首页 > 最新文献

New Phytologist最新文献

英文 中文
Epigenetic regulation of female germline development through ERECTA signaling pathway ERECTA信号通路对雌性生殖系发育的表观遗传学调控
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-22 DOI: 10.1111/nph.19217
Youmei Huang, Liping Liu, Mengnan Chai, Han Su, Suzhuo Ma, Kaichuang Liu, Yaru Tian, Zhuangyuan Cao, Xinpeng Xi, Wenhui Zhu, Jingang Qi, Ravishankar Palanivelu, Yuan Qin, Hanyang Cai

  • Germline development is a key step in sexual reproduction. Sexual plant reproduction begins with the formation of haploid spores by meiosis of megaspore mother cells (MMCs). Although many evidences, directly or indirectly, show that epigenetics plays an important role in MMC specification, how it controls the commitment of the MMC to downstream stages of germline development is still unclear.
  • Electrophoretic mobility shift assay (EMSA), western blot, immunofluorescence, and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between BZR1 transcription factor family and the SWR1-SDG2-ER pathway in the control of female germline development were further studied.
  • The present findings showed in Arabidopsis that two epigenetic factors, the chromatin remodeling complex SWI2/SNF2-RELATED 1 (SWR1) and a writer for H3K4me3 histone modification SET DOMAIN GROUP 2 (SDG2), genetically interact with the ERECTA (ER) receptor kinase signaling pathway and regulate female germline development by restricting the MMC cell fate to a single cell in the ovule primordium and ensure that only that single cell undergoes meiosis and subsequent megaspore degeneration. We also showed that SWR1-SDG2-ER signaling module regulates female germline development by promoting the protein accumulation of BZR1 transcription factor family on the promoters of primary miRNA processing factors, HYPONASTIC LEAVES 1 (HYL1), DICER-LIKE 1 (DCL1), and SERRATE (SE) to activate their expression.
  • Our study elucidated a Gene Regulation Network that provides new insights for understanding how epigenetic factors and receptor kinase signaling pathways function in concert to control female germline development in Arabidopsis.
生殖系发育是有性生殖的关键步骤。植物有性繁殖始于大孢子母细胞减数分裂形成单倍体孢子。尽管许多证据直接或间接表明表观遗传学在MMC规范中发挥着重要作用,但它如何控制MMC对种系发育下游阶段的承诺仍不清楚。进行电泳迁移率转移分析(EMSA)、蛋白质印迹、免疫荧光和染色质免疫沉淀结合定量PCR分析。进一步研究了BZR1转录因子家族与SWR1-SDG2-ER通路在控制雌性生殖系发育中的遗传相互作用。目前的研究结果表明,在拟南芥中,两种表观遗传因子——染色质重塑复合物SWI2/SNF2-RATED 1(SWR1)和H3K4me3组蛋白修饰SET DOMAIN GROUP 2(SDG2)的作者,与ERECTA(ER)受体激酶信号通路遗传相互作用,并通过将MMC细胞命运限制在胚珠原基中的单个细胞来调节雌性生殖系发育,并确保只有该单个细胞经历减数分裂和随后的大孢子变性。我们还发现,SWR1-SDG2-ER信号模块通过促进BZR1转录因子家族在初级miRNA处理因子、缺氧叶1(HYL1)、二细胞样1(DCL1)和SERRATE(SE)启动子上的蛋白质积累来调节雌性生殖系发育,以激活其表达。我们的研究阐明了一个基因调控网络,该网络为理解表观遗传因子和受体激酶信号通路如何协同控制拟南芥雌性生殖系发育提供了新的见解。
{"title":"Epigenetic regulation of female germline development through ERECTA signaling pathway","authors":"Youmei Huang,&nbsp;Liping Liu,&nbsp;Mengnan Chai,&nbsp;Han Su,&nbsp;Suzhuo Ma,&nbsp;Kaichuang Liu,&nbsp;Yaru Tian,&nbsp;Zhuangyuan Cao,&nbsp;Xinpeng Xi,&nbsp;Wenhui Zhu,&nbsp;Jingang Qi,&nbsp;Ravishankar Palanivelu,&nbsp;Yuan Qin,&nbsp;Hanyang Cai","doi":"10.1111/nph.19217","DOIUrl":"https://doi.org/10.1111/nph.19217","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Germline development is a key step in sexual reproduction. Sexual plant reproduction begins with the formation of haploid spores by meiosis of megaspore mother cells (MMCs). Although many evidences, directly or indirectly, show that epigenetics plays an important role in MMC specification, how it controls the commitment of the MMC to downstream stages of germline development is still unclear.</li>\u0000 \u0000 \u0000 <li>Electrophoretic mobility shift assay (EMSA), western blot, immunofluorescence, and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between BZR1 transcription factor family and the SWR1-SDG2-ER pathway in the control of female germline development were further studied.</li>\u0000 \u0000 \u0000 <li>The present findings showed in Arabidopsis that two epigenetic factors, the chromatin remodeling complex SWI2/SNF2-RELATED 1 (SWR1) and a writer for H3K4me3 histone modification SET DOMAIN GROUP 2 (SDG2), genetically interact with the ERECTA (ER) receptor kinase signaling pathway and regulate female germline development by restricting the MMC cell fate to a single cell in the ovule primordium and ensure that only that single cell undergoes meiosis and subsequent megaspore degeneration. We also showed that SWR1-SDG2-ER signaling module regulates female germline development by promoting the protein accumulation of BZR1 transcription factor family on the promoters of primary miRNA processing factors, <i>HYPONASTIC LEAVES 1</i> (<i>HYL1</i>), <i>DICER-LIKE 1</i> (<i>DCL1</i>), and <i>SERRATE</i> (<i>SE</i>) to activate their expression.</li>\u0000 \u0000 \u0000 <li>Our study elucidated a Gene Regulation Network that provides new insights for understanding how epigenetic factors and receptor kinase signaling pathways function in concert to control female germline development in Arabidopsis.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1015-1033"},"PeriodicalIF":9.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordination of growth and drought responses by GA-ABA signaling in rice GA-ABA信号对水稻生长和干旱反应的协调作用
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-21 DOI: 10.1111/nph.19209
Zhigang Liao, Yunchao Zhang, Qing Yu, Weicong Fang, Meiyao Chen, Tianfei Li, Yi Liu, Zaochang Liu, Liang Chen, Shunwu Yu, Hui Xia, Hong-Wei Xue, Hong Yu, Lijun Luo

  • The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management.
  • However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive.
  • Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance.
  • These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.
全球变暖引起的干旱严重影响了作物生长和农业生产。植物已经进化出不同的策略来应对干旱环境。在干旱胁迫下,能源和资源应该从生长转向压力管理。然而,生长和干旱反应协调的分子机制在很大程度上仍然难以捉摸。在这里,我们发现大多数赤霉素(GA)代谢基因受到水稻缺水的调节,导致GA含量降低,从而抑制植物生长。低GA含量导致更多GA信号负调控因子SLENDER RICE 1的积累,SLENDER RICE 1通过竞争性结合后期促进复合物TAD1的共激活剂来抑制脱落酸(ABA)受体PYL10的降解,从而增强ABA反应和耐旱性。这些结果阐明了作物生长抑制与抗旱性和存活率提高的协同调节作用,为作物抗旱性育种改良提供了有用的遗传资源。
{"title":"Coordination of growth and drought responses by GA-ABA signaling in rice","authors":"Zhigang Liao,&nbsp;Yunchao Zhang,&nbsp;Qing Yu,&nbsp;Weicong Fang,&nbsp;Meiyao Chen,&nbsp;Tianfei Li,&nbsp;Yi Liu,&nbsp;Zaochang Liu,&nbsp;Liang Chen,&nbsp;Shunwu Yu,&nbsp;Hui Xia,&nbsp;Hong-Wei Xue,&nbsp;Hong Yu,&nbsp;Lijun Luo","doi":"10.1111/nph.19209","DOIUrl":"https://doi.org/10.1111/nph.19209","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management.</li>\u0000 \u0000 \u0000 <li>However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive.</li>\u0000 \u0000 \u0000 <li>Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance.</li>\u0000 \u0000 \u0000 <li>These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1149-1161"},"PeriodicalIF":9.4,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis bZIP16、bZIP68和GBF1在拟南芥光形态发生过程中的相互作用调节核光合基因
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-21 DOI: 10.1111/nph.19219
Louise Norén Lindb?ck, Yan Ji, Luis Cervela-Cardona, Xu Jin, Ullas V. Pedmale, ?sa Strand

{"title":"An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis","authors":"Louise Norén Lindb?ck,&nbsp;Yan Ji,&nbsp;Luis Cervela-Cardona,&nbsp;Xu Jin,&nbsp;Ullas V. Pedmale,&nbsp;?sa Strand","doi":"10.1111/nph.19219","DOIUrl":"https://doi.org/10.1111/nph.19219","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1082-1096"},"PeriodicalIF":9.4,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms QuantAS:通过剪接异构体的绝对定量研究替代剪接的综合途径
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-18 DOI: 10.1111/nph.19193
Yu-Chen Song, Mo-Xian Chen, Kai-Lu Zhang, Anireddy S. N. Reddy, Fu-Liang Cao, Fu-Yuan Zhu

Alternative splicing (AS) is a mechanism by which cells generate abundant protein diversity from a limited number of genes (Baralle & Giudice, 2017). AS plays a crucial role in regulating various life activities such as growth, development, and aging in plants (Zhu et al., 2017; Godoy Herz & Kornblihtt, 2019; Jabre et al., 2019; Chen et al., 2020; Reddy et al., 2020; Zhang et al., 2020), where it greatly influences plant growth, development, and response to biotic and abiotic stresses (Motion et al., 2015; Laloum et al., 2018; Chaudhary et al., 2019; Chen et al., 2021; Ganie & Reddy, 2021; Saini et al., 2021; Zhu et al., 2023; Supporting Information Fig. S1). The traditional method for the identification of AS is semi-quantitative RT-PCR, which is easy to perform (Palusa et al., 2007; Li et al., 2020; Riegler et al., 2021; Han et al., 2022). Quantitative PCR (qPCR) is also widely used in AS research, as it enables real-time monitoring of fluorescence signals and accurate quantification of isoform copy numbers through the use of specific primers (Hefti et al., 2018; Liu et al., 2018; Huang et al., 2021). With the emergence of digital PCR (dPCR), the identification methods of AS have become more diversified, which disperses each single target fragment into separate droplets as much as possible through the calculation of positive droplets (Fig. S2; Gao et al., 2021).

Based on the urgent need for the accurate quantification of various isoforms, an AS detection method called QuantAS was established (Fig. 1), which allows us to accurately quantify all isoforms of genes based on absolute quantification technology and specific primer design. The method utilizes isoform-specific primers to overcome the isoform identification difficulty caused by different AS events and is designed by using the functional coding region as the isoform structure classification unit to ensure isoform independence (Fig. 2a). RT-qPCR enables real-time monitoring of changes in the fluorescence signal, quantification of differences between expression levels, and simultaneous detection of multiple in a single reaction. According to the copy number of different isoforms, isoform expression patterns can be identified by combining with absolute quantitative techniques. This method greatly increases the accuracy of identification and reduces the cost of repeated experiments. Furthermore, the absolute quantification of AS isoforms employing the combination of qPCR and dPCR could provide their respective advantages, thus rapidly obtaining all isoform info

选择性剪接(AS)是细胞从有限数量的基因中产生丰富蛋白质多样性的一种机制(Baralle&;Giudice,2017)。AS在调节植物的生长、发育和衰老等各种生命活动中发挥着至关重要的作用(Zhu et al.,2017;Godoy-Herz和Kornblihtt,2019;Jabre et al.,2019;Chen et al.,2020;Reddy et al,以及对生物和非生物胁迫的反应(Motion等人,2015;Laloum等人,2018;Chaudhary等人,2019;Chen等人,2021;Ganie&;Reddy,2021;Saini等人,2021年;Zhu等人,2023;支持信息图S1)。鉴定AS的传统方法是半定量RT-PCR,其易于执行(Palusa等人,2007;李等人,2020;Riegler等人,2021;Han等人,2022)。定量PCR(qPCR)也广泛用于AS研究,因为它能够通过使用特异性引物实时监测荧光信号并准确定量同种型拷贝数(Hefti et al.,2018;刘等人,2018;Huang等人,2021)。随着数字PCR(dPCR)的出现,as的鉴定方法变得更加多样化,通过计算阳性液滴,将每个单个靶片段尽可能分散成单独的液滴(图S2;Gao等人,2021)。基于对各种异构体精确定量的迫切需要,建立了一种称为QuantAS的as检测方法(图1),这使我们能够基于绝对定量技术和特异性引物设计准确地量化所有基因的亚型。该方法利用异构体特异性引物来克服不同AS事件引起的异构体鉴定困难,并通过使用功能编码区作为异构体结构分类单元来设计,以确保异构体的独立性(图2a)。RT-qPCR能够实时监测荧光信号的变化,量化表达水平之间的差异,以及在单个反应中同时检测多个。根据不同亚型的拷贝数,结合绝对定量技术可以识别亚型的表达模式。这种方法大大提高了识别的准确性,降低了重复实验的成本。此外,使用qPCR和dPCR的组合对AS亚型进行绝对定量可以提供它们各自的优势,从而快速获得待研究的潜在功能基因的所有亚型信息。QuantAS包括三个阶段:(1)基因结构组装和特异性引物设计,包括AS事件分析;(2) 使用qPCR和dPCR对处理过的样品中的同种型进行精确定量分析,以获得每种同种型的拷贝数;和(3)绝对定量,包括数据分析,以探索异构体的存在和水平(QuantAS的方案大纲如图1、S3所示)。总之,QuantAS为检测和定量植物中的异构体提供了一种通用的方法,允许对不同功能蛋白编码区的同种型进行重新分类,并用于精确的AS鉴定以确定AS事件类型。QuantAS还能够在单个反应中同时检测多种异构体,从而减少冗余鉴定,并根据MLE计算复杂异构体的拷贝数。与qPCR和dPCR技术相结合,它将能够快速准确地筛选参与生理反应的同种型变化。简单的实验设计和程序使QuantAS成为当前AS研究工具箱的一个有价值的补充,特别是在验证大规模组学数据中确定的剪接事件方面。无声明。Y-CS编写了手稿并进行了实验。M-XC和K-LZ进行了数据分析。ASNR和F-LC对手稿进行了批评性评论。F-YZ对课题组进行了总体监督和设计。
{"title":"QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms","authors":"Yu-Chen Song,&nbsp;Mo-Xian Chen,&nbsp;Kai-Lu Zhang,&nbsp;Anireddy S. N. Reddy,&nbsp;Fu-Liang Cao,&nbsp;Fu-Yuan Zhu","doi":"10.1111/nph.19193","DOIUrl":"https://doi.org/10.1111/nph.19193","url":null,"abstract":"<p>Alternative splicing (AS) is a mechanism by which cells generate abundant protein diversity from a limited number of genes (Baralle &amp; Giudice, <span>2017</span>). AS plays a crucial role in regulating various life activities such as growth, development, and aging in plants (Zhu <i>et al</i>., <span>2017</span>; Godoy Herz &amp; Kornblihtt, <span>2019</span>; Jabre <i>et al</i>., <span>2019</span>; Chen <i>et al</i>., <span>2020</span>; Reddy <i>et al</i>., <span>2020</span>; Zhang <i>et al</i>., <span>2020</span>), where it greatly influences plant growth, development, and response to biotic and abiotic stresses (Motion <i>et al</i>., <span>2015</span>; Laloum <i>et al</i>., <span>2018</span>; Chaudhary <i>et al</i>., <span>2019</span>; Chen <i>et al</i>., <span>2021</span>; Ganie &amp; Reddy, <span>2021</span>; Saini <i>et al</i>., <span>2021</span>; Zhu <i>et al</i>., <span>2023</span>; Supporting Information Fig. S1). The traditional method for the identification of AS is semi-quantitative RT-PCR, which is easy to perform (Palusa <i>et al</i>., <span>2007</span>; Li <i>et al</i>., <span>2020</span>; Riegler <i>et al</i>., <span>2021</span>; Han <i>et al</i>., <span>2022</span>). Quantitative PCR (qPCR) is also widely used in AS research, as it enables real-time monitoring of fluorescence signals and accurate quantification of isoform copy numbers through the use of specific primers (Hefti <i>et al</i>., <span>2018</span>; Liu <i>et al</i>., <span>2018</span>; Huang <i>et al</i>., <span>2021</span>). With the emergence of digital PCR (dPCR), the identification methods of AS have become more diversified, which disperses each single target fragment into separate droplets as much as possible through the calculation of positive droplets (Fig. S2; Gao <i>et al</i>., <span>2021</span>).</p><p>Based on the urgent need for the accurate quantification of various isoforms, an AS detection method called QuantAS was established (Fig. 1), which allows us to accurately quantify all isoforms of genes based on absolute quantification technology and specific primer design. The method utilizes isoform-specific primers to overcome the isoform identification difficulty caused by different AS events and is designed by using the functional coding region as the isoform structure classification unit to ensure isoform independence (Fig. 2a). RT-qPCR enables real-time monitoring of changes in the fluorescence signal, quantification of differences between expression levels, and simultaneous detection of multiple in a single reaction. According to the copy number of different isoforms, isoform expression patterns can be identified by combining with absolute quantitative techniques. This method greatly increases the accuracy of identification and reduces the cost of repeated experiments. Furthermore, the absolute quantification of AS isoforms employing the combination of qPCR and dPCR could provide their respective advantages, thus rapidly obtaining all isoform info","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"928-939"},"PeriodicalIF":9.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4 铁依赖性调节叶片衰老:H2B组蛋白变体HTB4的关键作用
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-15 DOI: 10.1111/nph.19199
Christian Dubos

Iron is an essential micronutrient for plant growth and development, as well as for crop productivity and the quality of their derived products (Briat et al., 2015). This is because iron is a co-factor for several metalloproteins involved in essential physiological processes such as respiration in mitochondria or photosynthesis in chloroplasts. In most soils, iron is present in the form of insoluble oxides/hydroxides rendering it poorly available to plants. To cope with this poor bioavailability, plants have evolved sophisticated strategies to take up iron from soils (Berger et al., 2023; Li et al., 2023). Arabidopsis plants preferentially use the reduction-based strategy (the so-called Strategy I), as do most dicots and nongraminous monocots. This strategy relies on the secretion of protons into the rhizosphere by AHA2 (ARABIDOPSIS H+ ATPASE 2) to decrease the pH of the soil solution and solubilize oxidized iron (Fe3+), which is then reduced to Fe2+ by FRO2 (ferric reduction oxidases 2), and subsequently taken up into the root by IRT1 (iron-regulated transporter 1). This process is tightly regulated since, in excess, iron is also detrimental to the plant because of its capacity to generate reactive oxygen species (ROS) via the Fenton reaction.

The regulation of Iron homeostasis is well-conserved in plants, and is primarily controlled at the transcriptional level (Berger et al., 2023; Li et al., 2023). It relies on an intricate regulatory network involving several regulatory proteins, among which the bHLH (basic helix–loop–helix) transcription factors play a preponderant role (Fig. 1). For instance, Arabidopsis has 17 different bHLH proteins (from six bHLH clades) that regulate iron homeostasis. This regulatory network is composed of two modules. The first module relies on FIT/bHLH29 (FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR; clade IIIa). FIT is a direct positive regulator of FRO2 and IRT1 expression (Fig. 1). To achieve its function, FIT interacts with bHLH38, bHLH39, bHLH100, and bHLH101 (clade Ib), forming heterodimers with partially overlapping roles. In the second module, another set of bHLH transcription factors positively regulate the expression of FIT and clade Ib bHLHs (Fig. 1). It involves ILR3/bHLH105 (iaa-leucine resistant 3), IDT1/bHLH34 (iron deficiency tolerant 1), bHLH104, bHLH115 from clade IVc, and URI/bLHL121 (UPSTREAM REGULATOR OF IRT1) from clade IVb (Tissot et al., 2019; Gao et al., 2020). By contrast, PYE/bHLH47 (POPEYE; clade IVb) is a negative regulator of clade Ib bHLH expression (Pu & Liang, 2023).

In their study, Yang et al. demonstrated that the H2B histone variant HTB4 negatively regulates leaf senescence in an iron-dependent manner. For instance, HTB4 expression is in

相反,进一步研究HTB4与编码直接(如PYE)或间接(如BTS、BTSL1和BTSL2)负调控分支Ib表达的蛋白质的基因之间是否存在负相关也将是有趣的(Rodríguez-Celma等人,2019;Pu&amp;Liang,2023)。表明在htb4中根铁吸收受损,因为IRT1和FRO2的表达降低。与维持铁稳态相关的其他机制(如铁转运、储存或同化)是否以HTB4依赖的方式调节也是一个悬而未决的问题。例如,NAS1(烟酰胺合成酶1)、NAS4(烟酰胺合酶4)和OPT3(寡肽转运蛋白3)的表达在htb4中减少(转录组分析)。这三个基因通过韧皮部参与铁在植物组织之间的易位和分配,这表明这些功能也受到HTB4的调节。此外,OPT3还参与将地上部铁的状态传达给根部,以平衡铁的吸收和植物的需求(Mendoza-Cózatl等人,2014)。在中性至碱性pH下,铁在土壤中的溶解度较低,铁还原酶(如FRO2)的活性受到严重损害(Susin等人,1996)。为了适应这种土壤,拟南芥植物分泌到根际调动铁的香豆素(即fraxetin;Robe等人,2021a,b)中。最近有人提出,一旦分泌,fraxetin将主要形成Fe3+-fraxetin复合物,而不是将Fe3+还原为Fe2+,这表明IRT1/FRO2系统在碱性pH下对铁的吸收并不起主要作用。相反,有人认为,Fe3+-fraxetin复合物通过一种未知的机制直接被植物根系吸收(Robe et al.,2021c)。在这种土壤环境中,HTB4是否在调节铁吸收/稳态以及叶片衰老中发挥作用,值得研究。最后但并非最不重要的是,确定HTB4在延缓叶片衰老中的作用是否在水稻(Oriza sativa)等草种中是保守的是有意义的,因为铁的吸收主要依赖于IRT1/FRO2独立机制(Li et al.,2021)。提供了一种分子框架,铁等矿物质营养物质可以通过该分子框架干扰叶片衰老。这也为新的研究开辟了道路,以确定铁或其他矿物营养物质对这一过程的影响程度。
{"title":"Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4","authors":"Christian Dubos","doi":"10.1111/nph.19199","DOIUrl":"https://doi.org/10.1111/nph.19199","url":null,"abstract":"<p>Iron is an essential micronutrient for plant growth and development, as well as for crop productivity and the quality of their derived products (Briat <i>et al</i>., <span>2015</span>). This is because iron is a co-factor for several metalloproteins involved in essential physiological processes such as respiration in mitochondria or photosynthesis in chloroplasts. In most soils, iron is present in the form of insoluble oxides/hydroxides rendering it poorly available to plants. To cope with this poor bioavailability, plants have evolved sophisticated strategies to take up iron from soils (Berger <i>et al</i>., <span>2023</span>; Li <i>et al</i>., <span>2023</span>). Arabidopsis plants preferentially use the reduction-based strategy (the so-called Strategy I), as do most dicots and nongraminous monocots. This strategy relies on the secretion of protons into the rhizosphere by AHA2 (ARABIDOPSIS H<sup>+</sup> ATPASE 2) to decrease the pH of the soil solution and solubilize oxidized iron (Fe<sup>3+</sup>), which is then reduced to Fe<sup>2+</sup> by FRO2 (ferric reduction oxidases 2), and subsequently taken up into the root by IRT1 (iron-regulated transporter 1). This process is tightly regulated since, in excess, iron is also detrimental to the plant because of its capacity to generate reactive oxygen species (ROS) via the Fenton reaction.</p><p>The regulation of Iron homeostasis is well-conserved in plants, and is primarily controlled at the transcriptional level (Berger <i>et al</i>., <span>2023</span>; Li <i>et al</i>., <span>2023</span>). It relies on an intricate regulatory network involving several regulatory proteins, among which the bHLH (basic helix–loop–helix) transcription factors play a preponderant role (Fig. 1). For instance, Arabidopsis has 17 different bHLH proteins (from six bHLH clades) that regulate iron homeostasis. This regulatory network is composed of two modules. The first module relies on FIT/bHLH29 (FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR; clade IIIa). FIT is a direct positive regulator of <i>FRO2</i> and <i>IRT1</i> expression (Fig. 1). To achieve its function, FIT interacts with bHLH38, bHLH39, bHLH100, and bHLH101 (clade Ib), forming heterodimers with partially overlapping roles. In the second module, another set of bHLH transcription factors positively regulate the expression of <i>FIT</i> and clade Ib bHLHs (Fig. 1). It involves ILR3/bHLH105 (iaa-leucine resistant 3), IDT1/bHLH34 (iron deficiency tolerant 1), bHLH104, bHLH115 from clade IVc, and URI/bLHL121 (UPSTREAM REGULATOR OF IRT1) from clade IVb (Tissot <i>et al</i>., <span>2019</span>; Gao <i>et al</i>., <span>2020</span>). By contrast, PYE/bHLH47 (POPEYE; clade IVb) is a negative regulator of clade Ib bHLH expression (Pu &amp; Liang, <span>2023</span>).</p><p>In their study, Yang <i>et al</i>. demonstrated that the H2B histone variant HTB4 negatively regulates leaf senescence in an iron-dependent manner. For instance, <i>HTB4</i> expression is in","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"461-463"},"PeriodicalIF":9.4,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels 拟南芥含 Tubby 结构域的 F-box 蛋白通过调节 PI4Kβ 蛋白水平积极调节免疫力
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-12 DOI: 10.1111/nph.19187
Karen Thulasi Devendrakumar, Charles Copeland, Christopher Adamchek, Xionghui Zhong, Xingchuan Huang, Joshua M. Gendron, Xin Li

{"title":"Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels","authors":"Karen Thulasi Devendrakumar,&nbsp;Charles Copeland,&nbsp;Christopher Adamchek,&nbsp;Xionghui Zhong,&nbsp;Xingchuan Huang,&nbsp;Joshua M. Gendron,&nbsp;Xin Li","doi":"10.1111/nph.19187","DOIUrl":"https://doi.org/10.1111/nph.19187","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"354-371"},"PeriodicalIF":9.4,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6100483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vegetative phase change causes age-dependent changes in phenotypic plasticity 营养性相变导致表型可塑性的年龄依赖性变化
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-12 DOI: 10.1111/nph.19174
Erica H. Lawrence-Paul, R. Scott Poethig, Jesse R. Lasky

{"title":"Vegetative phase change causes age-dependent changes in phenotypic plasticity","authors":"Erica H. Lawrence-Paul,&nbsp;R. Scott Poethig,&nbsp;Jesse R. Lasky","doi":"10.1111/nph.19174","DOIUrl":"https://doi.org/10.1111/nph.19174","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"613-625"},"PeriodicalIF":9.4,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A time tree for the evolution of insect, vertebrate, wind, and water pollination in the angiosperms 被子植物中昆虫、脊椎动物、风和水授粉进化的时间树
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-11 DOI: 10.1111/nph.19201
Susanne S. Renner

There is much circumstantial evidence that flowering plants were diverse by the Lower Cretaceous and were pollinated by insects (Arber & Parkin, 1907; Crepet & Friis, 1987). Arguments supporting this come from extant and fossil flower morphology, fossilized traces of interactions, and the pollination modes of surviving early lineages. First, some extinct gymnosperms had bisporangiate cones (with both micro- and megasporangia) surrounded by bracts (Fig. 1), and many such cones show traces of having been chewed by mandibulate insects (Peris et al., 2017). Fossils of flower-associated flies also provide evidence of the existence of strobilus–pollinator interactions from the Permian to the Jurassic (Ren, 1998; Ren et al., 2009; Khramov et al., 2023). Second, if flowers evolved from bisporangiate strobili, they were not well suited for wind pollination because simultaneous optimization for pollen export and pollen capture is structurally difficult. The angiosperms' defining enclosure of the megasporangium inside surrounding structures may also point to ancestral insect pollination, as argued by Arber & Parkin (1907: 73), ‘In the case of the angiosperms such primitive entomophily was preserved and rendered permanent by a transference of the pollen-collecting mechanism from the ovule itself to the carpel or megasporophyll and by the closure of this organ.’ Third, all angiosperms, but no living gymnosperm, produce pollenkitt, an oily substance on the surface of pollen that serves as a glue to attach pollen to animal vectors (Hesse, 1980). In wind-pollinated plants, pollenkitt abundance is secondarily reduced. Lastly, the oldest lineages of flowering plants that still survive today are pollinated by flies, moths, and beetles (Luo et al., 2018).

While insect pollination thus undoubtedly played a decisive role in the evolution of flowers, a phylogenetically informed analysis of pollination by insects, vertebrates, wind, and water across a full modern phylogeny of plants has been lacking. This is what Stephens et al. now provide in an article published in this issue of New Phytologist (2023; 880–891). Using a time-calibrated phylogeny with 1201 species representing the major lineages of flowering plants, together with geographic occurrence data, Stephens et al. quantified the timing and environmental associations of pollination shifts. Where possible, they scored pollination at the species level, either from published fieldwork (n = 432) or from the pollinator syndrome approach (n = 728). Where no information was available for a particular species, taxa were scored at genus (n = 131) or family (n = 4) level. In some analyses, 180 taxa with missing or polymorphic data were excluded from the analyses.

All major angiosperm clades (

有许多间接证据表明,到下白垩纪,开花植物是多样化的,并由昆虫授粉(Arber&amp;Parkin,1907;Crepet&amp;Friis,1987)。支持这一观点的论据来自现存的和化石的花朵形态、相互作用的化石痕迹以及幸存的早期谱系的授粉模式。首先,一些已灭绝的裸子植物具有被苞片包围的双橙色球果(具有微孢子囊和大孢子囊)(图1),许多这样的球果显示出被下颌骨昆虫咀嚼的痕迹(Peris等人,2017)。与花相关的苍蝇化石也提供了证据,证明从二叠纪到侏罗纪存在球果-传粉昆虫相互作用(Ren,1998;Ren等人,2009;Khramov等人,2023)。其次,如果花是由双橙色的strobili进化而来的,它们就不太适合风媒授粉,因为同时优化花粉输出和花粉捕获在结构上很困难。被子植物将大孢子囊包围在周围的结构中,这也可能指向祖先的昆虫授粉,正如Arber&amp;Parkin(1907:73),“在被子植物的情况下,通过将花粉收集机制从胚珠本身转移到心皮或大孢子叶,并通过关闭这一器官,这种原始的昆虫性得以保留和永久化。”第三,所有被子植物,但没有现存的裸子植物,都会产生花粉蛋白,花粉表面的一种油性物质,可以作为将花粉附着在动物载体上的粘合剂(Hesse,1980)。在风媒传粉的植物中,花粉蛋白的丰度第二次降低。最后,至今仍存活的最古老的开花植物谱系是由苍蝇、飞蛾和甲虫授粉的(Luo et al.,2018)。尽管昆虫授粉无疑在花的进化中发挥了决定性作用,但缺乏对昆虫、脊椎动物、风和水在植物的全现代系统发育中授粉的系统发育分析。这就是Stephens等人。现在在本期《新植物学家》(2023;880-891)上发表的一篇文章中提供。Stephens等人利用1201个代表开花植物主要谱系的物种的时间校准系统发育,以及地理发生数据。量化授粉变化的时间和环境关联。在可能的情况下,他们在物种水平上对授粉进行评分,要么来自已发表的实地调查(n = 432)或来自传粉昆虫综合征方法(n = 728)。在没有特定物种的信息的情况下,分类群按属(n = 131)或家族(n = 4) 水平。在一些分析中,180个数据缺失或多态的分类群被排除在分析之外。所有主要被子植物分支(magnoloids、单子叶植物、真双子叶植物、紫苑植物和蔷薇科)和64个被子植物目中的57个被子动物目都被重建为祖先昆虫授粉。只有姜属是脊椎动物祖先授粉的,而Fagales和Picramniales是风授粉的。随机特征映射发现,从昆虫到风媒授粉有42-50个转变,从风媒到动物授粉有4-12个逆转,而从昆虫到脊椎动物授粉有39-56个转变,脊椎动物回到昆虫授粉有26-57个逆转。被子植物的两个分支主要是水媒传粉的,金鱼目和泽泻目中的海草(Ruppiaceae、Cymodoceae、Posidoniaceae、Zosteraceae和Potamogetonaceae)。水授粉是由风授粉进化而来的,没有逆转。授粉模式和环境之间的联系出奇地弱,只是风授粉的可能性随着栖息地的开放而增加。当在所有随机特征图中平均每个状态下花费的总分枝长度时,自冠节以来,被子植物进化时间的平均值为86%用于昆虫授粉,10%用于风授粉,4%用于脊椎动物授粉,1%用于水授粉。这些发现是基于单一的系统发育,没有考虑任何拓扑的不确定性。该研究的拓扑结构可能是错误的深层节点包括单子叶植物相对于真双子叶植物的位置,以及Amborella相对于其余被子植物的位置。在Stephens等人的研究中,类magnoliids是单子叶植物的姐妹谱系其系统发育尚不明确。相反,其他研究发现,包括magnoloids在内的所有真双子叶植物都是姐妹(Wickett et al.,2014;曾等人,2014;一千植物转录体倡议,2019;杨等人,2020)。与Amborella是其余被子植物的姐妹相比,Amborella作为睡莲目姐妹的地位也得到了更有力的支持(Xi等人,2014)。 然而,这种拓扑变化的任何可能影响都不会改变昆虫学作为开花植物祖先的重建,也不会改变昆虫和脊椎动物授粉之间的频繁逆转,这些都发生在66年前 马。正如Stephens等人所指出的。,未来的工作可能会集中在昆虫和脊椎动物授粉之间的变化所伴随的环境条件问题上。有利于这种转变的因素可能涉及相对于植物满足这些需求的能力的动物生理和营养需求,同时平衡其他挑战,如干旱、风暴露和生长季节长度。细粒度的研究可以遵循Stephens等人开发的方法。,但包括发生在海岛或天岛上,或植物生长形式和生态位,如树木、攀缘植物或附生植物。可以想象,通过将鸟类、蝙蝠和蜜蜂与苍蝇和甲虫分开,传粉昆虫也可以得到更精细的评分。然而,我们对传粉昆虫的了解,特别是对热带树木和附生植物的了解很少,还有很多实地工作要做。
{"title":"A time tree for the evolution of insect, vertebrate, wind, and water pollination in the angiosperms","authors":"Susanne S. Renner","doi":"10.1111/nph.19201","DOIUrl":"https://doi.org/10.1111/nph.19201","url":null,"abstract":"<p>There is much circumstantial evidence that flowering plants were diverse by the Lower Cretaceous and were pollinated by insects (Arber &amp; Parkin, <span>1907</span>; Crepet &amp; Friis, <span>1987</span>). Arguments supporting this come from extant and fossil flower morphology, fossilized traces of interactions, and the pollination modes of surviving early lineages. First, some extinct gymnosperms had bisporangiate cones (with both micro- and megasporangia) surrounded by bracts (Fig. 1), and many such cones show traces of having been chewed by mandibulate insects (Peris <i>et al</i>., <span>2017</span>). Fossils of flower-associated flies also provide evidence of the existence of strobilus–pollinator interactions from the Permian to the Jurassic (Ren, <span>1998</span>; Ren <i>et al</i>., <span>2009</span>; Khramov <i>et al.</i>, <span>2023</span>). Second, if flowers evolved from bisporangiate strobili, they were not well suited for wind pollination because simultaneous optimization for pollen export and pollen capture is structurally difficult. The angiosperms' defining enclosure of the megasporangium inside surrounding structures may also point to ancestral insect pollination, as argued by Arber &amp; Parkin (<span>1907</span>: 73), ‘In the case of the angiosperms such primitive entomophily was preserved and rendered permanent by a transference of the pollen-collecting mechanism from the ovule itself to the carpel or megasporophyll and by the closure of this organ.’ Third, all angiosperms, but no living gymnosperm, produce pollenkitt, an oily substance on the surface of pollen that serves as a glue to attach pollen to animal vectors (Hesse, <span>1980</span>). In wind-pollinated plants, pollenkitt abundance is secondarily reduced. Lastly, the oldest lineages of flowering plants that still survive today are pollinated by flies, moths, and beetles (Luo <i>et al</i>., <span>2018</span>).</p><p>While insect pollination thus undoubtedly played a decisive role in the evolution of flowers, a phylogenetically informed analysis of pollination by insects, vertebrates, wind, and water across a full modern phylogeny of plants has been lacking. This is what Stephens <i>et al</i>. now provide in an article published in this issue of <i>New Phytologist</i> (<span>2023</span>; 880–891). Using a time-calibrated phylogeny with 1201 species representing the major lineages of flowering plants, together with geographic occurrence data, Stephens <i>et al</i>. quantified the timing and environmental associations of pollination shifts. Where possible, they scored pollination at the species level, either from published fieldwork (<i>n</i> = 432) or from the pollinator syndrome approach (<i>n</i> = 728). Where no information was available for a particular species, taxa were scored at genus (<i>n</i> = 131) or family (<i>n</i> = 4) level. In some analyses, 180 taxa with missing or polymorphic data were excluded from the analyses.</p><p>All major angiosperm clades (","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"464-465"},"PeriodicalIF":9.4,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence and conversion of progestogens and androgens are conserved in land plants 陆生植物中保留了孕激素和雄激素的存在和转化过程
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-09 DOI: 10.1111/nph.19163
Glendis Shiko, Max-Jonas Paulmann, Felix Feistel, Maria Ntefidou, Vanessa Hermann-Ene, Walter Vetter, Benedikt Kost, Grit Kunert, Julie A. Z. Zedler, Michael Reichelt, Ralf Oelmüller, Jan Klein

{"title":"Occurrence and conversion of progestogens and androgens are conserved in land plants","authors":"Glendis Shiko,&nbsp;Max-Jonas Paulmann,&nbsp;Felix Feistel,&nbsp;Maria Ntefidou,&nbsp;Vanessa Hermann-Ene,&nbsp;Walter Vetter,&nbsp;Benedikt Kost,&nbsp;Grit Kunert,&nbsp;Julie A. Z. Zedler,&nbsp;Michael Reichelt,&nbsp;Ralf Oelmüller,&nbsp;Jan Klein","doi":"10.1111/nph.19163","DOIUrl":"https://doi.org/10.1111/nph.19163","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"318-337"},"PeriodicalIF":9.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5770037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme-based kinetic modelling of ASC–GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability 基于酶的番茄果实发育过程中 ASC-GSH 循环动力学模型揭示了还原力和 ROS 供应的重要性
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-07 DOI: 10.1111/nph.19160
Guillaume Decros, Thomas Dussarrat, Pierre Baldet, Cédric Cassan, Cécile Cabasson, Martine Dieuaide-Noubhani, Alice Destailleur, Amélie Flandin, Sylvain Prigent, Kentaro Mori, Sophie Colombié, Joana Jorly, Yves Gibon, Bertrand Beauvoit, Pierre Pétriacq

{"title":"Enzyme-based kinetic modelling of ASC–GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability","authors":"Guillaume Decros,&nbsp;Thomas Dussarrat,&nbsp;Pierre Baldet,&nbsp;Cédric Cassan,&nbsp;Cécile Cabasson,&nbsp;Martine Dieuaide-Noubhani,&nbsp;Alice Destailleur,&nbsp;Amélie Flandin,&nbsp;Sylvain Prigent,&nbsp;Kentaro Mori,&nbsp;Sophie Colombié,&nbsp;Joana Jorly,&nbsp;Yves Gibon,&nbsp;Bertrand Beauvoit,&nbsp;Pierre Pétriacq","doi":"10.1111/nph.19160","DOIUrl":"https://doi.org/10.1111/nph.19160","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"242-257"},"PeriodicalIF":9.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5743236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1