首页 > 最新文献

New Phytologist最新文献

英文 中文
Intraspecific variation in realized dispersal probability and host quality shape nectar microbiomes 花蜜微生物群的已实现扩散概率和宿主质量的种内变异
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-23 DOI: 10.1111/nph.19195
Jacob S. Francis, Tobias G. Mueller, Rachel L. Vannette

  • Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.
  • We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.
  • There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.
  • These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.
表生微生物经常影响植物的表型和适应性,但它们的影响取决于微生物的丰度和群落组成。通过植物特征和确定性扩散介导的过程进行过滤可能会影响微生物组的组装,但它们对微生物组可预测变异的相对贡献尚不清楚。我们比较了寄主植物过滤和扩散对花蜜微生物组存在、丰度和组成的影响。我们将具有代表性的细菌和酵母接种到四个表型不同品种的30株植物中。我们将接种疫苗的群落的生长与来自同一植物子集的公开参观的花朵进行了比较。当我们给花接种合成群落时,有明显的寄主选择的证据。然而,接种时微生物密度最高的植物在公开参观时微生物密度并不最高。相反,可以预见的是,植物在细菌的存在下会发生变化,这与花粉的接收和花的特征有关,这表明了确定性传播的作用。这些发现表明,宿主过滤可以驱动植物微生物组在物种库大、扩散率高的组织中组装。然而,当微生物依赖动物载体、传播率低或到达顺序重要时,微生物传播到宿主的确定性差异可能同样或更重要。
{"title":"Intraspecific variation in realized dispersal probability and host quality shape nectar microbiomes","authors":"Jacob S. Francis,&nbsp;Tobias G. Mueller,&nbsp;Rachel L. Vannette","doi":"10.1111/nph.19195","DOIUrl":"https://doi.org/10.1111/nph.19195","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.</li>\u0000 \u0000 \u0000 <li>We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of <i>Epilobium canum</i>. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.</li>\u0000 \u0000 \u0000 <li>There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.</li>\u0000 \u0000 \u0000 <li>These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1233-1245"},"PeriodicalIF":9.4,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spliceosomal protein U2B″ delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis 剪接体蛋白U2B〃通过增强剪接变异体JAZ9β的表达以减弱拟南芥茉莉酸信号传导来延缓叶片衰老
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-22 DOI: 10.1111/nph.19198
Qi Yang, Shuya Tan, Hou-Ling Wang, Ting Wang, Jie Cao, Hairong Liu, Yueqi Sha, Yaning Zhao, Xinli Xia, Hongwei Guo, Zhonghai Li

  • The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown.

  • Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9β (JAZ9β) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9β protein. Moreover, JAZ9β could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9β rescued the early senescence phenotype of the u2b″ mutant.

  • Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants.

  • Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9β and thereby attenuating JA signaling.

叶片衰老的调控框架逐渐清晰;然而,这一过程的精细调控在很大程度上仍是未知的。遗传分析表明,剪接体的一个组成部分U2小核核糖核蛋白B(U2B〃)是叶片衰老的负调控因子。U2B〃的突变导致早熟叶片衰老,而U2B〃过表达延长了叶片寿命。转录组分析显示,在u2b〃突变体中茉莉酸(JA)信号通路被激活。U2B〃增强了Jas基序中内含子保留的剪接变体JASMONATE ZIM-DOMAIN 9β(JAZ9β)的产生,这损害了其与CORONATINE INSENSIVE1的相互作用,从而增强了JAZ9?蛋白的稳定性。此外,JAZ9β可以与MYC2相互作用并阻断其活性,从而减弱JA信号传导。相应地,JAZ9β的过表达挽救了u2b〃突变体的早衰表型。此外,JA处理促进U2B〃的表达,U2B〃被发现是MYC2的直接靶点。u2b〃突变体中MYC2的过表达导致比野生型植物更明显的早衰。总之,我们的研究结果表明,剪接体蛋白U2B〃通过增强JAZ9β的表达从而减弱JA信号传导来微调叶片衰老。
{"title":"Spliceosomal protein U2B″ delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis","authors":"Qi Yang,&nbsp;Shuya Tan,&nbsp;Hou-Ling Wang,&nbsp;Ting Wang,&nbsp;Jie Cao,&nbsp;Hairong Liu,&nbsp;Yueqi Sha,&nbsp;Yaning Zhao,&nbsp;Xinli Xia,&nbsp;Hongwei Guo,&nbsp;Zhonghai Li","doi":"10.1111/nph.19198","DOIUrl":"https://doi.org/10.1111/nph.19198","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>\u0000 \u0000 <p>The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown.</p>\u0000 </li>\u0000 \u0000 \u0000 <li>\u0000 \u0000 <p>Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of <i>U2B″</i> extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the <i>u2b″</i> mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9β (JAZ9β) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9β protein. Moreover, JAZ9β could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of <i>JAZ9β</i> rescued the early senescence phenotype of the <i>u2b″</i> mutant.</p>\u0000 </li>\u0000 \u0000 \u0000 <li>\u0000 \u0000 <p>Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of <i>MYC2</i> in the <i>u2b″</i> mutant resulted in a more pronounced premature senescence than that in wild-type plants.</p>\u0000 </li>\u0000 \u0000 \u0000 <li>\u0000 \u0000 <p>Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9β and thereby attenuating JA signaling.</p>\u0000 </li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1116-1133"},"PeriodicalIF":9.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orosomucoid proteins limit endoplasmic reticulum stress in plants Orosomucoid蛋白限制植物内质网应激
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-22 DOI: 10.1111/nph.19200
Ling-Yan Wang, Jian Li, Benqiang Gong, Rui-Hua Wang, Yi-Li Chen, Jian Yin, Chang Yang, Jia-Ting Lin, Hao-Zhuo Liu, Yubing Yang, Jianfeng Li, Chunyu Li, Nan Yao

  • Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants.
  • In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana.
  • Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis.
  • Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
鞘磷脂是诱导内质网(ER)应激反应的细胞膜成分和信号分子,但其潜在机制尚不清楚。类脂蛋白(ORMs)负调控丝氨酸棕榈酰转移酶活性,从而帮助维持人类、酵母和植物的适当鞘脂水平。在本报告中,我们探讨了ORMs在调节拟南芥内质网应激中的作用。ORM1和ORM2功能的丧失导致未折叠蛋白反应(UPR)的组成型激活,用神经酰胺合成酶抑制剂伏马菌素B1(FB1)或神经酰胺处理也是如此。FB1处理诱导转录因子bZIP28从内质网膜重新定位到细胞核。转录因子WRKY75正向调节UPR,并与bZIP28发生物理相互作用。我们还发现,orm突变体表现出受损的ER相关降解(ERAD),阻断了错误折叠的MILDEW抗性位点-O 12(MLO-12)的降解。ORM1和ORM2与EMS突变的BRI1抑制因子7(EBS7)结合,并调节其稳定性,EBS7是拟南芥ERAD复合物的植物特异性成分。这些数据有力地表明,在拟南芥中,内质网膜中的ORM在UPR和ERAD途径中发挥着至关重要的作用,以防止内质网应激。我们的研究结果表明,ORMs协调鞘脂稳态与ER质量控制,并在应激反应中发挥作用。
{"title":"Orosomucoid proteins limit endoplasmic reticulum stress in plants","authors":"Ling-Yan Wang,&nbsp;Jian Li,&nbsp;Benqiang Gong,&nbsp;Rui-Hua Wang,&nbsp;Yi-Li Chen,&nbsp;Jian Yin,&nbsp;Chang Yang,&nbsp;Jia-Ting Lin,&nbsp;Hao-Zhuo Liu,&nbsp;Yubing Yang,&nbsp;Jianfeng Li,&nbsp;Chunyu Li,&nbsp;Nan Yao","doi":"10.1111/nph.19200","DOIUrl":"https://doi.org/10.1111/nph.19200","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants.</li>\u0000 \u0000 \u0000 <li>In this report, we explored the roles of ORMs in regulating ER stress in <i>Arabidopsis thaliana</i>.</li>\u0000 \u0000 \u0000 <li>Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the <i>orm</i> mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis.</li>\u0000 \u0000 \u0000 <li>Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1134-1148"},"PeriodicalIF":9.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic regulation of female germline development through ERECTA signaling pathway ERECTA信号通路对雌性生殖系发育的表观遗传学调控
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-22 DOI: 10.1111/nph.19217
Youmei Huang, Liping Liu, Mengnan Chai, Han Su, Suzhuo Ma, Kaichuang Liu, Yaru Tian, Zhuangyuan Cao, Xinpeng Xi, Wenhui Zhu, Jingang Qi, Ravishankar Palanivelu, Yuan Qin, Hanyang Cai

  • Germline development is a key step in sexual reproduction. Sexual plant reproduction begins with the formation of haploid spores by meiosis of megaspore mother cells (MMCs). Although many evidences, directly or indirectly, show that epigenetics plays an important role in MMC specification, how it controls the commitment of the MMC to downstream stages of germline development is still unclear.
  • Electrophoretic mobility shift assay (EMSA), western blot, immunofluorescence, and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between BZR1 transcription factor family and the SWR1-SDG2-ER pathway in the control of female germline development were further studied.
  • The present findings showed in Arabidopsis that two epigenetic factors, the chromatin remodeling complex SWI2/SNF2-RELATED 1 (SWR1) and a writer for H3K4me3 histone modification SET DOMAIN GROUP 2 (SDG2), genetically interact with the ERECTA (ER) receptor kinase signaling pathway and regulate female germline development by restricting the MMC cell fate to a single cell in the ovule primordium and ensure that only that single cell undergoes meiosis and subsequent megaspore degeneration. We also showed that SWR1-SDG2-ER signaling module regulates female germline development by promoting the protein accumulation of BZR1 transcription factor family on the promoters of primary miRNA processing factors, HYPONASTIC LEAVES 1 (HYL1), DICER-LIKE 1 (DCL1), and SERRATE (SE) to activate their expression.
  • Our study elucidated a Gene Regulation Network that provides new insights for understanding how epigenetic factors and receptor kinase signaling pathways function in concert to control female germline development in Arabidopsis.
生殖系发育是有性生殖的关键步骤。植物有性繁殖始于大孢子母细胞减数分裂形成单倍体孢子。尽管许多证据直接或间接表明表观遗传学在MMC规范中发挥着重要作用,但它如何控制MMC对种系发育下游阶段的承诺仍不清楚。进行电泳迁移率转移分析(EMSA)、蛋白质印迹、免疫荧光和染色质免疫沉淀结合定量PCR分析。进一步研究了BZR1转录因子家族与SWR1-SDG2-ER通路在控制雌性生殖系发育中的遗传相互作用。目前的研究结果表明,在拟南芥中,两种表观遗传因子——染色质重塑复合物SWI2/SNF2-RATED 1(SWR1)和H3K4me3组蛋白修饰SET DOMAIN GROUP 2(SDG2)的作者,与ERECTA(ER)受体激酶信号通路遗传相互作用,并通过将MMC细胞命运限制在胚珠原基中的单个细胞来调节雌性生殖系发育,并确保只有该单个细胞经历减数分裂和随后的大孢子变性。我们还发现,SWR1-SDG2-ER信号模块通过促进BZR1转录因子家族在初级miRNA处理因子、缺氧叶1(HYL1)、二细胞样1(DCL1)和SERRATE(SE)启动子上的蛋白质积累来调节雌性生殖系发育,以激活其表达。我们的研究阐明了一个基因调控网络,该网络为理解表观遗传因子和受体激酶信号通路如何协同控制拟南芥雌性生殖系发育提供了新的见解。
{"title":"Epigenetic regulation of female germline development through ERECTA signaling pathway","authors":"Youmei Huang,&nbsp;Liping Liu,&nbsp;Mengnan Chai,&nbsp;Han Su,&nbsp;Suzhuo Ma,&nbsp;Kaichuang Liu,&nbsp;Yaru Tian,&nbsp;Zhuangyuan Cao,&nbsp;Xinpeng Xi,&nbsp;Wenhui Zhu,&nbsp;Jingang Qi,&nbsp;Ravishankar Palanivelu,&nbsp;Yuan Qin,&nbsp;Hanyang Cai","doi":"10.1111/nph.19217","DOIUrl":"https://doi.org/10.1111/nph.19217","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Germline development is a key step in sexual reproduction. Sexual plant reproduction begins with the formation of haploid spores by meiosis of megaspore mother cells (MMCs). Although many evidences, directly or indirectly, show that epigenetics plays an important role in MMC specification, how it controls the commitment of the MMC to downstream stages of germline development is still unclear.</li>\u0000 \u0000 \u0000 <li>Electrophoretic mobility shift assay (EMSA), western blot, immunofluorescence, and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between BZR1 transcription factor family and the SWR1-SDG2-ER pathway in the control of female germline development were further studied.</li>\u0000 \u0000 \u0000 <li>The present findings showed in Arabidopsis that two epigenetic factors, the chromatin remodeling complex SWI2/SNF2-RELATED 1 (SWR1) and a writer for H3K4me3 histone modification SET DOMAIN GROUP 2 (SDG2), genetically interact with the ERECTA (ER) receptor kinase signaling pathway and regulate female germline development by restricting the MMC cell fate to a single cell in the ovule primordium and ensure that only that single cell undergoes meiosis and subsequent megaspore degeneration. We also showed that SWR1-SDG2-ER signaling module regulates female germline development by promoting the protein accumulation of BZR1 transcription factor family on the promoters of primary miRNA processing factors, <i>HYPONASTIC LEAVES 1</i> (<i>HYL1</i>), <i>DICER-LIKE 1</i> (<i>DCL1</i>), and <i>SERRATE</i> (<i>SE</i>) to activate their expression.</li>\u0000 \u0000 \u0000 <li>Our study elucidated a Gene Regulation Network that provides new insights for understanding how epigenetic factors and receptor kinase signaling pathways function in concert to control female germline development in Arabidopsis.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1015-1033"},"PeriodicalIF":9.4,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordination of growth and drought responses by GA-ABA signaling in rice GA-ABA信号对水稻生长和干旱反应的协调作用
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-21 DOI: 10.1111/nph.19209
Zhigang Liao, Yunchao Zhang, Qing Yu, Weicong Fang, Meiyao Chen, Tianfei Li, Yi Liu, Zaochang Liu, Liang Chen, Shunwu Yu, Hui Xia, Hong-Wei Xue, Hong Yu, Lijun Luo

  • The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management.
  • However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive.
  • Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance.
  • These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.
全球变暖引起的干旱严重影响了作物生长和农业生产。植物已经进化出不同的策略来应对干旱环境。在干旱胁迫下,能源和资源应该从生长转向压力管理。然而,生长和干旱反应协调的分子机制在很大程度上仍然难以捉摸。在这里,我们发现大多数赤霉素(GA)代谢基因受到水稻缺水的调节,导致GA含量降低,从而抑制植物生长。低GA含量导致更多GA信号负调控因子SLENDER RICE 1的积累,SLENDER RICE 1通过竞争性结合后期促进复合物TAD1的共激活剂来抑制脱落酸(ABA)受体PYL10的降解,从而增强ABA反应和耐旱性。这些结果阐明了作物生长抑制与抗旱性和存活率提高的协同调节作用,为作物抗旱性育种改良提供了有用的遗传资源。
{"title":"Coordination of growth and drought responses by GA-ABA signaling in rice","authors":"Zhigang Liao,&nbsp;Yunchao Zhang,&nbsp;Qing Yu,&nbsp;Weicong Fang,&nbsp;Meiyao Chen,&nbsp;Tianfei Li,&nbsp;Yi Liu,&nbsp;Zaochang Liu,&nbsp;Liang Chen,&nbsp;Shunwu Yu,&nbsp;Hui Xia,&nbsp;Hong-Wei Xue,&nbsp;Hong Yu,&nbsp;Lijun Luo","doi":"10.1111/nph.19209","DOIUrl":"https://doi.org/10.1111/nph.19209","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management.</li>\u0000 \u0000 \u0000 <li>However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive.</li>\u0000 \u0000 \u0000 <li>Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance.</li>\u0000 \u0000 \u0000 <li>These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1149-1161"},"PeriodicalIF":9.4,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis bZIP16、bZIP68和GBF1在拟南芥光形态发生过程中的相互作用调节核光合基因
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-21 DOI: 10.1111/nph.19219
Louise Norén Lindb?ck, Yan Ji, Luis Cervela-Cardona, Xu Jin, Ullas V. Pedmale, ?sa Strand

{"title":"An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis","authors":"Louise Norén Lindb?ck,&nbsp;Yan Ji,&nbsp;Luis Cervela-Cardona,&nbsp;Xu Jin,&nbsp;Ullas V. Pedmale,&nbsp;?sa Strand","doi":"10.1111/nph.19219","DOIUrl":"https://doi.org/10.1111/nph.19219","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1082-1096"},"PeriodicalIF":9.4,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms QuantAS:通过剪接异构体的绝对定量研究替代剪接的综合途径
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-18 DOI: 10.1111/nph.19193
Yu-Chen Song, Mo-Xian Chen, Kai-Lu Zhang, Anireddy S. N. Reddy, Fu-Liang Cao, Fu-Yuan Zhu

Alternative splicing (AS) is a mechanism by which cells generate abundant protein diversity from a limited number of genes (Baralle & Giudice, 2017). AS plays a crucial role in regulating various life activities such as growth, development, and aging in plants (Zhu et al., 2017; Godoy Herz & Kornblihtt, 2019; Jabre et al., 2019; Chen et al., 2020; Reddy et al., 2020; Zhang et al., 2020), where it greatly influences plant growth, development, and response to biotic and abiotic stresses (Motion et al., 2015; Laloum et al., 2018; Chaudhary et al., 2019; Chen et al., 2021; Ganie & Reddy, 2021; Saini et al., 2021; Zhu et al., 2023; Supporting Information Fig. S1). The traditional method for the identification of AS is semi-quantitative RT-PCR, which is easy to perform (Palusa et al., 2007; Li et al., 2020; Riegler et al., 2021; Han et al., 2022). Quantitative PCR (qPCR) is also widely used in AS research, as it enables real-time monitoring of fluorescence signals and accurate quantification of isoform copy numbers through the use of specific primers (Hefti et al., 2018; Liu et al., 2018; Huang et al., 2021). With the emergence of digital PCR (dPCR), the identification methods of AS have become more diversified, which disperses each single target fragment into separate droplets as much as possible through the calculation of positive droplets (Fig. S2; Gao et al., 2021).

Based on the urgent need for the accurate quantification of various isoforms, an AS detection method called QuantAS was established (Fig. 1), which allows us to accurately quantify all isoforms of genes based on absolute quantification technology and specific primer design. The method utilizes isoform-specific primers to overcome the isoform identification difficulty caused by different AS events and is designed by using the functional coding region as the isoform structure classification unit to ensure isoform independence (Fig. 2a). RT-qPCR enables real-time monitoring of changes in the fluorescence signal, quantification of differences between expression levels, and simultaneous detection of multiple in a single reaction. According to the copy number of different isoforms, isoform expression patterns can be identified by combining with absolute quantitative techniques. This method greatly increases the accuracy of identification and reduces the cost of repeated experiments. Furthermore, the absolute quantification of AS isoforms employing the combination of qPCR and dPCR could provide their respective advantages, thus rapidly obtaining all isoform info

选择性剪接(AS)是细胞从有限数量的基因中产生丰富蛋白质多样性的一种机制(Baralle&;Giudice,2017)。AS在调节植物的生长、发育和衰老等各种生命活动中发挥着至关重要的作用(Zhu et al.,2017;Godoy-Herz和Kornblihtt,2019;Jabre et al.,2019;Chen et al.,2020;Reddy et al,以及对生物和非生物胁迫的反应(Motion等人,2015;Laloum等人,2018;Chaudhary等人,2019;Chen等人,2021;Ganie&;Reddy,2021;Saini等人,2021年;Zhu等人,2023;支持信息图S1)。鉴定AS的传统方法是半定量RT-PCR,其易于执行(Palusa等人,2007;李等人,2020;Riegler等人,2021;Han等人,2022)。定量PCR(qPCR)也广泛用于AS研究,因为它能够通过使用特异性引物实时监测荧光信号并准确定量同种型拷贝数(Hefti et al.,2018;刘等人,2018;Huang等人,2021)。随着数字PCR(dPCR)的出现,as的鉴定方法变得更加多样化,通过计算阳性液滴,将每个单个靶片段尽可能分散成单独的液滴(图S2;Gao等人,2021)。基于对各种异构体精确定量的迫切需要,建立了一种称为QuantAS的as检测方法(图1),这使我们能够基于绝对定量技术和特异性引物设计准确地量化所有基因的亚型。该方法利用异构体特异性引物来克服不同AS事件引起的异构体鉴定困难,并通过使用功能编码区作为异构体结构分类单元来设计,以确保异构体的独立性(图2a)。RT-qPCR能够实时监测荧光信号的变化,量化表达水平之间的差异,以及在单个反应中同时检测多个。根据不同亚型的拷贝数,结合绝对定量技术可以识别亚型的表达模式。这种方法大大提高了识别的准确性,降低了重复实验的成本。此外,使用qPCR和dPCR的组合对AS亚型进行绝对定量可以提供它们各自的优势,从而快速获得待研究的潜在功能基因的所有亚型信息。QuantAS包括三个阶段:(1)基因结构组装和特异性引物设计,包括AS事件分析;(2) 使用qPCR和dPCR对处理过的样品中的同种型进行精确定量分析,以获得每种同种型的拷贝数;和(3)绝对定量,包括数据分析,以探索异构体的存在和水平(QuantAS的方案大纲如图1、S3所示)。总之,QuantAS为检测和定量植物中的异构体提供了一种通用的方法,允许对不同功能蛋白编码区的同种型进行重新分类,并用于精确的AS鉴定以确定AS事件类型。QuantAS还能够在单个反应中同时检测多种异构体,从而减少冗余鉴定,并根据MLE计算复杂异构体的拷贝数。与qPCR和dPCR技术相结合,它将能够快速准确地筛选参与生理反应的同种型变化。简单的实验设计和程序使QuantAS成为当前AS研究工具箱的一个有价值的补充,特别是在验证大规模组学数据中确定的剪接事件方面。无声明。Y-CS编写了手稿并进行了实验。M-XC和K-LZ进行了数据分析。ASNR和F-LC对手稿进行了批评性评论。F-YZ对课题组进行了总体监督和设计。
{"title":"QuantAS: a comprehensive pipeline to study alternative splicing by absolute quantification of splice isoforms","authors":"Yu-Chen Song,&nbsp;Mo-Xian Chen,&nbsp;Kai-Lu Zhang,&nbsp;Anireddy S. N. Reddy,&nbsp;Fu-Liang Cao,&nbsp;Fu-Yuan Zhu","doi":"10.1111/nph.19193","DOIUrl":"https://doi.org/10.1111/nph.19193","url":null,"abstract":"<p>Alternative splicing (AS) is a mechanism by which cells generate abundant protein diversity from a limited number of genes (Baralle &amp; Giudice, <span>2017</span>). AS plays a crucial role in regulating various life activities such as growth, development, and aging in plants (Zhu <i>et al</i>., <span>2017</span>; Godoy Herz &amp; Kornblihtt, <span>2019</span>; Jabre <i>et al</i>., <span>2019</span>; Chen <i>et al</i>., <span>2020</span>; Reddy <i>et al</i>., <span>2020</span>; Zhang <i>et al</i>., <span>2020</span>), where it greatly influences plant growth, development, and response to biotic and abiotic stresses (Motion <i>et al</i>., <span>2015</span>; Laloum <i>et al</i>., <span>2018</span>; Chaudhary <i>et al</i>., <span>2019</span>; Chen <i>et al</i>., <span>2021</span>; Ganie &amp; Reddy, <span>2021</span>; Saini <i>et al</i>., <span>2021</span>; Zhu <i>et al</i>., <span>2023</span>; Supporting Information Fig. S1). The traditional method for the identification of AS is semi-quantitative RT-PCR, which is easy to perform (Palusa <i>et al</i>., <span>2007</span>; Li <i>et al</i>., <span>2020</span>; Riegler <i>et al</i>., <span>2021</span>; Han <i>et al</i>., <span>2022</span>). Quantitative PCR (qPCR) is also widely used in AS research, as it enables real-time monitoring of fluorescence signals and accurate quantification of isoform copy numbers through the use of specific primers (Hefti <i>et al</i>., <span>2018</span>; Liu <i>et al</i>., <span>2018</span>; Huang <i>et al</i>., <span>2021</span>). With the emergence of digital PCR (dPCR), the identification methods of AS have become more diversified, which disperses each single target fragment into separate droplets as much as possible through the calculation of positive droplets (Fig. S2; Gao <i>et al</i>., <span>2021</span>).</p><p>Based on the urgent need for the accurate quantification of various isoforms, an AS detection method called QuantAS was established (Fig. 1), which allows us to accurately quantify all isoforms of genes based on absolute quantification technology and specific primer design. The method utilizes isoform-specific primers to overcome the isoform identification difficulty caused by different AS events and is designed by using the functional coding region as the isoform structure classification unit to ensure isoform independence (Fig. 2a). RT-qPCR enables real-time monitoring of changes in the fluorescence signal, quantification of differences between expression levels, and simultaneous detection of multiple in a single reaction. According to the copy number of different isoforms, isoform expression patterns can be identified by combining with absolute quantitative techniques. This method greatly increases the accuracy of identification and reduces the cost of repeated experiments. Furthermore, the absolute quantification of AS isoforms employing the combination of qPCR and dPCR could provide their respective advantages, thus rapidly obtaining all isoform info","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"928-939"},"PeriodicalIF":9.4,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4 铁依赖性调节叶片衰老:H2B组蛋白变体HTB4的关键作用
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-15 DOI: 10.1111/nph.19199
Christian Dubos

Iron is an essential micronutrient for plant growth and development, as well as for crop productivity and the quality of their derived products (Briat et al., 2015). This is because iron is a co-factor for several metalloproteins involved in essential physiological processes such as respiration in mitochondria or photosynthesis in chloroplasts. In most soils, iron is present in the form of insoluble oxides/hydroxides rendering it poorly available to plants. To cope with this poor bioavailability, plants have evolved sophisticated strategies to take up iron from soils (Berger et al., 2023; Li et al., 2023). Arabidopsis plants preferentially use the reduction-based strategy (the so-called Strategy I), as do most dicots and nongraminous monocots. This strategy relies on the secretion of protons into the rhizosphere by AHA2 (ARABIDOPSIS H+ ATPASE 2) to decrease the pH of the soil solution and solubilize oxidized iron (Fe3+), which is then reduced to Fe2+ by FRO2 (ferric reduction oxidases 2), and subsequently taken up into the root by IRT1 (iron-regulated transporter 1). This process is tightly regulated since, in excess, iron is also detrimental to the plant because of its capacity to generate reactive oxygen species (ROS) via the Fenton reaction.

The regulation of Iron homeostasis is well-conserved in plants, and is primarily controlled at the transcriptional level (Berger et al., 2023; Li et al., 2023). It relies on an intricate regulatory network involving several regulatory proteins, among which the bHLH (basic helix–loop–helix) transcription factors play a preponderant role (Fig. 1). For instance, Arabidopsis has 17 different bHLH proteins (from six bHLH clades) that regulate iron homeostasis. This regulatory network is composed of two modules. The first module relies on FIT/bHLH29 (FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR; clade IIIa). FIT is a direct positive regulator of FRO2 and IRT1 expression (Fig. 1). To achieve its function, FIT interacts with bHLH38, bHLH39, bHLH100, and bHLH101 (clade Ib), forming heterodimers with partially overlapping roles. In the second module, another set of bHLH transcription factors positively regulate the expression of FIT and clade Ib bHLHs (Fig. 1). It involves ILR3/bHLH105 (iaa-leucine resistant 3), IDT1/bHLH34 (iron deficiency tolerant 1), bHLH104, bHLH115 from clade IVc, and URI/bLHL121 (UPSTREAM REGULATOR OF IRT1) from clade IVb (Tissot et al., 2019; Gao et al., 2020). By contrast, PYE/bHLH47 (POPEYE; clade IVb) is a negative regulator of clade Ib bHLH expression (Pu & Liang, 2023).

In their study, Yang et al. demonstrated that the H2B histone variant HTB4 negatively regulates leaf senescence in an iron-dependent manner. For instance, HTB4 expression is in

相反,进一步研究HTB4与编码直接(如PYE)或间接(如BTS、BTSL1和BTSL2)负调控分支Ib表达的蛋白质的基因之间是否存在负相关也将是有趣的(Rodríguez-Celma等人,2019;Pu&amp;Liang,2023)。表明在htb4中根铁吸收受损,因为IRT1和FRO2的表达降低。与维持铁稳态相关的其他机制(如铁转运、储存或同化)是否以HTB4依赖的方式调节也是一个悬而未决的问题。例如,NAS1(烟酰胺合成酶1)、NAS4(烟酰胺合酶4)和OPT3(寡肽转运蛋白3)的表达在htb4中减少(转录组分析)。这三个基因通过韧皮部参与铁在植物组织之间的易位和分配,这表明这些功能也受到HTB4的调节。此外,OPT3还参与将地上部铁的状态传达给根部,以平衡铁的吸收和植物的需求(Mendoza-Cózatl等人,2014)。在中性至碱性pH下,铁在土壤中的溶解度较低,铁还原酶(如FRO2)的活性受到严重损害(Susin等人,1996)。为了适应这种土壤,拟南芥植物分泌到根际调动铁的香豆素(即fraxetin;Robe等人,2021a,b)中。最近有人提出,一旦分泌,fraxetin将主要形成Fe3+-fraxetin复合物,而不是将Fe3+还原为Fe2+,这表明IRT1/FRO2系统在碱性pH下对铁的吸收并不起主要作用。相反,有人认为,Fe3+-fraxetin复合物通过一种未知的机制直接被植物根系吸收(Robe et al.,2021c)。在这种土壤环境中,HTB4是否在调节铁吸收/稳态以及叶片衰老中发挥作用,值得研究。最后但并非最不重要的是,确定HTB4在延缓叶片衰老中的作用是否在水稻(Oriza sativa)等草种中是保守的是有意义的,因为铁的吸收主要依赖于IRT1/FRO2独立机制(Li et al.,2021)。提供了一种分子框架,铁等矿物质营养物质可以通过该分子框架干扰叶片衰老。这也为新的研究开辟了道路,以确定铁或其他矿物营养物质对这一过程的影响程度。
{"title":"Iron-dependent regulation of leaf senescence: a key role for the H2B histone variant HTB4","authors":"Christian Dubos","doi":"10.1111/nph.19199","DOIUrl":"https://doi.org/10.1111/nph.19199","url":null,"abstract":"<p>Iron is an essential micronutrient for plant growth and development, as well as for crop productivity and the quality of their derived products (Briat <i>et al</i>., <span>2015</span>). This is because iron is a co-factor for several metalloproteins involved in essential physiological processes such as respiration in mitochondria or photosynthesis in chloroplasts. In most soils, iron is present in the form of insoluble oxides/hydroxides rendering it poorly available to plants. To cope with this poor bioavailability, plants have evolved sophisticated strategies to take up iron from soils (Berger <i>et al</i>., <span>2023</span>; Li <i>et al</i>., <span>2023</span>). Arabidopsis plants preferentially use the reduction-based strategy (the so-called Strategy I), as do most dicots and nongraminous monocots. This strategy relies on the secretion of protons into the rhizosphere by AHA2 (ARABIDOPSIS H<sup>+</sup> ATPASE 2) to decrease the pH of the soil solution and solubilize oxidized iron (Fe<sup>3+</sup>), which is then reduced to Fe<sup>2+</sup> by FRO2 (ferric reduction oxidases 2), and subsequently taken up into the root by IRT1 (iron-regulated transporter 1). This process is tightly regulated since, in excess, iron is also detrimental to the plant because of its capacity to generate reactive oxygen species (ROS) via the Fenton reaction.</p><p>The regulation of Iron homeostasis is well-conserved in plants, and is primarily controlled at the transcriptional level (Berger <i>et al</i>., <span>2023</span>; Li <i>et al</i>., <span>2023</span>). It relies on an intricate regulatory network involving several regulatory proteins, among which the bHLH (basic helix–loop–helix) transcription factors play a preponderant role (Fig. 1). For instance, Arabidopsis has 17 different bHLH proteins (from six bHLH clades) that regulate iron homeostasis. This regulatory network is composed of two modules. The first module relies on FIT/bHLH29 (FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR; clade IIIa). FIT is a direct positive regulator of <i>FRO2</i> and <i>IRT1</i> expression (Fig. 1). To achieve its function, FIT interacts with bHLH38, bHLH39, bHLH100, and bHLH101 (clade Ib), forming heterodimers with partially overlapping roles. In the second module, another set of bHLH transcription factors positively regulate the expression of <i>FIT</i> and clade Ib bHLHs (Fig. 1). It involves ILR3/bHLH105 (iaa-leucine resistant 3), IDT1/bHLH34 (iron deficiency tolerant 1), bHLH104, bHLH115 from clade IVc, and URI/bLHL121 (UPSTREAM REGULATOR OF IRT1) from clade IVb (Tissot <i>et al</i>., <span>2019</span>; Gao <i>et al</i>., <span>2020</span>). By contrast, PYE/bHLH47 (POPEYE; clade IVb) is a negative regulator of clade Ib bHLH expression (Pu &amp; Liang, <span>2023</span>).</p><p>In their study, Yang <i>et al</i>. demonstrated that the H2B histone variant HTB4 negatively regulates leaf senescence in an iron-dependent manner. For instance, <i>HTB4</i> expression is in","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"461-463"},"PeriodicalIF":9.4,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels 拟南芥含 Tubby 结构域的 F-box 蛋白通过调节 PI4Kβ 蛋白水平积极调节免疫力
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-12 DOI: 10.1111/nph.19187
Karen Thulasi Devendrakumar, Charles Copeland, Christopher Adamchek, Xionghui Zhong, Xingchuan Huang, Joshua M. Gendron, Xin Li

{"title":"Arabidopsis Tubby domain-containing F-box proteins positively regulate immunity by modulating PI4Kβ protein levels","authors":"Karen Thulasi Devendrakumar,&nbsp;Charles Copeland,&nbsp;Christopher Adamchek,&nbsp;Xionghui Zhong,&nbsp;Xingchuan Huang,&nbsp;Joshua M. Gendron,&nbsp;Xin Li","doi":"10.1111/nph.19187","DOIUrl":"https://doi.org/10.1111/nph.19187","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 1","pages":"354-371"},"PeriodicalIF":9.4,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6100483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vegetative phase change causes age-dependent changes in phenotypic plasticity 营养性相变导致表型可塑性的年龄依赖性变化
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-12 DOI: 10.1111/nph.19174
Erica H. Lawrence-Paul, R. Scott Poethig, Jesse R. Lasky

{"title":"Vegetative phase change causes age-dependent changes in phenotypic plasticity","authors":"Erica H. Lawrence-Paul,&nbsp;R. Scott Poethig,&nbsp;Jesse R. Lasky","doi":"10.1111/nph.19174","DOIUrl":"https://doi.org/10.1111/nph.19174","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 2","pages":"613-625"},"PeriodicalIF":9.4,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19174","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1