Pub Date : 2023-12-01DOI: 10.1080/17513758.2023.2257734
Xuming Xie
Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), β cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.
{"title":"Steady solution and its stability of a mathematical model of diabetic atherosclerosis.","authors":"Xuming Xie","doi":"10.1080/17513758.2023.2257734","DOIUrl":"10.1080/17513758.2023.2257734","url":null,"abstract":"<p><p>Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), <i>β</i> cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2257734"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10337421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-28DOI: 10.1080/17513758.2023.2285749
Jianshe Yu, Jia Li
We formulate simple differential equation models to study the impact of releases of transgenic sterile mosquitoes carrying a dominant lethal on mosquito control based on the modified sterile insects technique. The early acting bisex, late acting bisex, early acting female-killing, and late acting female-killing lethality strategies are all considered. We determine release thresholds of the transgenic sterile mosquitoes, respectively, for these models by investigating the existence of positive equilibria and their stability. We compare the model dynamics, in particular, the thresholds of the models numerically. The late acting lethality strategies are generally more effective than their corresponding early acting lethality strategies, but the comparison between the late acting bisex and early acting female-killing lethality strategies depends on different parameter settings.
{"title":"Mathematical modelling and release thresholds of transgenic sterile mosquitoes.","authors":"Jianshe Yu, Jia Li","doi":"10.1080/17513758.2023.2285749","DOIUrl":"10.1080/17513758.2023.2285749","url":null,"abstract":"<p><p>We formulate simple differential equation models to study the impact of releases of transgenic sterile mosquitoes carrying a dominant lethal on mosquito control based on the modified sterile insects technique. The early acting bisex, late acting bisex, early acting female-killing, and late acting female-killing lethality strategies are all considered. We determine release thresholds of the transgenic sterile mosquitoes, respectively, for these models by investigating the existence of positive equilibria and their stability. We compare the model dynamics, in particular, the thresholds of the models numerically. The late acting lethality strategies are generally more effective than their corresponding early acting lethality strategies, but the comparison between the late acting bisex and early acting female-killing lethality strategies depends on different parameter settings.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2285749"},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-12-05DOI: 10.1080/17513758.2023.2287084
Alexanderia Lacy, Morganne Igoe, Praachi Das, Trevor Farthing, Alun L Lloyd, Cristina Lanzas, Agricola Odoi, Suzanne Lenhart
The region of St. Louis, Missouri, has displayed a high level of heterogeneity in COVID-19 cases, hospitalization, and vaccination coverage. We investigate how human mobility, vaccination, and time-varying transmission rates influenced SARS-CoV-2 transmission in five counties in the St. Louis area. A COVID-19 model with a system of ordinary differential equations was developed to illustrate the dynamics with a fully vaccinated class. Using the weekly number of vaccinations, cases, and hospitalization data from five counties in the greater St. Louis area in 2021, parameter estimation for the model was completed. The transmission coefficients for each county changed four times in that year to fit the model and the changing behaviour. We predicted the changes in disease spread under scenarios with increased vaccination coverage. SafeGraph local movement data were used to connect the forces of infection across various counties.
{"title":"Modeling impact of vaccination on COVID-19 dynamics in St. Louis.","authors":"Alexanderia Lacy, Morganne Igoe, Praachi Das, Trevor Farthing, Alun L Lloyd, Cristina Lanzas, Agricola Odoi, Suzanne Lenhart","doi":"10.1080/17513758.2023.2287084","DOIUrl":"10.1080/17513758.2023.2287084","url":null,"abstract":"<p><p>The region of St. Louis, Missouri, has displayed a high level of heterogeneity in COVID-19 cases, hospitalization, and vaccination coverage. We investigate how human mobility, vaccination, and time-varying transmission rates influenced SARS-CoV-2 transmission in five counties in the St. Louis area. A COVID-19 model with a system of ordinary differential equations was developed to illustrate the dynamics with a fully vaccinated class. Using the weekly number of vaccinations, cases, and hospitalization data from five counties in the greater St. Louis area in 2021, parameter estimation for the model was completed. The transmission coefficients for each county changed four times in that year to fit the model and the changing behaviour. We predicted the changes in disease spread under scenarios with increased vaccination coverage. SafeGraph local movement data were used to connect the forces of infection across various counties.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2287084"},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A computational approach is adapted to analyze the parameter identifiability of a compartmental model. The model is intended to describe the progression of the COVID-19 pandemic in Chile during the initial phase in early 2020 when government declared quarantine measures. The computational approach to analyze the structural and practical identifiability is applied in two parts, one for synthetic data and another for some Chilean regional data. The first part defines the identifiable parameter sets when these recover the true parameters used to create the synthetic data. The second part compares the results derived from synthetic data, estimating the identifiable parameter sets from regional Chilean epidemic data. Experiments provide evidence of the loss of identifiability if some initial conditions are estimated, the period of time used to fit is before the peak, and if a significant proportion of the population is involved in quarantine periods.
{"title":"A computational approach to identifiability analysis for a model of the propagation and control of COVID-19 in Chile.","authors":"Raimund Bürger, Gerardo Chowell, Ilja Kröker, Leidy Yissedt Lara-Díaz","doi":"10.1080/17513758.2023.2256774","DOIUrl":"10.1080/17513758.2023.2256774","url":null,"abstract":"<p><p>A computational approach is adapted to analyze the parameter identifiability of a compartmental model. The model is intended to describe the progression of the COVID-19 pandemic in Chile during the initial phase in early 2020 when government declared quarantine measures. The computational approach to analyze the structural and practical identifiability is applied in two parts, one for synthetic data and another for some Chilean regional data. The first part defines the identifiable parameter sets when these recover the true parameters used to create the synthetic data. The second part compares the results derived from synthetic data, estimating the identifiable parameter sets from regional Chilean epidemic data. Experiments provide evidence of the loss of identifiability if some initial conditions are estimated, the period of time used to fit is before the peak, and if a significant proportion of the population is involved in quarantine periods.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2256774"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10649857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-28DOI: 10.1080/17513758.2023.2287087
Tharusha Bandara, Maia Martcheva, Calistus N Ngonghala
HIV continues to be a major global health issue, having claimed millions of lives in the last few decades. While several empirical studies support the fact that proper nutrition is useful in the fight against HIV, very few studies have focused on developing and using mathematical modelling approaches to assess the association between HIV, human immune response to the disease, and nutrition. We develop a within-host model for HIV that captures the dynamic interactions between HIV, the immune system and nutrition. We find that increased viral activity leads to increased serum protein levels. We also show that the viral production rate is positively correlated with HIV viral loads, as is the enhancement rate of protein by virus. Although our numerical simulations indicate a direct correlation between dietary protein intake and serum protein levels in HIV-infected individuals, further modelling and clinical studies are necessary to gain comprehensive understanding of the relationship.
{"title":"Mathematical model on HIV and nutrition.","authors":"Tharusha Bandara, Maia Martcheva, Calistus N Ngonghala","doi":"10.1080/17513758.2023.2287087","DOIUrl":"10.1080/17513758.2023.2287087","url":null,"abstract":"<p><p>HIV continues to be a major global health issue, having claimed millions of lives in the last few decades. While several empirical studies support the fact that proper nutrition is useful in the fight against HIV, very few studies have focused on developing and using mathematical modelling approaches to assess the association between HIV, human immune response to the disease, and nutrition. We develop a within-host model for HIV that captures the dynamic interactions between HIV, the immune system and nutrition. We find that increased viral activity leads to increased serum protein levels. We also show that the viral production rate is positively correlated with HIV viral loads, as is the enhancement rate of protein by virus. Although our numerical simulations indicate a direct correlation between dietary protein intake and serum protein levels in HIV-infected individuals, further modelling and clinical studies are necessary to gain comprehensive understanding of the relationship.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"17 1","pages":"2287087"},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2153938
Sam Bednarski, Laura L E Cowen, Junling Ma, Tanya Philippsen, P van den Driessche, Manting Wang
Contact tracing is an important intervention measure to control infectious diseases. We present a new approach that borrows the edge dynamics idea from network models to track contacts included in a compartmental SIR model for an epidemic spreading in a randomly mixed population. Unlike network models, our approach does not require statistical information of the contact network, data that are usually not readily available. The model resulting from this new approach allows us to study the effect of contact tracing and isolation of diagnosed patients on the control reproduction number and number of infected individuals. We estimate the effects of tracing coverage and capacity on the effectiveness of contact tracing. Our approach can be extended to more realistic models that incorporate latent and asymptomatic compartments.
{"title":"A contact tracing SIR model for randomly mixed populations.","authors":"Sam Bednarski, Laura L E Cowen, Junling Ma, Tanya Philippsen, P van den Driessche, Manting Wang","doi":"10.1080/17513758.2022.2153938","DOIUrl":"https://doi.org/10.1080/17513758.2022.2153938","url":null,"abstract":"<p><p>Contact tracing is an important intervention measure to control infectious diseases. We present a new approach that borrows the edge dynamics idea from network models to track contacts included in a compartmental SIR model for an epidemic spreading in a randomly mixed population. Unlike network models, our approach does not require statistical information of the contact network, data that are usually not readily available. The model resulting from this new approach allows us to study the effect of contact tracing and isolation of diagnosed patients on the control reproduction number and number of infected individuals. We estimate the effects of tracing coverage and capacity on the effectiveness of contact tracing. Our approach can be extended to more realistic models that incorporate latent and asymptomatic compartments.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"859-879"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10486605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2154860
S Elaydi, Y Kang, R Luís
Based on evolutionary game theory and Darwinian evolution, we propose and study discrete-time competition models of two species where at least one species has an evolving trait that affects their intra-specific, but not their inter-specific competition coefficients. By using perturbation theory, and the theory of the limiting equations of non-autonomous discrete dynamical systems, we obtain global stability results. Our theoretical results indicate that evolution may promote and/or suppress the stability of the coexistence equilibrium depending on the environment. This relies crucially on the speed of evolution and on how the intra-specific competition coefficient depends on the evolving trait. In general, equilibrium destabilization occurs when , when the speed of evolution is sufficiently slow. In this case, we conclude that evolution selects against complex dynamics. However, when evolution proceeds at a faster pace, destabilization can occur when . In this case, if the competition coefficient is highly sensitive to changes in the trait v, destabilization and complex dynamics occur. Moreover, destabilization may lead to either a period-doubling bifurcation, as in the non-evolutionary Ricker equation, or to a Neimark-Sacker bifurcation.
{"title":"The effects of evolution on the stability of competing species.","authors":"S Elaydi, Y Kang, R Luís","doi":"10.1080/17513758.2022.2154860","DOIUrl":"https://doi.org/10.1080/17513758.2022.2154860","url":null,"abstract":"<p><p>Based on evolutionary game theory and Darwinian evolution, we propose and study discrete-time competition models of two species where at least one species has an evolving trait that affects their intra-specific, but not their inter-specific competition coefficients. By using perturbation theory, and the theory of the limiting equations of non-autonomous discrete dynamical systems, we obtain global stability results. Our theoretical results indicate that evolution may promote and/or suppress the stability of the coexistence equilibrium depending on the environment. This relies crucially on the speed of evolution and on how the intra-specific competition coefficient depends on the evolving trait. In general, equilibrium destabilization occurs when <math><mi>α</mi><mo>></mo><mn>2</mn></math>, when the speed of evolution is sufficiently slow. In this case, we conclude that evolution selects against complex dynamics. However, when evolution proceeds at a faster pace, destabilization can occur when <math><mi>α</mi><mo><</mo><mn>2</mn></math>. In this case, if the competition coefficient is highly sensitive to changes in the trait <i>v</i>, destabilization and complex dynamics occur. Moreover, destabilization may lead to either a period-doubling bifurcation, as in the non-evolutionary Ricker equation, or to a Neimark-Sacker bifurcation.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"816-839"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10488189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/17513758.2022.2155717
Yongxin Gao, Shuyuan Yao
In this paper, we use a mean-reverting Ornstein-Uhlenbeck process to simulate the stochastic perturbations in the environment, and then a modified Leslie-Gower Holling-type II predator-prey stochastic model in a polluted environment with interspecific competition and pulse toxicant input is proposed. Through constructing V-function and applying formula, the sharp sufficient conditions including strongly persistent in the mean, persistent in the mean and extinction are established. In addition, the theoretical results are verified by numerical simulation.
{"title":"Dynamical analysis of a modified Leslie-Gower Holling-type II predator-prey stochastic model in polluted environments with interspecific competition and impulsive toxicant input.","authors":"Yongxin Gao, Shuyuan Yao","doi":"10.1080/17513758.2022.2155717","DOIUrl":"https://doi.org/10.1080/17513758.2022.2155717","url":null,"abstract":"<p><p>In this paper, we use a mean-reverting Ornstein-Uhlenbeck process to simulate the stochastic perturbations in the environment, and then a modified Leslie-Gower Holling-type II predator-prey stochastic model in a polluted environment with interspecific competition and pulse toxicant input is proposed. Through constructing V-function and applying <math><mi>It</mi><msup><mrow><mrow><mover><mi>o</mi><mo>^</mo></mover></mrow></mrow><mo>'</mo></msup><mi>s</mi></math> formula, the sharp sufficient conditions including strongly persistent in the mean, persistent in the mean and extinction are established. In addition, the theoretical results are verified by numerical simulation.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"840-858"},"PeriodicalIF":2.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10838564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-02DOI: 10.1080/17513758.2022.2079739
Yiyou Pang, Shuai Wang, Siyu Liu
In this paper, we study a stage-structured wild and sterile mosquito interaction impulsive model. The aim is to study the feasibility of controlling the population of wild mosquitoes by releasing sterile mosquitoes periodically. The existence of trivial periodic solutions is obtained, and the corresponding local stability and global stability conditions are proved by Floquet theory and Lyapunov stability theorem, respectively. And we prove the existence conditions of non-trivial periodic solutions and their local stability. We can find that the system has the bistable phenomenon in which the trivial periodic solution and the non-trivial periodic solution can coexist under certain threshold conditions. All the results show that the appropriate release period and release amount of sterile mosquitoes can control the wild mosquito population within a certain range and even make them extinct. Finally, numerical simulation verifies our theoretical results.
{"title":"Dynamics analysis of stage-structured wild and sterile mosquito interaction impulsive model","authors":"Yiyou Pang, Shuai Wang, Siyu Liu","doi":"10.1080/17513758.2022.2079739","DOIUrl":"https://doi.org/10.1080/17513758.2022.2079739","url":null,"abstract":"In this paper, we study a stage-structured wild and sterile mosquito interaction impulsive model. The aim is to study the feasibility of controlling the population of wild mosquitoes by releasing sterile mosquitoes periodically. The existence of trivial periodic solutions is obtained, and the corresponding local stability and global stability conditions are proved by Floquet theory and Lyapunov stability theorem, respectively. And we prove the existence conditions of non-trivial periodic solutions and their local stability. We can find that the system has the bistable phenomenon in which the trivial periodic solution and the non-trivial periodic solution can coexist under certain threshold conditions. All the results show that the appropriate release period and release amount of sterile mosquitoes can control the wild mosquito population within a certain range and even make them extinct. Finally, numerical simulation verifies our theoretical results.","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"464 - 479"},"PeriodicalIF":2.8,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46992426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-30DOI: 10.1080/17513758.2022.2081368
Birhan Getachew Bitew, J. Munganga, Adamu Shitu Hassan
In this study, a model for the spread of cyst echinococcosis with interventions is formulated. The disease-free and endemic equilibrium points of the model are calculated. The control reproduction number for the model is derived, and the global dynamics are established by the values of . The disease-free equilibrium is globally asymptotically stable if and only if . For , using Volterra–Lyapunov stable matrices, it is proven that the endemic equilibrium is globally asymptotically stable. Sensitivity analysis to identify the most influential parameters in the dynamics of CE is carried out. To establish the long-term behaviour of the disease, numerical simulations are performed. The impact of control strategies is investigated. It is shown that, whenever vaccination of sheep is carried out solely or in combination with cleaning or disinfecting of the environment, cyst echinococcosis can be wiped out.
{"title":"Mathematical modelling of echinococcosis in human, dogs and sheep with intervention","authors":"Birhan Getachew Bitew, J. Munganga, Adamu Shitu Hassan","doi":"10.1080/17513758.2022.2081368","DOIUrl":"https://doi.org/10.1080/17513758.2022.2081368","url":null,"abstract":"In this study, a model for the spread of cyst echinococcosis with interventions is formulated. The disease-free and endemic equilibrium points of the model are calculated. The control reproduction number for the model is derived, and the global dynamics are established by the values of . The disease-free equilibrium is globally asymptotically stable if and only if . For , using Volterra–Lyapunov stable matrices, it is proven that the endemic equilibrium is globally asymptotically stable. Sensitivity analysis to identify the most influential parameters in the dynamics of CE is carried out. To establish the long-term behaviour of the disease, numerical simulations are performed. The impact of control strategies is investigated. It is shown that, whenever vaccination of sheep is carried out solely or in combination with cleaning or disinfecting of the environment, cyst echinococcosis can be wiped out.","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"16 1","pages":"439 - 463"},"PeriodicalIF":2.8,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47234122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}