首页 > 最新文献

New Phytologist最新文献

英文 中文
Cecelia Stokes. 塞西莉亚-斯托克斯
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-21 DOI: 10.1111/nph.20177
{"title":"Cecelia Stokes.","authors":"","doi":"10.1111/nph.20177","DOIUrl":"https://doi.org/10.1111/nph.20177","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated fast-slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration. 综合快慢植物和线虫经济光谱可预测自然恢复过程中的土壤有机碳动态。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-04 DOI: 10.1111/nph.20166
Chongzhe Zhang, Tongbin Zhu, Uffe N Nielsen, Ian J Wright, Na Li, Xiaoyun Chen, Manqiang Liu

Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon (C) cycling. However, plants and soil organisms are usually studied separately, leading to a knowledge gap regarding their coordinated contributions to ecosystem C cycling. We explored whether integrated consideration of plant and nematode traits better explained soil organic C (SOC) dynamics than plant or nematode traits considered separately. Our study system was a space-for-time natural restoration chronosequence following agricultural abandonment in a subtropical region, with pioneer, early, mid and climax stages. We identified an integrated fast-slow trait spectrum encompassing plants and nematodes, demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and nematode traits explained more variation in SOC than by either group alone. Structural equation modeling revealed that the integrated fast-slow trait spectrum influenced SOC through its regulation of microbial traits, including microbial C use efficiency and microbial biomass. Our findings confirm the pivotal role of plant-nematode trait coordination in modulating ecosystem C cycling and highlight the value of incorporating belowground traits into biogeochemical cycling under global change scenarios.

陆地生态系统的地上和地下属性相互作用,形成碳(C)循环。然而,植物和土壤生物通常是分开研究的,这导致了关于它们对生态系统碳循环的协调贡献的知识空白。我们探讨了综合考虑植物和线虫性状是否比单独考虑植物或线虫性状更能解释土壤有机碳(SOC)动态。我们的研究系统是亚热带地区农业废弃后的时空自然恢复序列,包括先驱阶段、早期阶段、中期阶段和高潮阶段。我们发现了包括植物和线虫在内的快慢综合性状谱,证明了从先驱阶段的快速策略到高潮阶段的慢速策略的协调转变,这与增强的 SOC 动态是一致的。联合考虑植物和线虫的性状比单独考虑任何一类性状都能解释更多的 SOC 变化。结构方程建模显示,综合快慢性状谱通过调节微生物性状(包括微生物碳利用效率和微生物生物量)来影响 SOC。我们的研究结果证实了植物-线虫性状协调在调节生态系统碳循环中的关键作用,并强调了在全球变化情景下将地下性状纳入生物地球化学循环的价值。
{"title":"An integrated fast-slow plant and nematode economics spectrum predicts soil organic carbon dynamics during natural restoration.","authors":"Chongzhe Zhang, Tongbin Zhu, Uffe N Nielsen, Ian J Wright, Na Li, Xiaoyun Chen, Manqiang Liu","doi":"10.1111/nph.20166","DOIUrl":"https://doi.org/10.1111/nph.20166","url":null,"abstract":"<p><p>Aboveground and belowground attributes of terrestrial ecosystems interact to shape carbon (C) cycling. However, plants and soil organisms are usually studied separately, leading to a knowledge gap regarding their coordinated contributions to ecosystem C cycling. We explored whether integrated consideration of plant and nematode traits better explained soil organic C (SOC) dynamics than plant or nematode traits considered separately. Our study system was a space-for-time natural restoration chronosequence following agricultural abandonment in a subtropical region, with pioneer, early, mid and climax stages. We identified an integrated fast-slow trait spectrum encompassing plants and nematodes, demonstrating coordinated shifts from fast strategies in the pioneer stage to slow strategies in the climax stage, corresponding to enhanced SOC dynamics. Joint consideration of plant and nematode traits explained more variation in SOC than by either group alone. Structural equation modeling revealed that the integrated fast-slow trait spectrum influenced SOC through its regulation of microbial traits, including microbial C use efficiency and microbial biomass. Our findings confirm the pivotal role of plant-nematode trait coordination in modulating ecosystem C cycling and highlight the value of incorporating belowground traits into biogeochemical cycling under global change scenarios.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small ubiquitin-like modifier protease gene TaDSU enhances salt tolerance of wheat. 小泛素样修饰蛋白酶基因 TaDSU 可增强小麦的耐盐性。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-04 DOI: 10.1111/nph.20171
Guilian Xiao, Zhengning Jiang, Tian Xing, Ye Chen, Hongjian Zhang, Jiajia Qian, Xiutang Wang, Yanxia Wang, Guangmin Xia, Mengcheng Wang

To identify efficient salt-tolerant genes is beneficial for coping with the penalty of salt stress on crop yield. Reversible conjugation (sumoylation and desumoylation) of Small Ubiquitin-Like Modifier (SUMO) is a crucial kind of protein modifications, but its roles in the response to salt and other abiotic stress are not well addressed. Here, we identify salt-tolerant SUMO protease gene TaDSU for desumoylation from wheat, and analyze its mechanism in salt tolerance and evaluate its role in yield in saline-alkaline fields. TaDSU overexpression enhances salt tolerance of wheat. TaDSU overexpressors have lower Na+ but higher K+ contents and consequently higher K+ : Na+ ratios than the wild-type under salt stress. TaDSU interacts with transcriptional factor MYC2, reduces the sumoylation level of SUMO1-conjugated MYC2, and promotes its transcription activity. MYC2 binds to the promoter of TaDSU and elevates its expression. TaDSU overexpression enhances grain yield of wheat in the saline soil without growth penalty in the normal field. Especially, TaDSU ectopic expression also enhances salt tolerance of Arabidopsis thaliana, showing this SUMO protease allele has the inter-species role in the adaptation to salt stress. Thus, TaDSU is an efficient candidate gene for molecular breeding of salt-tolerant crops.

鉴定高效的耐盐基因有利于应对盐胁迫对作物产量的影响。小类泛素修饰蛋白(SUMO)的可逆共轭(sumoylation和desumoylation)是一种重要的蛋白质修饰,但其在应对盐胁迫和其他非生物胁迫中的作用尚未得到很好的研究。在此,我们从小麦中鉴定出了耐盐 SUMO 蛋白酶基因 TaDSU,并分析了其在耐盐中的作用机制,评估了其在盐碱地产量中的作用。TaDSU的过表达增强了小麦的耐盐性。与野生小麦相比,过表达 TaDSU 的小麦 Na+ 含量较低,但 K+ 含量较高,因此 K+ :在盐胁迫下,与野生型相比,TaDSU过表达者的Na+含量较低,但K+含量较高,因此K+ : Na+比率较高。TaDSU 与转录因子 MYC2 相互作用,降低 SUMO1 共轭的 MYC2 的苏木酰化水平,促进其转录活性。MYC2 与 TaDSU 的启动子结合并提高其表达。过表达 TaDSU 可提高盐碱地小麦的产量,而不会影响正常田块的生长。特别是,TaDSU异位表达还能增强拟南芥的耐盐性,表明这种SUMO蛋白酶等位基因在适应盐胁迫方面具有种间作用。因此,TaDSU是耐盐作物分子育种的有效候选基因。
{"title":"Small ubiquitin-like modifier protease gene TaDSU enhances salt tolerance of wheat.","authors":"Guilian Xiao, Zhengning Jiang, Tian Xing, Ye Chen, Hongjian Zhang, Jiajia Qian, Xiutang Wang, Yanxia Wang, Guangmin Xia, Mengcheng Wang","doi":"10.1111/nph.20171","DOIUrl":"https://doi.org/10.1111/nph.20171","url":null,"abstract":"<p><p>To identify efficient salt-tolerant genes is beneficial for coping with the penalty of salt stress on crop yield. Reversible conjugation (sumoylation and desumoylation) of Small Ubiquitin-Like Modifier (SUMO) is a crucial kind of protein modifications, but its roles in the response to salt and other abiotic stress are not well addressed. Here, we identify salt-tolerant SUMO protease gene TaDSU for desumoylation from wheat, and analyze its mechanism in salt tolerance and evaluate its role in yield in saline-alkaline fields. TaDSU overexpression enhances salt tolerance of wheat. TaDSU overexpressors have lower Na<sup>+</sup> but higher K<sup>+</sup> contents and consequently higher K<sup>+</sup> : Na<sup>+</sup> ratios than the wild-type under salt stress. TaDSU interacts with transcriptional factor MYC2, reduces the sumoylation level of SUMO1-conjugated MYC2, and promotes its transcription activity. MYC2 binds to the promoter of TaDSU and elevates its expression. TaDSU overexpression enhances grain yield of wheat in the saline soil without growth penalty in the normal field. Especially, TaDSU ectopic expression also enhances salt tolerance of Arabidopsis thaliana, showing this SUMO protease allele has the inter-species role in the adaptation to salt stress. Thus, TaDSU is an efficient candidate gene for molecular breeding of salt-tolerant crops.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agrobacterium-mediated Cuscuta campestris transformation as a tool for understanding plant-plant interactions. 农杆菌介导的菟丝子转化是了解植物与植物之间相互作用的一种工具。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-03 DOI: 10.1111/nph.20140
Supral Adhikari, Asha Mudalige, Lydia Phillips, Hyeyoung Lee, Vivian Bernal-Galeano, Hope Gruszewski, James H Westwood, So-Yon Park

Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant-plant interactions and molecular trafficking. However, a major barrier to C. campestris research is that a method to generate stable transgenic plants has not yet been developed. Here, we describe the development of a Cuscuta transformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2 and CcGRF/GIF), leading to a robust protocol for Agrobacterium-mediated C. campestris transformation. The stably transformed and regenerated RUBY C. campestris plants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T-DNA integration in the parasite genome were confirmed through TAIL-PCR. Transformed C. campestris also produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for the Agrobacterium-mediated transformation, but may also provide insight into the movement of molecules from C. campestris to the host during parasitism. Thus, the protocol for transformation of C. campestris reported here overcomes a major obstacle to Cuscuta research and opens new possibilities for studying parasitic plants and their interactions with hosts.

菟丝子是一种茎寄生植物,是探索植物间相互作用和分子贩运的重要模式植物。然而,菟丝子研究的一个主要障碍是尚未开发出产生稳定转基因植物的方法。在此,我们介绍了利用各种报告基因(GFP、GUS 或 RUBY)和形态发生基因(CcWUS2 和 CcGRF/GIF)开发的菟丝子转化方案,从而形成了农杆菌介导的野油菜转化的稳健方案。稳定转化和再生的 RUBY C. campestris 植株会产生寄生植物的标志性器官--菌丝体,这些菌丝体在形成寄主附着物方面具有功能性。通过 TAIL-PCR 确认了寄生虫基因组中 T-DNA 整合的位置。经转化的 C. campestris 还能开出花朵并结出有生命力的转基因种子,显示出甜菜素色素,证明了 RUBY 转基因的种系传播。此外,RUBY 不仅是农杆菌介导的转化过程中有用的选择性标记,而且还能让人了解野油菜分子在寄生过程中向宿主的移动。因此,本文报告的野油菜转化方案克服了菟丝子研究的一个主要障碍,为研究寄生植物及其与宿主的相互作用提供了新的可能性。
{"title":"Agrobacterium-mediated Cuscuta campestris transformation as a tool for understanding plant-plant interactions.","authors":"Supral Adhikari, Asha Mudalige, Lydia Phillips, Hyeyoung Lee, Vivian Bernal-Galeano, Hope Gruszewski, James H Westwood, So-Yon Park","doi":"10.1111/nph.20140","DOIUrl":"https://doi.org/10.1111/nph.20140","url":null,"abstract":"<p><p>Cuscuta campestris, a stem parasitic plant, has served as a valuable model plant for the exploration of plant-plant interactions and molecular trafficking. However, a major barrier to C. campestris research is that a method to generate stable transgenic plants has not yet been developed. Here, we describe the development of a Cuscuta transformation protocol using various reporter genes (GFP, GUS, or RUBY) and morphogenic genes (CcWUS2 and CcGRF/GIF), leading to a robust protocol for Agrobacterium-mediated C. campestris transformation. The stably transformed and regenerated RUBY C. campestris plants produced haustoria, the signature organ of parasitic plants, and these were functional in forming host attachments. The locations of T-DNA integration in the parasite genome were confirmed through TAIL-PCR. Transformed C. campestris also produced flowers and viable transgenic seeds exhibiting betalain pigment, providing proof of germline transmission of the RUBY transgene. Furthermore, RUBY is not only a useful selectable marker for the Agrobacterium-mediated transformation, but may also provide insight into the movement of molecules from C. campestris to the host during parasitism. Thus, the protocol for transformation of C. campestris reported here overcomes a major obstacle to Cuscuta research and opens new possibilities for studying parasitic plants and their interactions with hosts.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traits estimated when grown alone may underestimate the competitive advantage and invasiveness of exotic species. 单独种植时估计的性状可能会低估外来物种的竞争优势和入侵性。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-01 DOI: 10.1111/nph.20160
Biao Zhu, Chunqiang Wei, Hao Zhou, Wei Chen, Evan Siemann, Xinmin Lu

Functional differences between native and exotic species, estimated when species are grown alone or in mixtures, are often used to predict the invasion risk of exotic species. However, it remains elusive whether the functional differences estimated by the two methods and their ability to predict species invasiveness (e.g. high abundance) are consistent. We compiled data from two common garden experiments, in which specific leaf area, height, and aboveground biomass of 64 common native and exotic invasive species in China were estimated when grown individually (pot) or in mixtures (field). Exotic species accumulated higher aboveground biomass than natives, but only when grown in field mixtures. Moreover, aboveground biomass and functional distinctiveness estimated in mixtures were more predictive of species persistence and relative abundance in the field mixtures in the second year than those estimated when grown alone. These findings suggest that assessing species traits while grown alone may underestimate the competitive advantage for some exotic species, highlighting the importance of trait-by-environment interactions in shaping species invasion. Therefore, we propose that integrating multi-site or multi-year field surveys and manipulative experiments is required to best identify the key trait(s) and environment(s) that interactively shape species invasion and community dynamics.

在物种单独或混合生长时估算出的本地物种与外来物种之间的功能差异,经常被用来预测外来物种的入侵风险。然而,这两种方法估算出的功能差异及其预测物种入侵性(如高丰度)的能力是否一致,仍然令人难以捉摸。我们汇编了两个常见园林实验的数据,其中估算了中国 64 种常见本地和外来入侵物种在单独种植(盆栽)或混合种植(田间)时的特定叶面积、高度和地上生物量。外来物种积累的地上生物量高于本地物种,但只有在田间混种时才会出现这种情况。此外,与单独种植时相比,混合物中估算的地上生物量和功能独特性更能预测物种第二年在田间混合物中的持久性和相对丰度。这些研究结果表明,单独种植时对物种性状的评估可能会低估某些外来物种的竞争优势,从而突出了性状与环境相互作用在影响物种入侵方面的重要性。因此,我们建议将多地点或多年实地调查与操纵实验结合起来,以最好地确定影响物种入侵和群落动态的关键性状和环境。
{"title":"Traits estimated when grown alone may underestimate the competitive advantage and invasiveness of exotic species.","authors":"Biao Zhu, Chunqiang Wei, Hao Zhou, Wei Chen, Evan Siemann, Xinmin Lu","doi":"10.1111/nph.20160","DOIUrl":"https://doi.org/10.1111/nph.20160","url":null,"abstract":"<p><p>Functional differences between native and exotic species, estimated when species are grown alone or in mixtures, are often used to predict the invasion risk of exotic species. However, it remains elusive whether the functional differences estimated by the two methods and their ability to predict species invasiveness (e.g. high abundance) are consistent. We compiled data from two common garden experiments, in which specific leaf area, height, and aboveground biomass of 64 common native and exotic invasive species in China were estimated when grown individually (pot) or in mixtures (field). Exotic species accumulated higher aboveground biomass than natives, but only when grown in field mixtures. Moreover, aboveground biomass and functional distinctiveness estimated in mixtures were more predictive of species persistence and relative abundance in the field mixtures in the second year than those estimated when grown alone. These findings suggest that assessing species traits while grown alone may underestimate the competitive advantage for some exotic species, highlighting the importance of trait-by-environment interactions in shaping species invasion. Therefore, we propose that integrating multi-site or multi-year field surveys and manipulative experiments is required to best identify the key trait(s) and environment(s) that interactively shape species invasion and community dynamics.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean. 基于 CRISPR/Cas9 对 NF-YC4 启动子的编辑可产生高蛋白水稻和大豆。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-09-22 DOI: 10.1111/nph.20141
Lei Wang, Seth O'Conner, Rezwan Tanvir, Wenguang Zheng, Samuel Cothron, Katherine Towery, Honghao Bi, Evan E Ellison, Bing Yang, Daniel F Voytas, Ling Li

Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts. Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs. Building upon our prior research demonstrating the protein-boosting effects of the transcription factor NF-YC4, we identified conserved motifs targeted by RAV and WRKY repressors in the NF-YC4 promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increased NF-YC4 expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein. Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.

基因组编辑是生物技术在作物改良方面的一场革命,其最终产品不含转基因。然而,大多数衍生性状都是通过基因敲除编辑产生的。我们的研究开创了一种新方法,利用基因编辑消除转录抑制因子结合基序,从而增强基因表达。我们之前的研究证明了转录因子 NF-YC4 对蛋白质的促进作用,在此基础上,我们确定了水稻(Oryza sativa)和大豆(Glycine max)NF-YC4 启动子中 RAV 和 WRKY 抑制因子靶向的保守基团。利用 CRISPR/Cas9 技术,我们删除了这些基团,从而减少了抑制因子的结合,增加了 NF-YC4 的表达。这一策略使编辑后的水稻和大豆植株蛋白质含量增加,碳水化合物水平降低,其中水稻的叶片蛋白质增加了68%,种子蛋白质增加了17%;大豆的叶片蛋白质增加了25%,种子蛋白质增加了11%。我们的研究结果为通过精确删除基因组中的非编码序列来增强基因表达提供了蓝图,有望提高农业生产率和营养质量。
{"title":"CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean.","authors":"Lei Wang, Seth O'Conner, Rezwan Tanvir, Wenguang Zheng, Samuel Cothron, Katherine Towery, Honghao Bi, Evan E Ellison, Bing Yang, Daniel F Voytas, Ling Li","doi":"10.1111/nph.20141","DOIUrl":"https://doi.org/10.1111/nph.20141","url":null,"abstract":"<p><p>Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts. Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs. Building upon our prior research demonstrating the protein-boosting effects of the transcription factor NF-YC4, we identified conserved motifs targeted by RAV and WRKY repressors in the NF-YC4 promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increased NF-YC4 expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein. Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GSK3s promote the phyB-ELF3-HMR complex formation to regulate plant thermomorphogenesis. GSK3促进phyB-ELF3-HMR复合物的形成,以调控植物的热形态发生。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-27 DOI: 10.1111/nph.20064
Ruizhen Yang, Huixue Dong, Xianzhi Xie, Yunwei Zhang, Jiaqiang Sun

Although elevated ambient temperature causes many effects on plant growth and development, the mechanisms of plant high-ambient temperature sensing remain unknown. In this study, we show that GLYCOGEN SYNTHASE KINASE 3s (GSK3s) negatively regulate high-ambient temperature response and oligomerize upon high-temperature treatment. We demonstrate that GSK3 kinase BIN2 specifically interacts with the high-temperature sensor phytochrome B (phyB) but not the high-temperature sensor EARLY FLOWER 3 (ELF3) to phosphorylate and promote phyB photobody formation. Furthermore, we show that phosphorylation of phyB by GSK3s promotes its interaction with ELF3. Subsequently, we find that ELF3 recruits the phyB photobody facilitator HEMERA (HMR) to promote its association with phyB. Taken together, our data reveal a mechanism that GSK3s promote the phyB-ELF3-HMR complex formation in regulating plant thermomorphogenesis.

虽然环境温度升高会对植物的生长和发育产生许多影响,但植物对高环境温度的感知机制仍然未知。在这项研究中,我们发现糖精合成酶激酶 3(GSK3s)负调控高环境温度响应,并在高温处理时寡聚。我们证明 GSK3 激酶 BIN2 与高温传感器植物色素 B(phyB)而非高温传感器早期花卉 3(ELF3)特异性相互作用,磷酸化并促进 phyB 光抗体的形成。此外,我们还发现 GSK3s 磷酸化 phyB 会促进其与 ELF3 的相互作用。随后,我们发现 ELF3 招募了 phyB 光抗体促进因子 HEMERA (HMR),以促进其与 phyB 的结合。综上所述,我们的数据揭示了 GSK3s 促进 phyB-ELF3-HMR 复合物形成以调控植物热形态发生的机制。
{"title":"GSK3s promote the phyB-ELF3-HMR complex formation to regulate plant thermomorphogenesis.","authors":"Ruizhen Yang, Huixue Dong, Xianzhi Xie, Yunwei Zhang, Jiaqiang Sun","doi":"10.1111/nph.20064","DOIUrl":"https://doi.org/10.1111/nph.20064","url":null,"abstract":"<p><p>Although elevated ambient temperature causes many effects on plant growth and development, the mechanisms of plant high-ambient temperature sensing remain unknown. In this study, we show that GLYCOGEN SYNTHASE KINASE 3s (GSK3s) negatively regulate high-ambient temperature response and oligomerize upon high-temperature treatment. We demonstrate that GSK3 kinase BIN2 specifically interacts with the high-temperature sensor phytochrome B (phyB) but not the high-temperature sensor EARLY FLOWER 3 (ELF3) to phosphorylate and promote phyB photobody formation. Furthermore, we show that phosphorylation of phyB by GSK3s promotes its interaction with ELF3. Subsequently, we find that ELF3 recruits the phyB photobody facilitator HEMERA (HMR) to promote its association with phyB. Taken together, our data reveal a mechanism that GSK3s promote the phyB-ELF3-HMR complex formation in regulating plant thermomorphogenesis.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis 干扰对世界森林冠层植物群落的复杂影响:综述和综合。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-10-10 DOI: 10.1111/nph.19245
Nalini M. Nadkarni

Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human-induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch-clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.

表生植物及其相关生物群越来越被认为有助于生物多样性和填补世界森林的关键生态系统功能。然而,使它们在树冠环境中取得成功的特性也使它们容易受到自然和人类引起的干扰。利用生态学框架来理解干扰,我对干扰对附生材料的驱动因素和后果进行了分类和综合。在所有影响中,扰动因子在热带和温带地区都更有可能导致负面影响,而不是正面影响。值得注意的是,更多的研究报告了对丰度、多样性、群落组成和连通性的负面影响,但一些研究表明,干扰增强了这些属性。尽管特定的干扰因素对个体后果的影响没有不同,但它们解释了合计总量变化的很大一部分。令人惊讶的是,相对于人类的干扰,自然干扰更有可能导致负面影响。许多研究为有效的社会应对措施提供了建议,以减轻负面影响,如在林业作业中保留大型老树,为附生植物收割进行斑块清理,最大限度地扩大森林碎片大小,使用附生植物作为干扰的生物指标,以及将社区林业原则应用于土地管理。未来的行动还应包括向决策者和土地管理者传达这些结果。
{"title":"Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis","authors":"Nalini M. Nadkarni","doi":"10.1111/nph.19245","DOIUrl":"10.1111/nph.19245","url":null,"abstract":"<p>Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human-induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch-clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 4","pages":"1366-1380"},"PeriodicalIF":9.4,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling redundancy: genetic mechanisms underlying paralog compensation in plants 处理冗余:植物同源补偿的遗传机制。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-09-19 DOI: 10.1111/nph.19267
Sessen Daniel Iohannes, David Jackson

Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed ‘a geneticist's nightmare’: It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies – the next frontier in plant functional studies.

基因复制是生物创新的强大来源,产生了经历不同命运的同源基因。同源基因之间的冗余是重复基因进化的一个有趣结果,长期以来,它在进化过程中的维持一直被认为是一个悖论。冗余也可以被称为“遗传学家的噩梦”:它阻碍了基因组编辑结果的可预测性,并限制了我们将基因型与表型联系起来的能力。对酵母和植物的遗传学研究表明,古代冗余复制品补偿功能丧失引起的剂量扰动的能力取决于基因表达的重新编程,这种现象被称为主动补偿。从对驱动冗余进化稳定性的化学计量约束的考虑开始,这篇综述旨在深入了解重复之间的主动补偿机制,这些机制可以用来打破并行依赖关系 - 植物功能研究的下一个前沿。
{"title":"Tackling redundancy: genetic mechanisms underlying paralog compensation in plants","authors":"Sessen Daniel Iohannes,&nbsp;David Jackson","doi":"10.1111/nph.19267","DOIUrl":"10.1111/nph.19267","url":null,"abstract":"<div>\u0000 \u0000 <p>Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed ‘a geneticist's nightmare’: It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies – the next frontier in plant functional studies.</p>\u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 4","pages":"1381-1389"},"PeriodicalIF":9.4,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry 通过探索性深度学习和成像流式细胞术对环境样本中的花粉进行演绎式自动分类
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-09-07 DOI: 10.1111/nph.19186
Claire M. Barnes, Ann L. Power, Daniel G. Barber, Richard K. Tennant, Richard T. Jones, G. Rob Lee, Jackie Hatton, Angela Elliott, Joana Zaragoza-Castells, Stephen M. Haley, Huw D. Summers, Minh Doan, Anne E. Carpenter, Paul Rees, John Love

{"title":"Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry","authors":"Claire M. Barnes,&nbsp;Ann L. Power,&nbsp;Daniel G. Barber,&nbsp;Richard K. Tennant,&nbsp;Richard T. Jones,&nbsp;G. Rob Lee,&nbsp;Jackie Hatton,&nbsp;Angela Elliott,&nbsp;Joana Zaragoza-Castells,&nbsp;Stephen M. Haley,&nbsp;Huw D. Summers,&nbsp;Minh Doan,&nbsp;Anne E. Carpenter,&nbsp;Paul Rees,&nbsp;John Love","doi":"10.1111/nph.19186","DOIUrl":"https://doi.org/10.1111/nph.19186","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1305-1326"},"PeriodicalIF":9.4,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1