Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1737740
Xinzhe Zhang, Gang Huang, Yueping Dong
In this paper, we formulate a stage-structured predator-prey model with mutual interference, in which includes two discrete delays. By theoretical analysis, we establish the stability of the unique positive equilibrium and the existence of Hopf bifurcation when the maturation delay for predators is used as the bifurcation parameter. Our results exhibit that the maturation delay for preys does not affect the stability of the positive equilibrium. However, the maturation delay for predator is able to destabilize the positive equilibrium and causes periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and display the differential impacts of two type delays and mutual interference.
{"title":"Dynamical analysis on a predator-prey model with stage structure and mutual interference.","authors":"Xinzhe Zhang, Gang Huang, Yueping Dong","doi":"10.1080/17513758.2020.1737740","DOIUrl":"https://doi.org/10.1080/17513758.2020.1737740","url":null,"abstract":"<p><p>In this paper, we formulate a stage-structured predator-prey model with mutual interference, in which includes two discrete delays. By theoretical analysis, we establish the stability of the unique positive equilibrium and the existence of Hopf bifurcation when the maturation delay for predators is used as the bifurcation parameter. Our results exhibit that the maturation delay for preys does not affect the stability of the positive equilibrium. However, the maturation delay for predator is able to destabilize the positive equilibrium and causes periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and display the differential impacts of two type delays and mutual interference.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"200-221"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1737740","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37724256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [E. D'Aniello and S. Elaydi, The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to appear).], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics.
{"title":"Discrete evolutionary population models: a new approach.","authors":"Karima Mokni, Saber Elaydi, Mohamed Ch-Chaoui, Amina Eladdadi","doi":"10.1080/17513758.2020.1772997","DOIUrl":"https://doi.org/10.1080/17513758.2020.1772997","url":null,"abstract":"<p><p>In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [E. D'Aniello and S. Elaydi, <i>The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems</i>, Discr. Contin. Dyn. Series B. 2019 (to appear).], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"454-478"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1772997","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38093979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1792565
Genghong Lin, Yuanxian Hui
In this work, we study a non-autonomous differential equation model for the interaction of wild and sterile mosquitoes. Suppose that the number of sterile mosquitoes released in the field is a given nonnegative continuous function. We determine a threshold [Formula: see text] for the number of sterile mosquitoes and provide a sufficient condition for the origin [Formula: see text] to be globally asymptotically stable based on the threshold [Formula: see text]. For the case when the number of sterile mosquitoes keeps at a constant level, we find that the origin [Formula: see text] is globally asymptotically stable if and only if the constant number [Formula: see text] of sterile mosquitoes released in the field is above [Formula: see text].
{"title":"Stability analysis in a mosquito population suppression model.","authors":"Genghong Lin, Yuanxian Hui","doi":"10.1080/17513758.2020.1792565","DOIUrl":"https://doi.org/10.1080/17513758.2020.1792565","url":null,"abstract":"<p><p>In this work, we study a non-autonomous differential equation model for the interaction of wild and sterile mosquitoes. Suppose that the number of sterile mosquitoes released in the field is a given nonnegative continuous function. We determine a threshold [Formula: see text] for the number of sterile mosquitoes and provide a sufficient condition for the origin [Formula: see text] to be globally asymptotically stable based on the threshold [Formula: see text]. For the case when the number of sterile mosquitoes keeps at a constant level, we find that the origin [Formula: see text] is globally asymptotically stable if and only if the constant number [Formula: see text] of sterile mosquitoes released in the field is above [Formula: see text].</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"578-589"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1792565","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38157878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1745306
Asha Hassan, Nyimvua Shaban
A deterministic model of onchocerciasis disease dynamics is considered in a community partitioned into compartments based on the disease status. Public health education is offered in the community during the implementation of mass treatment using ivermectin drugs. Also, larviciding and trapping strategies are implemented in the vector population with the aim of controlling population growth of black flies. We fit the model to the data to check the suitability of the model. Expressions are derived for the influence on the reproduction numbers of these strategies. Numerical results show that the dynamics of onchocerciasis and the growth of black flies are best controlled when the four strategies are implemented simultaneously. Also, the results suggest that for the elimination of the disease in the society there is a need for finding another drug which will be implemented to ineligible human as well as killing the adult worms instead of ivermectin.
{"title":"Onchocerciasis dynamics: modelling the effects of treatment, education and vector control.","authors":"Asha Hassan, Nyimvua Shaban","doi":"10.1080/17513758.2020.1745306","DOIUrl":"https://doi.org/10.1080/17513758.2020.1745306","url":null,"abstract":"<p><p>A deterministic model of onchocerciasis disease dynamics is considered in a community partitioned into compartments based on the disease status. Public health education is offered in the community during the implementation of mass treatment using ivermectin drugs. Also, larviciding and trapping strategies are implemented in the vector population with the aim of controlling population growth of black flies. We fit the model to the data to check the suitability of the model. Expressions are derived for the influence on the reproduction numbers of these strategies. Numerical results show that the dynamics of onchocerciasis and the growth of black flies are best controlled when the four strategies are implemented simultaneously. Also, the results suggest that for the elimination of the disease in the society there is a need for finding another drug which will be implemented to ineligible human as well as killing the adult worms instead of ivermectin.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"245-268"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1745306","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37814049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1786860
Zhong Zhao, Ying Chen, Qiuying Li, Xianbin Wu
Considering the rhizosphere microbes easily affected by the environmental factors, we formulate a three-dimensional diffusion model of the rhizosphere microbes with the impulsive feedback control to describe the complex degradation and movement by introducing beneficial microbes into the plant rhizosphere. The sufficient conditions for existence of the order-1 periodic solution are obtained by using the geometrical theory of the impulsive semi-dynamical system. We show the impulsive control system tends to an order-1 periodic solution if the control measures are achieved. Furthermore, we investigate the stability of the order-1 periodic solution by means of a novel method introduced in the literature [Y. Ye, The Theory of the Limit Cycle, Shanghai Science and Technology Press, 1984.]. Finally, mathematical results are justified by some numerical simulations.
{"title":"Mathematical model for diffusion of the rhizosphere microbial degradation with impulsive feedback control.","authors":"Zhong Zhao, Ying Chen, Qiuying Li, Xianbin Wu","doi":"10.1080/17513758.2020.1786860","DOIUrl":"https://doi.org/10.1080/17513758.2020.1786860","url":null,"abstract":"<p><p>Considering the rhizosphere microbes easily affected by the environmental factors, we formulate a three-dimensional diffusion model of the rhizosphere microbes with the impulsive feedback control to describe the complex degradation and movement by introducing beneficial microbes into the plant rhizosphere. The sufficient conditions for existence of the order-1 periodic solution are obtained by using the geometrical theory of the impulsive semi-dynamical system. We show the impulsive control system tends to an order-1 periodic solution if the control measures are achieved. Furthermore, we investigate the stability of the order-1 periodic solution by means of a novel method introduced in the literature [Y. Ye, <i>The Theory of the Limit Cycle</i>, Shanghai Science and Technology Press, 1984.]. Finally, mathematical results are justified by some numerical simulations.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"566-577"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1786860","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38132329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1823494
Abdul-Rahman J Mumbu, Alfred K Hugo
The outbreak of COVID-19 was first experienced in Wuhan City, China, during December 2019 before it rapidly spread over globally. This paper has proposed a mathematical model for studying its transmission dynamics in the presence of face mask wearing and hospitalization services of human population in Tanzania. Disease-free and endemic equilibria were determined and subsequently their local and global stabilities were carried out. The trace-determinant approach was used in the local stability of disease-free equilibrium point while Lyapunov function technique was used to determine the global stability of both disease-free and endemic equilibrium points. Basic reproduction number, , was determined in which its numerical results revealed that, in the presence of face masks wearing and medication services or hospitalization as preventive measure for its transmission, while in their absence . This supports its analytical solution that the disease-free equilibrium point is asymptotically stable whenever , while endemic equilibrium point is globally asymptotically stable for . Therefore, this paper proves the necessity of face masks wearing and hospitalization services to COVID-19 patients to contain the disease spread to the population.
{"title":"Mathematical modelling on COVID-19 transmission impacts with preventive measures: a case study of Tanzania.","authors":"Abdul-Rahman J Mumbu, Alfred K Hugo","doi":"10.1080/17513758.2020.1823494","DOIUrl":"https://doi.org/10.1080/17513758.2020.1823494","url":null,"abstract":"<p><p>The outbreak of COVID-19 was first experienced in Wuhan City, China, during December 2019 before it rapidly spread over globally. This paper has proposed a mathematical model for studying its transmission dynamics in the presence of face mask wearing and hospitalization services of human population in Tanzania. Disease-free and endemic equilibria were determined and subsequently their local and global stabilities were carried out. The trace-determinant approach was used in the local stability of disease-free equilibrium point while Lyapunov function technique was used to determine the global stability of both disease-free and endemic equilibrium points. Basic reproduction number, <math><msub><mi>R</mi><mn>0</mn></msub></math> , was determined in which its numerical results revealed that, in the presence of face masks wearing and medication services or hospitalization as preventive measure for its transmission, <math><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>0.698</mn></math> while in their absence <math><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>3.8</mn></math> . This supports its analytical solution that the disease-free equilibrium point <math><msub><mi>E</mi><mn>0</mn></msub></math> is asymptotically stable whenever <math><msub><mi>R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></math> , while endemic equilibrium point <math><msub><mi>E</mi><mo>∗</mo></msub></math> is globally asymptotically stable for <math><msub><mi>R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></math> . Therefore, this paper proves the necessity of face masks wearing and hospitalization services to COVID-19 patients to contain the disease spread to the population.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"748-766"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1823494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38434532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1726516
Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva
We propose a model of a joint spread of heroin use and HIV infection. The unique disease-free equilibrium always exists and it is stable if the basic reproduction numbers of heroin use and HIV infection are both less than 1. The semi-trivial equilibrium of HIV infection (heroin use) exists if the basic reproduction number of HIV infection (heroin use) is larger than 1 and it is locally stable if and only if the invasion number of heroin use (HIV infection) is less than 1. When both semi-trivial equilibria lose their stability, a coexistence equilibrium occurs, which may not be unique. We compare the model to US data on heroin use and HIV transmission. We conclude that the two diseases in the US are in a coexistence regime. Elasticities of the invasion numbers suggest two foci for control measures: targeting the drug abuse epidemic and reducing HIV risk in drug-users.
{"title":"Coinfection dynamics of heroin transmission and HIV infection in a single population.","authors":"Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva","doi":"10.1080/17513758.2020.1726516","DOIUrl":"https://doi.org/10.1080/17513758.2020.1726516","url":null,"abstract":"<p><p>We propose a model of a joint spread of heroin use and HIV infection. The unique disease-free equilibrium always exists and it is stable if the basic reproduction numbers of heroin use and HIV infection are both less than 1. The semi-trivial equilibrium of HIV infection (heroin use) exists if the basic reproduction number of HIV infection (heroin use) is larger than 1 and it is locally stable if and only if the invasion number of heroin use (HIV infection) is less than 1. When both semi-trivial equilibria lose their stability, a coexistence equilibrium occurs, which may not be unique. We compare the model to US data on heroin use and HIV transmission. We conclude that the two diseases in the US are in a coexistence regime. Elasticities of the invasion numbers suggest two foci for control measures: targeting the drug abuse epidemic and reducing HIV risk in drug-users.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"116-142"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1726516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37650055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1736656
Stephen Baigent, Atheeta Ching
We investigate the existence of a two-dimensional invariant manifold that attracts all nonzero orbits in 3 species Lotka-Volterra systems with identical linear growth rates. This manifold, which we call the balance simplex, is the common boundary of the basin of repulsion of the origin and the basin of repulsion of infinity. The balance simplex is linked to ecological models where there is 'growth when rare' and competition for finite resources. By including alternative food sources for predators we cater for predator-prey type models. In the case that the model is competitive, the balance simplex coincides with the carrying simplex which is an unordered manifold (no two points may be ordered componentwise), but for non-competitive models the balance simplex need not be unordered. The balance simplex of our models contains all limit sets and is the graph of a piecewise analytic function over the unit probability simplex.
{"title":"Balance simplices of 3-species May-Leonard systems.","authors":"Stephen Baigent, Atheeta Ching","doi":"10.1080/17513758.2020.1736656","DOIUrl":"https://doi.org/10.1080/17513758.2020.1736656","url":null,"abstract":"<p><p>We investigate the existence of a two-dimensional invariant manifold that attracts all nonzero orbits in 3 species Lotka-Volterra systems with identical linear growth rates. This manifold, which we call the <i>balance simplex,</i> is the common boundary of the basin of repulsion of the origin and the basin of repulsion of infinity. The balance simplex is linked to ecological models where there is 'growth when rare' and competition for finite resources. By including alternative food sources for predators we cater for predator-prey type models. In the case that the model is competitive, the balance simplex coincides with the carrying simplex which is an unordered manifold (no two points may be ordered componentwise), but for non-competitive models the balance simplex need not be unordered. The balance simplex of our models contains all limit sets and is the graph of a piecewise analytic function over the unit probability simplex.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"187-199"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1736656","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37720288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.1080/17513758.2020.1773000
Mohsin Ali, Syed Touqeer H Shah, Mudassar Imran, Adnan Khan
We formulate a deterministic epidemic model for the spread of Corona Virus Disease (COVID-19). We have included asymptomatic, quarantine and isolation compartments in the model, as studies have stressed upon the importance of these population groups on the transmission of the disease. We calculate the basic reproduction number [Formula: see text] and show that for [Formula: see text] the disease dies out and for [Formula: see text] the disease is endemic. Using sensitivity analysis we establish that [Formula: see text] is most sensitive to the rate of quarantine and isolation and that a high level of quarantine needs to be maintained as well as isolation to control the disease. Based on this we devise optimal quarantine and isolation strategies, noting that high levels need to be maintained during the early stages of the outbreak. Using data from the Wuhan outbreak, which has nearly run its course we estimate that [Formula: see text] which while in agreement with other estimates in the literature is on the lower side.
{"title":"The role of asymptomatic class, quarantine and isolation in the transmission of COVID-19.","authors":"Mohsin Ali, Syed Touqeer H Shah, Mudassar Imran, Adnan Khan","doi":"10.1080/17513758.2020.1773000","DOIUrl":"https://doi.org/10.1080/17513758.2020.1773000","url":null,"abstract":"<p><p>We formulate a deterministic epidemic model for the spread of Corona Virus Disease (COVID-19). We have included asymptomatic, quarantine and isolation compartments in the model, as studies have stressed upon the importance of these population groups on the transmission of the disease. We calculate the basic reproduction number [Formula: see text] and show that for [Formula: see text] the disease dies out and for [Formula: see text] the disease is endemic. Using sensitivity analysis we establish that [Formula: see text] is most sensitive to the rate of quarantine and isolation and that a high level of quarantine needs to be maintained as well as isolation to control the disease. Based on this we devise optimal quarantine and isolation strategies, noting that high levels need to be maintained during the early stages of the outbreak. Using data from the Wuhan outbreak, which has nearly run its course we estimate that [Formula: see text] which while in agreement with other estimates in the literature is on the lower side.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"14 1","pages":"389-408"},"PeriodicalIF":2.8,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17513758.2020.1773000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38014623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}