首页 > 最新文献

Bioinspired Biomimetic and Nanobiomaterials最新文献

英文 中文
Nanomaterial reinforced composite for biomedical implants applications: a mini-review 纳米材料增强复合材料在生物医学植入物中的应用:综述
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2022-06-10 DOI: 10.1680/jbibn.21.00061
Manjeet Kumar, Rajesh Kumar, Sandeep Kumar
There is heavy demand for suitable implant materials with improved mechanical and biological properties. Classically, the demand was catered by conventional materials like metals, alloys, and polymer-based materials. Recently, nanomaterial reinforced composites have played a significant role in replacing conventional materials due to their excellent properties such as biocompatibility, bioactivity, high strength to weight ratio, long life, corrosion & wear resistance, and tailor-ability. Herein, we composed a systematic focus review on the role of nanoparticles in the form of composite materials for the advancements in orthopedic implants. Several nano materials-based reinforcements have been reviewed with various matrix materials, including metals, alloys, ceramics, composites, and polymers for biomedical implant applications. Moreover, the improved biological properties, mechanical properties, and other functionalities like infection resistance, drug delivery at the target, sensing, and detection of bone diseases, and corrosion & wear resistance are elaborated. At last, a particular focus has been given to the un-resolved challenges in orthopedic implant development.
对具有改进的机械和生物性能的合适的植入材料有很大的需求。传统上,金属、合金和聚合物基材料等传统材料满足了需求。近年来,纳米材料增强复合材料以其优异的生物相容性、生物活性、高强度重量比、长寿命、耐腐蚀耐磨性和可定制性等性能,在取代传统材料方面发挥了重要作用。在此,我们对复合材料形式的纳米颗粒在骨科植入物发展中的作用进行了系统的重点综述。综述了几种基于纳米材料的增强材料,包括用于生物医学植入应用的金属、合金、陶瓷、复合材料和聚合物。此外,还阐述了改进的生物特性、机械特性和其他功能,如抗感染性、靶向药物递送、骨骼疾病的传感和检测以及耐腐蚀和耐磨性。最后,特别关注骨科植入物开发中尚未解决的挑战。
{"title":"Nanomaterial reinforced composite for biomedical implants applications: a mini-review","authors":"Manjeet Kumar, Rajesh Kumar, Sandeep Kumar","doi":"10.1680/jbibn.21.00061","DOIUrl":"https://doi.org/10.1680/jbibn.21.00061","url":null,"abstract":"There is heavy demand for suitable implant materials with improved mechanical and biological properties. Classically, the demand was catered by conventional materials like metals, alloys, and polymer-based materials. Recently, nanomaterial reinforced composites have played a significant role in replacing conventional materials due to their excellent properties such as biocompatibility, bioactivity, high strength to weight ratio, long life, corrosion & wear resistance, and tailor-ability. Herein, we composed a systematic focus review on the role of nanoparticles in the form of composite materials for the advancements in orthopedic implants. Several nano materials-based reinforcements have been reviewed with various matrix materials, including metals, alloys, ceramics, composites, and polymers for biomedical implant applications. Moreover, the improved biological properties, mechanical properties, and other functionalities like infection resistance, drug delivery at the target, sensing, and detection of bone diseases, and corrosion & wear resistance are elaborated. At last, a particular focus has been given to the un-resolved challenges in orthopedic implant development.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48389208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inspired by mussel: biomimetic polyelectrolyte complex coacervate adhesive initiates a connection through water exchange 灵感来自贻贝:仿生聚电解质复合物凝聚胶通过水交换启动连接
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2022-05-13 DOI: 10.1680/jbibn.21.00001
Guilong Wang, Zhen-Feng Hu, Xiu-Bing Liang, Fu-Xue Chen
Here the authors report a versatile and strong underwater adhesive that was inspired by the chemical features of mussel foot proteins. A random copolymer (poly(N-(3,4-dihydroxyphenethyl)methacrylamide-co-methacryloxyethyltrimethyl ammonium chloride-co-acrylamide) (PDMA)–Tf2N) was prepared that contained side-chain catechol groups and quaternary ammonium cations that were ion-paired with bis(trifluoromethane-sulfonyl)imide anion (Tf2N). After dissolving PDMA–Tf2N and poly(acrylic acid) in dimethyl sulfoxide, a polyelectrolyte complex coacervate adhesive (P2) could be formed, which could be triggered through solvent exchange. P2 exhibited outstanding underwater shear strength to various substrate surfaces. After a critical curing time (t s = 10 min), the adhesion strength of P2 to glass increased sharply up to 187.298 kPa (t s = 40 min).
在这里,作者报告了一种多功能和强大的水下粘合剂,其灵感来自贻贝足蛋白质的化学特性。制备了一种无规共聚物(聚(N-(3,4-二羟基苯基)甲基丙烯酰胺-共甲基丙烯氧氧乙基三甲基氯化铵-共丙烯酰胺)(PDMA) - Tf2N),其侧链儿茶酚基团和季铵盐阳离子与双(三氟甲烷-磺酰)亚胺阴离子(Tf2N−)离子配对。PDMA-Tf2N与聚丙烯酸在二甲亚砜中溶解后,形成聚电解质络合物凝聚胶(P2),通过溶剂交换触发。P2对各种基材表面均表现出优异的水下抗剪强度。经过临界固化时间(t s = 10 min)后,P2与玻璃的粘附强度急剧增加,达到187.298 kPa (t s = 40 min)。
{"title":"Inspired by mussel: biomimetic polyelectrolyte complex coacervate adhesive initiates a connection through water exchange","authors":"Guilong Wang, Zhen-Feng Hu, Xiu-Bing Liang, Fu-Xue Chen","doi":"10.1680/jbibn.21.00001","DOIUrl":"https://doi.org/10.1680/jbibn.21.00001","url":null,"abstract":"Here the authors report a versatile and strong underwater adhesive that was inspired by the chemical features of mussel foot proteins. A random copolymer (poly(<i>N</i>-(3,4-dihydroxyphenethyl)methacrylamide-co-methacryloxyethyltrimethyl ammonium chloride-co-acrylamide) (PDMA)–Tf<sub>2</sub>N) was prepared that contained side-chain catechol groups and quaternary ammonium cations that were ion-paired with bis(trifluoromethane-sulfonyl)imide anion (Tf<sub>2</sub>N<sup>−</sup>). After dissolving PDMA–Tf<sub>2</sub>N and poly(acrylic acid) in dimethyl sulfoxide, a polyelectrolyte complex coacervate adhesive (P2) could be formed, which could be triggered through solvent exchange. P2 exhibited outstanding underwater shear strength to various substrate surfaces. After a critical curing time (<i>t</i> <sub>s</sub> = 10 min), the adhesion strength of P2 to glass increased sharply up to 187.298 kPa (<i>t</i> <sub>s</sub> = 40 min).","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"72 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinspired, Biomimetic and Nanobiomaterials: Referees 2021 生物启发,仿生和纳米生物材料:裁判员2021
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2022-03-01 DOI: 10.1680/jbibn.2022.11.1.33
{"title":"Bioinspired, Biomimetic and Nanobiomaterials: Referees 2021","authors":"","doi":"10.1680/jbibn.2022.11.1.33","DOIUrl":"https://doi.org/10.1680/jbibn.2022.11.1.33","url":null,"abstract":"","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45313373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of anisotropic superhydrophobic surface based on the Nepenthes slippery zone 基于Nepenthes滑带的各向异性超疏水表面的制备
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2022-02-23 DOI: 10.1680/jbibn.21.00042
Lixin Wang, Shaobo Ma, Shixing Yan, Shiyun Dong
Depending on its highly evolved structures that consist of microscale lunate cells and nanoscale wax coverings, the slippery zone of Nepenthes alata shows significant anisotropic superhydrophobicity, which has gradually become the biomimetic prototype for designing superhydrophobic surfaces. In this study, the authors constructed the structures of the slippery zone into equidistantly distributed greenhouses and array of cylinders, therefore obtaining a biomimetic model of an anisotropic superhydrophobic surface. The greenhouses were printed using ultraviolet-cured material, via 3D printing, and then flake graphite was selected as a substitute for the array of cylinders (wax coverings) and was absorbed onto the printed greenhouses by using high-voltage electrostatic absorption technology. The contact/sliding angle was measured to verify the anisotropic superhydrophobic effect of the fabricated sample. The contact angle increases significantly with an increase in the greenhouse density (l/L value) and achieves a value of 152.6 ± 0.6° when l/L is 0.8, and the sliding angle toward bottom and top shows values of 3.07 ± 0.26° and 5.69 ± 0.24°, respectively. These results indicate that the fabricated sample has anisotropic superhydrophobicity. Therefore, this study provides a simple and low-cost approach for the biomimetic fabrication of anisotropic superhydrophobic surfaces.
由于其由微尺度的月状细胞和纳米尺度的蜡覆盖层组成的高度进化的结构,蜈蚣草的滑带表现出显著的各向异性超疏水性,逐渐成为设计超疏水表面的仿生原型。在本研究中,作者将滑区结构构建为等距分布的温室和圆柱体阵列,从而获得了各向异性超疏水表面的仿生模型。温室使用紫外线固化材料,通过3D打印打印,然后选择片状石墨作为圆柱体阵列(蜡覆盖物)的替代品,并通过高压静电吸收技术吸收到打印的温室上。通过测量接触/滑动角来验证制备的样品的各向异性超疏水效果。接触角(l/ l值)随温室密度的增加而显著增大,当l/ l为0.8时达到152.6±0.6°,向下和向上滑动角分别达到3.07±0.26°和5.69±0.24°。结果表明,制备的样品具有各向异性超疏水性。因此,本研究为各向异性超疏水表面的仿生制备提供了一种简单、低成本的方法。
{"title":"Fabrication of anisotropic superhydrophobic surface based on the Nepenthes slippery zone","authors":"Lixin Wang, Shaobo Ma, Shixing Yan, Shiyun Dong","doi":"10.1680/jbibn.21.00042","DOIUrl":"https://doi.org/10.1680/jbibn.21.00042","url":null,"abstract":"Depending on its highly evolved structures that consist of microscale lunate cells and nanoscale wax coverings, the slippery zone of <i>Nepenthes alata</i> shows significant anisotropic superhydrophobicity, which has gradually become the biomimetic prototype for designing superhydrophobic surfaces. In this study, the authors constructed the structures of the slippery zone into equidistantly distributed greenhouses and array of cylinders, therefore obtaining a biomimetic model of an anisotropic superhydrophobic surface. The greenhouses were printed using ultraviolet-cured material, via 3D printing, and then flake graphite was selected as a substitute for the array of cylinders (wax coverings) and was absorbed onto the printed greenhouses by using high-voltage electrostatic absorption technology. The contact/sliding angle was measured to verify the anisotropic superhydrophobic effect of the fabricated sample. The contact angle increases significantly with an increase in the greenhouse density (<i>l</i>/<i>L</i> value) and achieves a value of 152.6 ± 0.6° when <i>l</i>/<i>L</i> is 0.8, and the sliding angle toward bottom and top shows values of 3.07 ± 0.26° and 5.69 ± 0.24°, respectively. These results indicate that the fabricated sample has anisotropic superhydrophobicity. Therefore, this study provides a simple and low-cost approach for the biomimetic fabrication of anisotropic superhydrophobic surfaces.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"67 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Nanocomposite scaffold of TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) for wound healing 含有角叉胶(TiO2 /CG)的TiO2纳米管三维纳米复合支架用于伤口愈合
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2022-02-17 DOI: 10.1680/jbibn.21.00054
Yong Gao, N. Ismail, M. Yusoff, M. Razali
3D nanocomposite scaffold is an important material for biomedical application owing to its compatibility and effectiveness compared with other types of nanocomposites. In this research, a unique 3D nanocomposite scaffold based on carrageenan biopolymer incorporating TiO2 nanotubes was successfully developed. Prior to the nanocomposite scaffold preparation, the TiO2 nanotubes as nanofiller were synthesized using the hydrothermal method. The synthesis of TiO2 nanotubes was incorporated into carrageenan for the fabrication of a 3D nanocomposite scaffold using the freeze-drying technique. The synthesized and fabricated materials were characterized using various techniques. Fourier-transform infrared spectroscopy and X-ray powder diffraction were employed to investigate the intermolecular interaction and phase structure of the fabricated TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) 3D nanocomposite scaffold. The morphology and microstructure were via scanning electron microscopy and transmission electron microscopy. The ability of TiO2NT/CG 3D nanocomposite scaffold for wound healing was tested in vitro and in vivo. The in vitro study on 3T3 mouse fibroblast cells demonstrated that the number of cells increased up to 190 K per well. Meanwhile, in vivo studies on Sprague Dawley rat exhibited that a 100% cure rate of wounds was observed after 14 days. These are attributed to the presence of ∼10-nm TiO2 nanotubes that are homogeneously distributed onto the scaffold, as proven by scanning electron microscopy. The TiO2 nanotubes promote wound healing by generating reactive oxygen species to induce the fibroblast growth factor and for the formation of a new extracellular matrix. The interconnected porous structure and rough surface of the TiO2/GG 3D nanocomposite scaffold also support cell proliferation to expedite wound healing, thus offering a good candidate for wound-dressing application.
与其他类型的纳米复合材料相比,3D纳米复合材料支架具有兼容性和有效性,是生物医学应用的重要材料。在这项研究中,成功地开发了一种基于卡拉胶生物聚合物结合TiO2纳米管的独特的三维纳米复合支架。在制备纳米复合支架之前,采用水热法合成了TiO2纳米管作为纳米填料。将TiO2纳米管的合成引入卡拉胶中,使用冷冻干燥技术制备3D纳米复合支架。使用各种技术对合成和制备的材料进行了表征。利用傅立叶变换红外光谱和X射线粉末衍射研究了制备的TiO2纳米管掺入卡拉胶(TiO2NT/CG)三维纳米复合支架的分子间相互作用和相结构。通过扫描电子显微镜和透射电子显微镜对其形貌和微观结构进行了分析。在体外和体内测试了TiO2NT/CG三维纳米复合支架的创伤愈合能力。对3T3小鼠成纤维细胞的体外研究表明,细胞数量增加到190 K。同时,对Sprague-Dawley大鼠的体内研究表明,14天后观察到100%的伤口治愈率。扫描电子显微镜证明,这是由于~10 nm TiO2纳米管均匀分布在支架上。TiO2纳米管通过产生活性氧来诱导成纤维细胞生长因子并形成新的细胞外基质,从而促进伤口愈合。TiO2/GG 3D纳米复合材料支架的互连多孔结构和粗糙表面也支持细胞增殖以加速伤口愈合,从而为伤口敷料应用提供了良好的候选者。
{"title":"3D Nanocomposite scaffold of TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) for wound healing","authors":"Yong Gao, N. Ismail, M. Yusoff, M. Razali","doi":"10.1680/jbibn.21.00054","DOIUrl":"https://doi.org/10.1680/jbibn.21.00054","url":null,"abstract":"3D nanocomposite scaffold is an important material for biomedical application owing to its compatibility and effectiveness compared with other types of nanocomposites. In this research, a unique 3D nanocomposite scaffold based on carrageenan biopolymer incorporating TiO2 nanotubes was successfully developed. Prior to the nanocomposite scaffold preparation, the TiO2 nanotubes as nanofiller were synthesized using the hydrothermal method. The synthesis of TiO2 nanotubes was incorporated into carrageenan for the fabrication of a 3D nanocomposite scaffold using the freeze-drying technique. The synthesized and fabricated materials were characterized using various techniques. Fourier-transform infrared spectroscopy and X-ray powder diffraction were employed to investigate the intermolecular interaction and phase structure of the fabricated TiO2 nanotubes incorporated carrageenan (TiO2NT/CG) 3D nanocomposite scaffold. The morphology and microstructure were via scanning electron microscopy and transmission electron microscopy. The ability of TiO2NT/CG 3D nanocomposite scaffold for wound healing was tested in vitro and in vivo. The in vitro study on 3T3 mouse fibroblast cells demonstrated that the number of cells increased up to 190 K per well. Meanwhile, in vivo studies on Sprague Dawley rat exhibited that a 100% cure rate of wounds was observed after 14 days. These are attributed to the presence of ∼10-nm TiO2 nanotubes that are homogeneously distributed onto the scaffold, as proven by scanning electron microscopy. The TiO2 nanotubes promote wound healing by generating reactive oxygen species to induce the fibroblast growth factor and for the formation of a new extracellular matrix. The interconnected porous structure and rough surface of the TiO2/GG 3D nanocomposite scaffold also support cell proliferation to expedite wound healing, thus offering a good candidate for wound-dressing application.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41558251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanical properties, microstructure and chemical composition of naked mole rat incisors 裸鼹鼠门牙的力学性能、微观结构及化学成分
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2021-12-22 DOI: 21.00004
Hongyan Qi, Guixiong Gao, Huixin Wang, Yunhai Ma, Hubiao Wang, Siyang Wu, Jiangtao Yu, Qinghua Wang
The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which make it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterised the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found out that (i) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (ii) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (iii) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increase in distance from enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guide for the design of bionic machinery and materials.
裸鼹鼠门牙(NMRI)具有优异的力学性能,为仿生机械系统和仿生材料的设计和制造提供了良好的原型。在这项工作中,我们表征了NMRI的化学成分、微观结构和力学性能,并进一步将这些性能与实验室大鼠门牙(LRI)进行了比较。我们发现:(1)牙釉质和牙本质是由有机物、无机物和水组成的。NMRI牙釉质中Ca/P比值高于LRI牙釉质。(ii)牙本质具有多孔结构。牙釉质具有三维网状结构,比LRI牙釉质的片层结构更为复杂、规则、致密。(iii)牙釉质具有各向异性。其纵向纳米硬度大于横向纳米硬度,均高于LRI牙釉质。纳米硬度和弹性模量随离牙本质边界距离的增加而增大。牙本质的纳米硬度小于牙釉质的纳米硬度。化学成分和微观结构被认为是NMRI具有优异性能的原因。其化学成分和独特的微观结构可以为仿生机械和仿生材料的设计提供灵感和指导。
{"title":"Mechanical properties, microstructure and chemical composition of naked mole rat incisors","authors":"Hongyan Qi, Guixiong Gao, Huixin Wang, Yunhai Ma, Hubiao Wang, Siyang Wu, Jiangtao Yu, Qinghua Wang","doi":"21.00004","DOIUrl":"https://doi.org/21.00004","url":null,"abstract":"The naked mole rat incisors (NMRI) exhibit excellent mechanical properties, which make it a good prototype for design and fabrication of bionic mechanical systems and materials. In this work, we characterised the chemical composition, microstructure and mechanical properties of NMRI, and further compared these properties with the laboratory rat incisors (LRI). We found out that (<i>i</i>) Enamel and dentin are composed of organic matter, inorganic matter and water. The ratio of Ca/P in NMRI enamel is higher than that of LRI enamel. (<i>ii</i>) The dentin has a porous structure. The enamel has a three-dimensional reticular structure, which is more complex, regular and denser than the lamellar structure of LRI enamel. (<i>iii</i>) Enamel has anisotropy. Its longitudinal nano-hardness is greater than that of transverse nano-hardness, and both of them are higher than that of LRI enamel. Their nano-hardness and elastic modulus increase with the increase in distance from enamel-dentin boundary. The nano-hardness of dentin is smaller than that of enamel. The chemical composition and microstructure are considered to be the reasons for the excellent properties of NMRI. The chemical composition and unique microstructure can provide inspiration and guide for the design of bionic machinery and materials.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"64 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contact angle of Nepenthes slippery zone: results from measurement and model analysis 荆草滑带接触角:测量与模型分析结果
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2021-12-22 DOI: 21.00019
Lixin Wang, Pan Pan, Shixing Yan, Shiyun Dong
The slippery zone of Nepenthes alata depends on its highly evolved morphology and structure to show remarkable superhydrophobicity, which has gradually become a biomimetic prototype for developing superhydrophobic materials. However, the mechanism governing this phenomenon has not been fully revealed through a model analysis. In this paper, the superhydrophobicity of the slippery zone is studied by contact angle measurement, morphology/structure examination and model analysis. The slippery zone causes an ultrapure water droplet to produce a considerably high contact angle (155.11–158.30°) and has micro–nanoscale hierarchical structures consisting of lunate cells and wax coverings. According to the Cassie–Baxter equation and a self-defined infiltration coefficient, a model was established to analyse the effect of a structure characteristic on the contact angle. The analysis, result showed that the calculated contact angle (154.67–159.49°) was highly consistent with the measured contact angle, indicating that the established model can quantitatively characterise the relationship between the contact angle and the structure characteristic. The authors’ study provides some evidences to further reveal the superhydrophobic mechanism of the slippery zone of N. alata, as well as inspiring the biomimetic development of superhydrophobic surfaces.
蜈蚣草的滑带依靠其高度进化的形态和结构表现出显著的超疏水性,逐渐成为开发超疏水材料的仿生原型。然而,控制这一现象的机制尚未通过模型分析得到充分揭示。本文通过接触角测量、形貌/结构检测和模型分析等方法研究了滑层的超疏水性。滑区使超纯水滴产生相当高的接触角(155.11-158.30°),并具有由月状细胞和蜡覆盖层组成的微纳米级分层结构。根据Cassie-Baxter方程和自定义渗透系数,建立了结构特性对接触角影响的模型。分析结果表明,计算接触角(154.67 ~ 159.49°)与实测值高度吻合,表明所建立的模型能够定量表征接触角与结构特性之间的关系。本研究为进一步揭示褐藻滑带的超疏水机理提供了证据,并为超疏水表面的仿生发展提供了启示。
{"title":"Contact angle of Nepenthes slippery zone: results from measurement and model analysis","authors":"Lixin Wang, Pan Pan, Shixing Yan, Shiyun Dong","doi":"21.00019","DOIUrl":"https://doi.org/21.00019","url":null,"abstract":"The slippery zone of <i>Nepenthes alata</i> depends on its highly evolved morphology and structure to show remarkable superhydrophobicity, which has gradually become a biomimetic prototype for developing superhydrophobic materials. However, the mechanism governing this phenomenon has not been fully revealed through a model analysis. In this paper, the superhydrophobicity of the slippery zone is studied by contact angle measurement, morphology/structure examination and model analysis. The slippery zone causes an ultrapure water droplet to produce a considerably high contact angle (155.11–158.30°) and has micro–nanoscale hierarchical structures consisting of lunate cells and wax coverings. According to the Cassie–Baxter equation and a self-defined infiltration coefficient, a model was established to analyse the effect of a structure characteristic on the contact angle. The analysis, result showed that the calculated contact angle (154.67–159.49°) was highly consistent with the measured contact angle, indicating that the established model can quantitatively characterise the relationship between the contact angle and the structure characteristic. The authors’ study provides some evidences to further reveal the superhydrophobic mechanism of the slippery zone of <i>N. alata</i>, as well as inspiring the biomimetic development of superhydrophobic surfaces.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"67 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histopathological evaluation of amino acid capped silver nanoconjugates in albino mice 氨基酸覆盖银纳米偶联物在白化病小鼠中的组织病理学评价
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2021-12-22 DOI: 21.00033
Sarwar Allah Ditta, Atif Yaqub, Fouzia Tanvir, Rehan Ullah, Muhammad Rashid, Muhammad Bilal
Various molecules may modify the surface chemistry of commonly used nanomaterials (NMs), resulting in the synthesis of novel and safer NMs. The current study was delineated to evaluate the in vivo toxicity profiling of the silver nanoconjugates (AgNCs) conjugated with different amino acids. The L-glycine capped-AgNCs exhibited toxicity and caused tissue damage, while L-cystine- and L-tyrosine-capped AgNCs showed protective effects against cadmium-induced toxicity. L-cystine-capped AgNCs performed well as compared to other amino-acid AgNCs. The level of serum creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and blood urea increased (p < 0.05) in G2, G3 and G5 in comparison to G1 (control group), while an increase in bilirubin for G2 was statistically non-significant (p > 0.05). The ALT and AST elevated (p < 0.05) in G4; however, other serological parameters in G4 and G6 did not show any noticeable change in their values. Histological analysis showed disturbed and deformed cellular structures in liver and kidney tissues of G2, G3 and G5. However, G4 and G6 samples demonstrated minute changes in comparison to G1. It is concluded that L-cystine- and L-tyrosine-capped AgNCs exhibited protective effects and should be tested further for developing safer nanoconjugates for biomedical uses.
各种分子可以修饰常用纳米材料的表面化学性质,从而合成新的、更安全的纳米材料。本研究旨在评价不同氨基酸偶联银纳米偶联物(agnc)的体内毒性。l -甘氨酸包盖的AgNCs表现出毒性并引起组织损伤,而l -胱氨酸和l -酪氨酸包盖的AgNCs对镉诱导的毒性表现出保护作用。与其他氨基酸agnc相比,l -胱氨酸封顶agnc表现良好。血清肌酐、谷丙转氨酶(ALT)、天冬氨酸转氨酶(AST)、碱性磷酸酶和血尿素水平升高(p <与G1(对照组)相比,G2、G3和G5的胆红素升高无统计学意义(p >0.05)。ALT和AST升高(p <0.05);而G4、G6的其他血清学参数无明显变化。组织学分析显示G2、G3和G5的肝、肾组织细胞结构紊乱和变形。然而,与G1相比,G4和G6样品表现出微小的变化。综上所述,l -胱氨酸和l -酪氨酸覆盖的agnc具有保护作用,应该进一步测试以开发用于生物医学用途的更安全的纳米偶联物。
{"title":"Histopathological evaluation of amino acid capped silver nanoconjugates in albino mice","authors":"Sarwar Allah Ditta, Atif Yaqub, Fouzia Tanvir, Rehan Ullah, Muhammad Rashid, Muhammad Bilal","doi":"21.00033","DOIUrl":"https://doi.org/21.00033","url":null,"abstract":"Various molecules may modify the surface chemistry of commonly used nanomaterials (NMs), resulting in the synthesis of novel and safer NMs. The current study was delineated to evaluate the in vivo toxicity profiling of the silver nanoconjugates (AgNCs) conjugated with different amino acids. The L-glycine capped-AgNCs exhibited toxicity and caused tissue damage, while L-cystine- and L-tyrosine-capped AgNCs showed protective effects against cadmium-induced toxicity. L-cystine-capped AgNCs performed well as compared to other amino-acid AgNCs. The level of serum creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and blood urea increased (<i>p</i> &lt; 0.05) in G2, G3 and G5 in comparison to G1 (control group), while an increase in bilirubin for G2 was statistically non-significant (<i>p</i> &gt; 0.05). The ALT and AST elevated (<i>p</i> &lt; 0.05) in G4; however, other serological parameters in G4 and G6 did not show any noticeable change in their values. Histological analysis showed disturbed and deformed cellular structures in liver and kidney tissues of G2, G3 and G5. However, G4 and G6 samples demonstrated minute changes in comparison to G1. It is concluded that L-cystine- and L-tyrosine-capped AgNCs exhibited protective effects and should be tested further for developing safer nanoconjugates for biomedical uses.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formulation of Nanoemulgel from Extracts of Musa acuminata: In-Vitro Kinetics and Antimicrobial Studies 穆萨提取物制备纳米乳胶凝胶的体外动力学及抗菌作用研究
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2021-12-15 DOI: 10.1680/jbibn.21.00026
Gaanapriya Veeramani, S. Murugaiyan, T. Marimuthu
The study was intended to formulate nanoemulgel from the leaf extract of Musa acuminata. Ethanol and Chloroform were used as solvents in the ratio of 1:8 (%w/v). DL- alpha-Tocopherol, characterized by GCMS, was identified to be the major component with potential biological activities. Based on a pseudo ternary plot, the 1:1 Smix (Surfactant: Co- Surfactant) ratio was optimized as it posed maximum regions of emulsion. The prepared nanoemulgel was evaluated for physical appearance, pH, spreadability, and swelling index. The appearance was pale yellowish-white, translucent within a pH range of 5-5.8. Antimicrobial studies were performed against dandruff-causing microbes (Staphylococcus epidermidis and Malassezia furfur). Invitro studies were carried out for optimized formulations of EG2, EG4, CG2, and CG3. The drug release of 94.28% after 12 h with Higuchi plot of R2 value as 0.99 was observed for EG2. The kinetically optimized formulation, EG2 was found to have good spreadability of 12.2 (g cm) s−1 and a swelling index of 64%.
本研究旨在以麝香叶提取物为原料制备纳米乳液。以乙醇和氯仿为溶剂,比例为1:8 (%w/v)。DL- α -生育酚经GCMS鉴定为具有潜在生物活性的主要成分。在伪三元图的基础上,优化了Smix(表面活性剂:Co-表面活性剂)比例为1:1的最佳配比。对制备的纳米乳液的物理外观、pH值、涂抹性和膨胀指数进行了评价。外观呈浅黄色-白色,在pH值5-5.8范围内呈半透明。对引起头皮屑的微生物(表皮葡萄球菌和马拉色菌)进行了抗菌研究。体外研究了EG2、EG4、CG2和CG3的优化配方。EG2在12 h后释药率为94.28%,R2为0.99。动力学优化后的配方EG2具有良好的展涂性能,可达12.2 (g cm) s−1,膨胀指数为64%。
{"title":"Formulation of Nanoemulgel from Extracts of Musa acuminata: In-Vitro Kinetics and Antimicrobial Studies","authors":"Gaanapriya Veeramani, S. Murugaiyan, T. Marimuthu","doi":"10.1680/jbibn.21.00026","DOIUrl":"https://doi.org/10.1680/jbibn.21.00026","url":null,"abstract":"The study was intended to formulate nanoemulgel from the leaf extract of Musa acuminata. Ethanol and Chloroform were used as solvents in the ratio of 1:8 (%w/v). DL- alpha-Tocopherol, characterized by GCMS, was identified to be the major component with potential biological activities. Based on a pseudo ternary plot, the 1:1 Smix (Surfactant: Co- Surfactant) ratio was optimized as it posed maximum regions of emulsion. The prepared nanoemulgel was evaluated for physical appearance, pH, spreadability, and swelling index. The appearance was pale yellowish-white, translucent within a pH range of 5-5.8. Antimicrobial studies were performed against dandruff-causing microbes (Staphylococcus epidermidis and Malassezia furfur). Invitro studies were carried out for optimized formulations of EG2, EG4, CG2, and CG3. The drug release of 94.28% after 12 h with Higuchi plot of R2 value as 0.99 was observed for EG2. The kinetically optimized formulation, EG2 was found to have good spreadability of 12.2 (g cm) s−1 and a swelling index of 64%.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45475909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorophosphate bio-glass for bone tissue engineering: in vitro and in vivo study 骨组织工程用氟磷酸盐生物玻璃:体外和体内研究
4区 工程技术 Q4 ENGINEERING, BIOMEDICAL Pub Date : 2021-12-15 DOI: 21.00025
Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel, Priscilla Andinadar Subbiah, Abirami Periyasamy, Jenifa Begam Rahumathullah, Vijayakumar Chinnaswamy Thangavel
The objective of the work is to investigate the influence of fluoride in the bioactivity of phosphate bio-glass to utilise in bone tissue engineering. The fluorophosphate bio-glass system was formulated by varying fluoride content in phosphate-based glass 45P2O5-(30-X)-CaO-25Na2O-XCaF2 (X = 0, 1.25, 2.5, 3.75, and 5.0) using melt quenching technique. The elemental composition and fluoride retention in the prepared material was investigated by X-ray photoelectron spectroscopy. The bioactivity test in simulated body-fluid (SBF) exhibited apatite layer and its bone bonding ability which was characterized by X-ray diffraction patterns and Fourier Transform Infrared Spectrophotometer spectra. The viability of human gastric adenocarcinoma (AGS) and MG-63 cells of the bio-glass confirmed the nontoxic nature. In vivo studies demonstrated the conversion of the fluorophosphate glass to bone in the femoral condyle of the rabbit. After ten weeks, scanning electron microscope with energy dispersive X-ray spectrograph (SEM_EDAX) and confocal laser scanning microscopy examinations revealed the resorption rate and bone-glass interface qualitatively and quantitatively. Consequently, the biocompatible and bioresorbable nature of the fluorophosphate bioglass can be exploited as a potential bone graft substitute in the near future.
本研究的目的是研究氟化物对磷酸盐生物玻璃生物活性的影响,以用于骨组织工程。采用熔体淬火技术,在45P2O5-(30-X)- cao - 25na20 - xcaf2 (X = 0、1.25、2.5、3.75和5.0)的磷酸盐基玻璃中改变氟含量,制备了氟磷生物玻璃体系。用x射线光电子能谱法研究了制备材料的元素组成和氟保留率。模拟体液(SBF)生物活性试验显示磷灰石层及其骨结合能力,并通过x射线衍射图和傅里叶变换红外光谱进行了表征。生物玻璃对人胃腺癌(AGS)和MG-63细胞的生存能力证实了其无毒性质。体内研究证实了兔股骨髁中氟磷酸盐玻璃向骨的转化。10周后,通过扫描电子显微镜、能量色散x射线光谱仪(SEM_EDAX)和激光共聚焦扫描显微镜对骨-玻璃界面和骨吸收速率进行定性和定量观察。因此,在不久的将来,氟磷酸盐生物玻璃的生物相容性和生物可吸收性可以作为一种潜在的骨移植替代品。
{"title":"Fluorophosphate bio-glass for bone tissue engineering: in vitro and in vivo study","authors":"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel, Priscilla Andinadar Subbiah, Abirami Periyasamy, Jenifa Begam Rahumathullah, Vijayakumar Chinnaswamy Thangavel","doi":"21.00025","DOIUrl":"https://doi.org/21.00025","url":null,"abstract":"The objective of the work is to investigate the influence of fluoride in the bioactivity of phosphate bio-glass to utilise in bone tissue engineering. The fluorophosphate bio-glass system was formulated by varying fluoride content in phosphate-based glass 45P<sub>2</sub>O<sub>5</sub>-(30-X)-CaO-25Na<sub>2</sub>O-XCaF<sub>2</sub> (<i>X</i> = 0, 1.25, 2.5, 3.75, and 5.0) using melt quenching technique. The elemental composition and fluoride retention in the prepared material was investigated by X-ray photoelectron spectroscopy. The bioactivity test in simulated body-fluid (SBF) exhibited apatite layer and its bone bonding ability which was characterized by X-ray diffraction patterns and Fourier Transform Infrared Spectrophotometer spectra. The viability of human gastric adenocarcinoma (AGS) and MG-63 cells of the bio-glass confirmed the nontoxic nature. In vivo studies demonstrated the conversion of the fluorophosphate glass to bone in the femoral condyle of the rabbit. After ten weeks, scanning electron microscope with energy dispersive X-ray spectrograph (SEM_EDAX) and confocal laser scanning microscopy examinations revealed the resorption rate and bone-glass interface qualitatively and quantitatively. Consequently, the biocompatible and bioresorbable nature of the fluorophosphate bioglass can be exploited as a potential bone graft substitute in the near future.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"62 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioinspired Biomimetic and Nanobiomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1