptotically converge to a desired coexistence equilibrium among the infinitely many equilibrium points. We propose a scheme to simultaneously control different anti-symmetric Lotka-Volterra systems in multiple habitat patches by designing a metapopulation model. By introducing a suitable inter-patch migration of species, we prove that the trajectories of the resulting metapopulation model are effectively asymptotically converging to the desired coexistence equilibrium. The stability of the coexistence equilibrium is proved using Lyapunov methods coupled with LaSalle's invariance principle.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2397404"},"PeriodicalIF":1.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-29DOI: 10.1080/17513758.2023.2299001
Tahir Khan, Fathalla A. Rihan, Qasem M. Al-Mdallal
Symptomatic and asymptomatic individuals play a significant role in the transmission dynamics of novel Coronaviruses. By considering the dynamical behaviour of symptomatic and asymptomatic individu...
{"title":"An epidemiological model for analysing pandemic trends of novel coronavirus transmission with optimal control","authors":"Tahir Khan, Fathalla A. Rihan, Qasem M. Al-Mdallal","doi":"10.1080/17513758.2023.2299001","DOIUrl":"https://doi.org/10.1080/17513758.2023.2299001","url":null,"abstract":"Symptomatic and asymptomatic individuals play a significant role in the transmission dynamics of novel Coronaviruses. By considering the dynamical behaviour of symptomatic and asymptomatic individu...","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"13 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139070222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1080/17513758.2023.2287082
Folashade B. Agusto, Ramsès Djidjou-Demasse, Ousmane Seydi
Ehrlichia chaffeensis is a tick-borne disease transmitted by ticks to dogs. Few studies have mathematical modelled such tick-borne disease in dogs, and none have developed models that incorporate d...
{"title":"Mathematical model of Ehrlichia chaffeensis transmission dynamics in dogs","authors":"Folashade B. Agusto, Ramsès Djidjou-Demasse, Ousmane Seydi","doi":"10.1080/17513758.2023.2287082","DOIUrl":"https://doi.org/10.1080/17513758.2023.2287082","url":null,"abstract":"Ehrlichia chaffeensis is a tick-borne disease transmitted by ticks to dogs. Few studies have mathematical modelled such tick-borne disease in dogs, and none have developed models that incorporate d...","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"31 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-21DOI: 10.1080/17513758.2023.2285096
Christopher M Kribs, Pauline van den Driessche
The work of Fred Brauer (1932-2021) broke new ground in several areas of mathematical population biology, especially mathematical epidemiology and population management. This special issue reflects his legacy: the lines of inquiry he opened, the impact of his research and his books, and his mentoring of generations of young researchers. This dedication highlights milestones in his career and connects his work to the contributions in this issue.
{"title":"Honoring the life and legacy of Fred Brauer.","authors":"Christopher M Kribs, Pauline van den Driessche","doi":"10.1080/17513758.2023.2285096","DOIUrl":"10.1080/17513758.2023.2285096","url":null,"abstract":"<p><p>The work of Fred Brauer (1932-2021) broke new ground in several areas of mathematical population biology, especially mathematical epidemiology and population management. This special issue reflects his legacy: the lines of inquiry he opened, the impact of his research and his books, and his mentoring of generations of young researchers. This dedication highlights milestones in his career and connects his work to the contributions in this issue.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2285096"},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138177627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1080/17513758.2023.2231967
Jin Yang, Zhuo Chen, Yuanshun Tan, Zijian Liu, Robert A Cheke
A stochastic mathematical model is proposed to study how environmental heterogeneity and the augmentation of mosquitoes with bacteria affect the outcomes of dengue disease. The existence and uniqueness of the positive solutions of the system are studied. Then the V-geometrically ergodicity and stochastic ultimate boundedness are investigated. Further, threshold conditions for successful population replacement are derived and the existence of a unique ergodic steady-state distribution of the system is explored. The results show that the ratio of infected to uninfected mosquitoes has a great influence on population replacement. Moreover, environmental noise plays a significant role in control of dengue fever.
{"title":"Threshold dynamics of a stochastic mathematical model for <i>Wolbachia</i> infections.","authors":"Jin Yang, Zhuo Chen, Yuanshun Tan, Zijian Liu, Robert A Cheke","doi":"10.1080/17513758.2023.2231967","DOIUrl":"10.1080/17513758.2023.2231967","url":null,"abstract":"<p><p>A stochastic mathematical model is proposed to study how environmental heterogeneity and the augmentation of mosquitoes with <math><mrow><mi>W</mi><mi>o</mi><mi>l</mi><mi>b</mi><mi>a</mi><mi>c</mi><mi>h</mi><mi>i</mi><mi>a</mi></mrow></math> bacteria affect the outcomes of dengue disease. The existence and uniqueness of the positive solutions of the system are studied. Then the V-geometrically ergodicity and stochastic ultimate boundedness are investigated. Further, threshold conditions for successful population replacement are derived and the existence of a unique ergodic steady-state distribution of the system is explored. The results show that the ratio of infected to uninfected mosquitoes has a great influence on population replacement. Moreover, environmental noise plays a significant role in control of dengue fever.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2231967"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9804045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}