首页 > 最新文献

New Phytologist最新文献

英文 中文
Is chloroplast size optimal for photosynthetic efficiency? 叶绿体的大小是否是光合作用效率的最佳选择?
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-25 DOI: 10.1111/nph.19091
Katarzyna G?owacka, Johannes Kromdijk, Coralie E. Salesse-Smith, Cailin Smith, Steven M. Driever, Stephen P. Long

{"title":"Is chloroplast size optimal for photosynthetic efficiency?","authors":"Katarzyna G?owacka,&nbsp;Johannes Kromdijk,&nbsp;Coralie E. Salesse-Smith,&nbsp;Cailin Smith,&nbsp;Steven M. Driever,&nbsp;Stephen P. Long","doi":"10.1111/nph.19091","DOIUrl":"https://doi.org/10.1111/nph.19091","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 6","pages":"2197-2211"},"PeriodicalIF":9.4,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5714033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bloodstained flowers and bloodthirsty flies 沾满鲜血的花朵和嗜血的苍蝇
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-22 DOI: 10.1111/nph.19089
Robert A. Raguso

Flowers of C. gerrardii are unusual even by the kaleidoscopic standards of South Africa's flora, as they resemble velvet-green, whiskered starfish with a coat of morning dew (see fig. 1a in Heiduk et al., 2023). Who could pollinate such a flower, and how would they find it? The authors answer these questions with a diversified tool kit, including chemical analyses of the floral scent and dew-like secretions, spectrometric and electron-microscopic explorations of flower color and surface texture, field observations of pollinators, and electrophysiological and behavioral assays measuring their responses to the floral bouquet. Their findings are unexpected and provocative.

Flowers of C. gerrardii are pollinated by minute ‘jackal flies’ (Desmometopa spp., Milichiidae), called ‘kleptoparasites’ because they steal the prey of spiders or mantids by drinking their blood (hemolymph). Previously, Heiduk et al. (2015, 2016) identified similar flies as pollinators for other species of Ceropegia, using the term ‘kleptomyiophily’ (literally, ‘lover of thieving flies’), a term coined by Oelschlägel et al. (2015) in a similar study, to describe pollination by kleptoparasitic flies. In these cases, the flowers formed tubular chambers that entrapped the flies, compensating for inefficient pollen transfer by extending the flies' residence time. By contrast, the open flowers of C. gerrardii detain flies by secreting liquid globules containing sugar and protein, a substance closer in composition to insect hemolymph than to floral nectar. This finding recalls earlier research on seed dispersal mutualisms mediated by elaiosomes, the food bodies attached to ant-dispersed seeds in temperate forest herbs. The nutritional content of elaiosomes, including free fatty acids, amino acids, and the disaccharide trehalose, is more similar to that of prey fed to ant larvae (again, insect hemolymph) than the seeds to which they are attached (Fischer et al., 2008). Similarly, C. gerrardii plants enlist jackal flies as pollinators by providing a floral reward that mimics their primary source of nutrition: the spilled blood of bees.

How are such pollinators attracted? Jackal flies arrive rapidly at a kill, hunting wounded insects by responding to cues of their distress (Heiduk et al., 2015). Indeed, two of the Desmometopa fly species that pollinate C. gerrardii arrived within 15 s when wounded honey bees were presented in a natural setting. Hence, the floral scent of C. gerrardii should: (1) mimic the chemical signature of injured honey bees; and (2) serve as a key attractant for jackal flies. Chemical analysis confirmed that the volatile cocktail includes components of honey bee alarm pheromone (isoamyl acetate), Nasonov gland (geraniol), and mandibular gland secretions (2-heptanone; Heiduk et

即使按照南非植物区系万花齐展的标准来看,C. gerrardii的花也很不寻常,因为它们就像天鹅绒绿色的、有胡须的海星,上面覆盖着一层晨露(见Heiduk et al., 2023年的图1a)。谁能给这样的花授粉,他们如何找到它?作者们用多样化的工具来回答这些问题,包括花的气味和露样分泌物的化学分析,花的颜色和表面纹理的光谱和电子显微镜探索,传粉者的现场观察,以及测量他们对花束反应的电生理和行为分析。他们的发现出乎意料,而且具有挑衅性。贾拉氏伞花是由微小的“豺蝇”(吸血蝇属,milichidae)授粉的,它们被称为“偷食寄生虫”,因为它们通过吸食蜘蛛或螳螂的血液(血淋巴)来窃取猎物。此前,Heiduk等人(2015年,2016年)发现类似的苍蝇是其他Ceropegia物种的传粉者,他们使用了Oelschlägel等人(2015年)在一项类似研究中创造的术语“偷窃蝇”(字面意思是“偷窃蝇的爱好者”)来描述偷窃蝇的传粉行为。在这些情况下,花形成管状腔来捕获苍蝇,通过延长苍蝇的停留时间来补偿低效的花粉传递。相比之下,开放的杰氏梭菌花通过分泌含有糖和蛋白质的液体小球来留住苍蝇,这种物质的成分更接近于昆虫的血淋巴,而不是花蜜。这一发现让人回想起早期关于温带森林草本植物中附着在抗分散种子上的寄主体(elaiosomes)介导的种子传播相互作用的研究。松脱体的营养成分,包括游离脂肪酸、氨基酸和双糖海藻糖,更类似于喂食蚂蚁幼虫(同样是昆虫的血淋巴)的猎物,而不是它们所附着的种子(Fischer et al., 2008)。类似地,贾拉氏梭状芽孢杆菌植物通过提供一种模仿其主要营养来源的花奖励来招募胡狼蝇作为传粉者:蜜蜂洒出的血。如何吸引这些传粉者?豺蝇迅速到达猎物,通过对受伤昆虫的痛苦信号做出反应来捕猎它们(Heiduk等人,2015)。事实上,当受伤的蜜蜂在自然环境中出现时,两种为gerrardii授粉的Desmometopa蝇在15秒内到达。因此,gerrardii的花香应该:(1)模仿受伤蜜蜂的化学特征;(2)对豺狼蝇具有重要的引诱作用。化学分析证实,这种挥发性鸡尾酒含有蜜蜂报警信息素(醋酸异戊酯)、纳索诺夫腺(香叶醇)和下颌骨腺分泌物(2-庚酮;Heiduk et al., 2016)。然而,混合物中存在另外140种挥发物,使识别关键引诱剂的任务复杂化。为此,作者采用了生物测定指导的分馏法,这是化学生态学领域方法论的口头禅(Murphy &芬尼,2006)。首先,他们建立了阳性对照(野生苍蝇吸引受伤的蜜蜂和丙酮中的花提取物),然后他们测试了含有挥发性花束子集的人造混合(分数),这些花束触发了胡狼蝇触角的电生理反应。苍蝇对不同馏分的反应显示出nonan-2-ol、庚烷-2-one、香叶醇和乙酸辛酯(“出血蜜蜂”的嗅觉精华)的必要和充分的混合。那么“绿对绿”的杰拉德花的视觉展示是怎样的呢?当在苍蝇的颜色感知空间中建模时,孔雀石颜色的花冠裂片不会从背景植被中脱颖而出,这表明传粉者的吸引力是由气味驱动的。丝绒般的表皮表面包括圆顶状细胞和腺状毛状体,可能负责供来访的苍蝇消耗血淋巴样分泌物。因此,在这个系统中,专业化授粉的结果是对一般的访问者来说不那么显眼,用化学模仿痛苦的蜜蜂来瞄准特定的传粉者,并提供营养上接近蜜蜂血液的花奖励。在这方面,健康的蜜蜂是否会被贾拉氏梭菌的花朵排斥是值得测试的。目前尚不清楚每个花冠裂片底部的振动毛是否作为引导苍蝇前往花性器官的轨道,或者它们是否在视觉上模仿其他苍蝇的存在,这是其他苍蝇授粉植物的常见伪装(Ren et al., 2023)。需要更多的分析来确定花冠叶分泌物的糖和蛋白质含量与蜜蜂血淋巴的含量有多接近,从而确定这些花的分泌物在多大程度上代表了胡狼蝇的营养食物或垃圾食品。 当能够从地理上不同的地方识别出独立的例子时,进化创新是最有说服力的。气味介导的嗜窃癖在具有室诱捕花的Ceropegia物种中平行进化,其确定的气味成分模仿黄蜂毒液(C. dolichophylla;Heiduk et al., 2015,在中国)或(再次)蜜蜂血淋巴(C. sandersonii;Heiduk等人,2016年,在南部非洲)。果蝇科(绿蝇科)包括食虫种类,其雌性以昆虫的血淋巴或脊椎动物的眼睛分泌物为食。Frit蝇也会访问Ceropegia花,并且是地中海管道植物(圆形马兜铃)的传粉者,其气味模仿mirid臭虫的刺鼻血淋巴(Oelschlägel et al., 2015)。在全球范围内,水果蝇也为澳大利亚科鲁纳斯特兰科植物授粉,这些兰花似乎会从特殊的花器官中分泌眼泪状的分泌物来奖励它们(Ren et al., 2023)。从更广泛的角度来看,这项研究揭示了认知错误分类的多个例子。首先,胡狼蝇错误地将贾拉氏蜜蜂的花归类为受伤、流血的蜜蜂,并将其花的分泌物作为代用血淋巴消耗掉。其次,传粉生物学家错误地将许多Ceropegia花归类为育地模仿者,因为数百种植物都有类似于模仿粪便或腐肉的植物(Arum)和管状植物(马兜铃属)的室诱捕花。Heiduk和他的同事提醒我们,嗜窃花是食物欺骗(在C. sandersonii和C. dolichophylla中)或奖励(在C. gerrardii中),而不是产卵地点欺骗,吸引雌蝇消耗血淋巴而不是产卵。第三,分类学家被生长形式和花功能上的同质性(重复进化的得失)所误导,错误地分类了其属的概念。最近的系统发育证据支持一个更具包容性的Ceropegia,其中有几个分支的多肉乳草(Hoodia, Stapelia)和Brachystelma筑巢,将其等级扩大到63个部分的717种(Bruyns et al., 2017)。这种语义变化对生态影响很小,正如朱丽叶·凯普莱特所说;“一个葡萄属植物,不管叫什么名字((除了),一个欧洲葡萄属植物),闻起来都会像臭气熏天。”然而,更深刻的进化影响是认识到“臭海星”花从管状花冠的祖先进化了好几次(Ollerton et al., 2017),包括著名的腐肉模仿物和奇异的、流血的C. gerrardii花。这些例子强调了南非植物群作为植物多样化引擎的潜力。
{"title":"Bloodstained flowers and bloodthirsty flies","authors":"Robert A. Raguso","doi":"10.1111/nph.19089","DOIUrl":"https://doi.org/10.1111/nph.19089","url":null,"abstract":"<p>Flowers of <i>C. gerrardii</i> are unusual even by the kaleidoscopic standards of South Africa's flora, as they resemble velvet-green, whiskered starfish with a coat of morning dew (see fig. 1a in Heiduk <i>et al</i>., <span>2023</span>). Who could pollinate such a flower, and how would they find it? The authors answer these questions with a diversified tool kit, including chemical analyses of the floral scent and dew-like secretions, spectrometric and electron-microscopic explorations of flower color and surface texture, field observations of pollinators, and electrophysiological and behavioral assays measuring their responses to the floral bouquet. Their findings are unexpected and provocative.</p><p>Flowers of <i>C. gerrardii</i> are pollinated by minute ‘jackal flies’ (<i>Desmometopa</i> spp., Milichiidae), called ‘kleptoparasites’ because they steal the prey of spiders or mantids by drinking their blood (hemolymph). Previously, Heiduk <i>et al</i>. (<span>2015</span>, <span>2016</span>) identified similar flies as pollinators for other species of <i>Ceropegia</i>, using the term ‘kleptomyiophily’ (literally, ‘lover of thieving flies’), a term coined by Oelschlägel <i>et al</i>. (<span>2015</span>) in a similar study, to describe pollination by kleptoparasitic flies. In these cases, the flowers formed tubular chambers that entrapped the flies, compensating for inefficient pollen transfer by extending the flies' residence time. By contrast, the open flowers of <i>C. gerrardii</i> detain flies by secreting liquid globules containing sugar and protein, a substance closer in composition to insect hemolymph than to floral nectar. This finding recalls earlier research on seed dispersal mutualisms mediated by elaiosomes, the food bodies attached to ant-dispersed seeds in temperate forest herbs. The nutritional content of elaiosomes, including free fatty acids, amino acids, and the disaccharide trehalose, is more similar to that of prey fed to ant larvae (again, insect hemolymph) than the seeds to which they are attached (Fischer <i>et al</i>., <span>2008</span>). Similarly, <i>C. gerrardii</i> plants enlist jackal flies as pollinators by providing a floral reward that mimics their primary source of nutrition: the spilled blood of bees.</p><p>How are such pollinators attracted? Jackal flies arrive rapidly at a kill, hunting wounded insects by responding to cues of their distress (Heiduk <i>et al</i>., <span>2015</span>). Indeed, two of the <i>Desmometopa</i> fly species that pollinate <i>C. gerrardii</i> arrived within 15 s when wounded honey bees were presented in a natural setting. Hence, the floral scent of <i>C. gerrardii</i> should: (1) mimic the chemical signature of injured honey bees; and (2) serve as a key attractant for jackal flies. Chemical analysis confirmed that the volatile cocktail includes components of honey bee alarm pheromone (isoamyl acetate), Nasonov gland (geraniol), and mandibular gland secretions (2-heptanone; Heiduk <i>et","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 4","pages":"1164-1165"},"PeriodicalIF":9.4,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5669960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation 锻造共生:共生固氮中的过渡金属输送
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-21 DOI: 10.1111/nph.19098
Manuel González-Guerrero, Cristina Navarro-Gómez, Elena Rosa-Nú?ez, Carlos Echávarri-Erasun, Juan Imperial, Viviana Escudero

Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3. In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.

豆科植物与根瘤菌的共生固氮作用是自然生态系统和可持续农业中氮的主要来源。为了使共生关系存活,伙伴之间的营养交换是必不可少的。过渡金属是豆科植物根瘤细胞内传递给固氮细菌的营养物质之一。这些元素被用作许多控制结核发育和功能的酶的辅助因子,包括氮酶,这是唯一已知的能够将N2转化为NH3的酶。本文综述了铁、锌、铜和钼是如何到达结核的,它们是如何被运送到结核细胞的,以及它们是如何被转移到结核内的固氮细菌的。
{"title":"Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation","authors":"Manuel González-Guerrero,&nbsp;Cristina Navarro-Gómez,&nbsp;Elena Rosa-Nú?ez,&nbsp;Carlos Echávarri-Erasun,&nbsp;Juan Imperial,&nbsp;Viviana Escudero","doi":"10.1111/nph.19098","DOIUrl":"https://doi.org/10.1111/nph.19098","url":null,"abstract":"<p>Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N<sub>2</sub> into NH<sub>3</sub>. In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 6","pages":"2113-2125"},"PeriodicalIF":9.4,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5654085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Stable isotope natural abundances of fungal hyphae extracted from the roots of arbuscular mycorrhizal mycoheterotrophs and rhizoctonia-associated orchids 丛枝菌根异养菌和根丝胞菌相关兰花根中真菌菌丝的稳定同位素天然丰度
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-21 DOI: 10.1111/nph.18990
Sofia I. F. Gomes, Philipp Giesemann, Saskia Klink, Colin Hunt, Kenji Suetsugu, Gerhard Gebauer

Since the first discovery of unique carbon (C) and nitrogen (N) isotope signatures in fungal fruiting bodies (Gebauer & Dietrich, 1993; Gleixner et al., 1993), natural abundances of stable isotopes have been extensively used to identify the nutritional dynamics of fungi (Mayor et al., 2009). Assigning ecological roles of fungi is essential to determine the role of individual taxa in nutrient cycling and forest ecology. The use of isotope natural abundances in forest ecosystems has been crucial in distinguishing fungi with two main modes of life: ectomycorrhizal and saprotrophic fungi (Henn & Chapela, 2001). Within saprotrophic fungi, isotope natural abundances further allow the identification of the substrates used (Kohzu et al., 1999). Dual isotope analyses of the δ13C and δ15N values consistently indicate a differentiation in isotopic signatures between ectomycorrhizal and saprotrophic fungi within and among ecosystems (Henn & Chapela, 2001; Taylor et al., 2003; Trudell et al., 2004; Mayor et al., 2009). These signatures have been shown to reflect the ecophysiology of fungi and demonstrate that fungi that can utilize organic nitrogen exhibit higher δ15N than those fungi restricted to mineral nitrogen sources (Gebauer & Taylor, 1999; Lilleskov et al., 2002). Still, the ability to distinguish fungal nutritional modes has been long restricted to fungi that produce macroscopic sporocarps, such as mushrooms, due to their large mass which allows for physical measurements. Thus, for many fungi, particularly those associated with plant roots that do not form evident fruiting bodies, isotope natural abundances of fungal hyphae are scarce.

Besides ectomycorrhizal fungi, isotope natural abundances are known for sporocarp-forming ericoid (e.g. Hobbie & Hogberg, 2012) and orchid-associated nonrhizoctonia saprotrophic fungi (e.g. Ogura-Tsujita et al., 2009). Yet, values of δ13C and δ15N are poorly known for arbuscular mycorrhizal fungi (but see e.g. Courty et al., 2011; Suetsugu et al., 2020, for isotope values of fungal spores), and the orchid-associated fungi known as ‘rhizoctonia’ in natural conditions. Recently, Klink et al. (2020) obtained the δ13C and δ15N of arbuscular mycorrhizal hyphae isolated from roots of a grass and a legume, inoculated in experimental conditions, thereby providing an efficient method to extract hyphae from roots. Using this method with a few modifications, here, we measured the isotope natural abundances δ13C and δ15N of naturally occurring arbuscular mycorrhizal (Fig. 1a–c) and orchid-associated hyphae (Fig. 1d–f) directl

自从首次在真菌子实体中发现独特的碳(C)和氮(N)同位素特征以来(Gebauer &迪特里希,1993;Gleixner et al., 1993),稳定同位素的天然丰度已被广泛用于鉴定真菌的营养动态(Mayor et al., 2009)。确定真菌的生态作用是确定单个分类群在养分循环和森林生态中的作用的必要条件。森林生态系统中同位素天然丰度的使用对于区分具有两种主要生活模式的真菌至关重要:外生菌根真菌和腐养真菌(Henn &Chapela, 2001)。在腐养真菌中,同位素天然丰度进一步允许鉴定所使用的底物(Kohzu等,1999)。δ13C和δ15N值的双同位素分析一致表明,生态系统内部和生态系统之间的外生菌根真菌和腐养真菌之间的同位素特征存在差异(Henn &Chapela, 2001;Taylor et al., 2003;Trudell et al., 2004;Mayor et al., 2009)。这些特征已被证明反映了真菌的生态生理,并表明可以利用有机氮的真菌比局限于矿物氮源的真菌表现出更高的δ15N (Gebauer &泰勒,1999;Lilleskov et al., 2002)。尽管如此,区分真菌营养模式的能力长期以来一直局限于产生宏观孢子囊的真菌,如蘑菇,因为它们的质量很大,可以进行物理测量。因此,对于许多真菌,特别是那些与植物根系相关的真菌,不形成明显的子实体,真菌菌丝的同位素天然丰度是稀缺的。除了外生菌根真菌外,已知的同位素天然丰度还包括形成孢子的类菌(如Hobbie &Hogberg, 2012)和与兰花相关的无根嗜酸菌腐养真菌(如Ogura-Tsujita等,2009)。然而,对丛枝菌根真菌的δ13C和δ15N的值知之甚少(但参见Courty等人,2011;Suetsugu et al., 2020,获取真菌孢子的同位素值),以及在自然条件下被称为“根核菌”的兰花相关真菌。最近,Klink等(2020)在实验条件下获得了从禾草和豆科植物的根中分离的丛枝菌根菌丝的δ13C和δ15N,从而为从根中提取菌丝提供了一种有效的方法。在此,我们使用该方法进行了一些修改,直接从根中测量了自然存在的丛枝菌根(图1a-c)和兰花相关菌丝(图1d-f)的同位素天然丰度δ13C和δ15N(见支持信息方法S1)。为了获得丛枝菌根真菌的菌丝,我们选择了两种完全分枝异养的植物:Thismia megalongensis C. A. Hunt, G. Steenbee。,V. Merckx和大叶蝉(sciaphia megastyla Fukuy)。,铃木。异养真菌是一种无色植物,它们从相关的真菌伙伴那里获得碳(Leake, 1994;·梅克斯,eddy Merckx 2013)。植物属的物种已被证明高度特化于小球菌属真菌的狭窄谱系(Gomes et al., 2017;Merckx et al., 2017),而坐骨菌的种类往往与真菌亚门内更广泛的系统发育多样性相关(Merckx et al., 2012;Suetsugu,冈田克也,2021)。对于与兰花根部相关的真菌,我们选择了两种叶绿素部分异养的兰花物种,已知与根核菌共生,Orchis militaris L.和Ophrys inftifera L.,它们的同位素自然丰度和根部相关真菌的Sanger测序都已完成(Schweiger等人,2018)。为了能够比较不同采样点的同位素值,通过计算富集因子(ε;见方法1)。megalongensis和S. megastyla的菌丝、异养真菌和对照植物的富集因子ε13C和ε15N差异显著(图1g;表1)。对于这两个物种,ε13C在分枝异养菌和各自的真菌菌丝之间无法区分,而ε15N在巨胃霉属的分枝异养菌和真菌之间差异显著,在巨galongensis中差异不显著(图1;表1).与对照植物相比,两种异养真菌中提取的真菌的ε13C含量均显著富集,而大胃草中提取的真菌的ε15N含量略显减少。同样,这两种真菌异养植物都富含ε13C,但只在巨长龙稻中显著富集。这表明真菌菌丝的ε13C驱动了丛枝菌根中完全分枝异养植物的13C富集,并且巨生霉属真菌和巨生霉属真菌的氮源似乎存在差异。 每种异养真菌植物都与小球菌门内不重叠的真菌枝相关(图2a)。巨茎坐骨霉(Sciaphila megastyla)的真菌属于Dominikia属、Kamienskia属和两个未识别的扩增子序列变体,而巨茎霉(T. megalongensis)根部的真菌只属于Rhizophagus属,这支持了这些植物谱系之间不同程度的真菌相互作用的专业化(Gomes et al., 2020;Suetsugu,冈田克也,2021)。无论是军性稻蛾还是食虫稻蛾,真菌菌丝、兰花和对照植物之间的富集因子ε13C和ε15N普遍存在显著差异(图1;表1)。军国花兰花叶片和菌丝的ε13C和ε15N均存在显著差异,而食虫花兰花只有菌丝的ε13C显著高于植物组织(图1;表1).与对照植物相比,两种兰科植物真菌菌丝中ε13C含量显著富集,O.昆虫属真菌菌丝中ε15N含量也显著富集。与对照植物相比,从这两种兰花中提取的真菌菌丝的ε13C含量较弱,远低于之前报道的外生菌根真菌组织(Mayor et al., 2009)。这一观察结果与之前Schweiger等人(2018)的研究结果一致,即在军性O. militaris的完全分枝异养原球茎中缺乏13C富集,这也与根丝核菌真菌有关。有趣的是,在该研究中,O. insect的原球茎在一定程度上富含13C。我们检测到从根块中获得的大部分测序读数属于真菌目Helotiales。还检测到Ilyonectria属真菌,与先前在同一地点收集的这些兰花物种的观察结果一致(Schweiger et al., 2018)。这两种兰花的根中都存在Helotiales和Ilyonectria,据我们所知,它们具有未知的生态功能。在Zahn等人(2023)所研究的物种中也发现了Helotiales。此外,我们在O. intifera的根中检测到根核菌属Ceratobasidiaceae、Serendipitaceae和Thelephoraceae,在O. militaris的根中检测到根核菌属Ceratobasidiaceae和Thelephoraceae(图2b)。一株军花兰的根中相对丰度较高,另一株的根中相对丰度较高。我们不能排除在我们的数据中受到所使用引物影响的土拉斯奈科代表性不足(Vogt-Schilb et al., 2020),因为这些分类群已被证明存在于O. insectifera根中(Schweiger et al., 2019)。除了根核菌外,我们还发现了已知能形成外生菌根的真菌(根据FungalTraits;Põlme et al., 2020),如在两个O. intifera个体中的Sebacina (Sebacinaceae), Amphinema (Atheliaceae), Hebeloma和Hymenogaster (Hymenogastraceae)。在同位素特征方面,在存在
{"title":"Stable isotope natural abundances of fungal hyphae extracted from the roots of arbuscular mycorrhizal mycoheterotrophs and rhizoctonia-associated orchids","authors":"Sofia I. F. Gomes,&nbsp;Philipp Giesemann,&nbsp;Saskia Klink,&nbsp;Colin Hunt,&nbsp;Kenji Suetsugu,&nbsp;Gerhard Gebauer","doi":"10.1111/nph.18990","DOIUrl":"https://doi.org/10.1111/nph.18990","url":null,"abstract":"<p>Since the first discovery of unique carbon (C) and nitrogen (N) isotope signatures in fungal fruiting bodies (Gebauer &amp; Dietrich, <span>1993</span>; Gleixner <i>et al</i>., <span>1993</span>), natural abundances of stable isotopes have been extensively used to identify the nutritional dynamics of fungi (Mayor <i>et al</i>., <span>2009</span>). Assigning ecological roles of fungi is essential to determine the role of individual taxa in nutrient cycling and forest ecology. The use of isotope natural abundances in forest ecosystems has been crucial in distinguishing fungi with two main modes of life: ectomycorrhizal and saprotrophic fungi (Henn &amp; Chapela, <span>2001</span>). Within saprotrophic fungi, isotope natural abundances further allow the identification of the substrates used (Kohzu <i>et al</i>., <span>1999</span>). Dual isotope analyses of the δ<sup>13</sup>C and δ<sup>15</sup>N values consistently indicate a differentiation in isotopic signatures between ectomycorrhizal and saprotrophic fungi within and among ecosystems (Henn &amp; Chapela, <span>2001</span>; Taylor <i>et al</i>., <span>2003</span>; Trudell <i>et al</i>., <span>2004</span>; Mayor <i>et al</i>., <span>2009</span>). These signatures have been shown to reflect the ecophysiology of fungi and demonstrate that fungi that can utilize organic nitrogen exhibit higher δ<sup>15</sup>N than those fungi restricted to mineral nitrogen sources (Gebauer &amp; Taylor, <span>1999</span>; Lilleskov <i>et al</i>., <span>2002</span>). Still, the ability to distinguish fungal nutritional modes has been long restricted to fungi that produce macroscopic sporocarps, such as mushrooms, due to their large mass which allows for physical measurements. Thus, for many fungi, particularly those associated with plant roots that do not form evident fruiting bodies, isotope natural abundances of fungal hyphae are scarce.</p><p>Besides ectomycorrhizal fungi, isotope natural abundances are known for sporocarp-forming ericoid (e.g. Hobbie &amp; Hogberg, <span>2012</span>) and orchid-associated nonrhizoctonia saprotrophic fungi (e.g. Ogura-Tsujita <i>et al</i>., <span>2009</span>). Yet, values of δ<sup>13</sup>C and δ<sup>15</sup>N are poorly known for arbuscular mycorrhizal fungi (but see e.g. Courty <i>et al</i>., <span>2011</span>; Suetsugu <i>et al</i>., <span>2020</span>, for isotope values of fungal spores), and the orchid-associated fungi known as ‘rhizoctonia’ in natural conditions. Recently, Klink <i>et al</i>. (<span>2020</span>) obtained the δ<sup>13</sup>C and δ<sup>15</sup>N of arbuscular mycorrhizal hyphae isolated from roots of a grass and a legume, inoculated in experimental conditions, thereby providing an efficient method to extract hyphae from roots. Using this method with a few modifications, here, we measured the isotope natural abundances δ<sup>13</sup>C and δ<sup>15</sup>N of naturally occurring arbuscular mycorrhizal (Fig. 1a–c) and orchid-associated hyphae (Fig. 1d–f) directl","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 4","pages":"1166-1172"},"PeriodicalIF":9.4,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.18990","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5762231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection 大豆免疫受体GmBIR1在囊肿线虫感染过程中调节宿主转录组、剪接体和免疫
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-20 DOI: 10.1111/nph.19087
Tracy E. Hawk, Sarbottam Piya, Sobhan Bahrami Zadegan, Peitong Li, John H. Rice, Tarek Hewezi

  • BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses.
  • Here, we investigated the functional role of soybean (Glycine max) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, Heterodera glycines) and the molecular mechanism through which GmBIR1 regulates plant immunity.
  • Overexpression of wild-type variant of GmBIR1 (WT-GmBIR1) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (KD-GmBIR1) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in WT-GmBIR1 and KD-GmBIR1 upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection.
  • Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.
bak1 -相互作用受体如KINASE1 (BIR1)是疾病抵抗和免疫反应各方面的负调控因子。本文研究了大豆(Glycine max) BIR1 (GmBIR1)在大豆与大豆囊线虫(Heterodera glycines, SCN)相互作用中的功能作用,以及GmBIR1调控植物免疫的分子机制。利用转基因大豆毛状根过表达GmBIR1野生型变异(WT-GmBIR1)可显著提高大豆对SCN的敏感性,而过表达激酶死亡变异(KD-GmBIR1)可显著提高植物对SCN的抗性。转录组分析显示,在SCN感染时,WT-GmBIR1和KD-GmBIR1中反向调控的基因主要富集于防御和免疫相关功能。定量磷酸化蛋白质组学分析鉴定出208个蛋白可能是GmBIR1信号通路的底物,其中114个蛋白在SCN感染时发生差异磷酸化。此外,磷酸化蛋白质组学数据指出GmBIR1信号通路在调节备选pre-mRNA剪接中的作用。对剪接事件的全基因组分析提供了令人信服的证据,支持GmBIR1信号通路在SCN感染期间建立选择性剪接中的作用。我们的研究结果为GmBIR1信号通路通过剪接因子的差异磷酸化和pre-mRNA衰变和剪接体相关基因的剪接事件调控大豆转录组和剪接体的功能提供了新的机制见解。
{"title":"The soybean immune receptor GmBIR1 regulates host transcriptome, spliceome, and immunity during cyst nematode infection","authors":"Tracy E. Hawk,&nbsp;Sarbottam Piya,&nbsp;Sobhan Bahrami Zadegan,&nbsp;Peitong Li,&nbsp;John H. Rice,&nbsp;Tarek Hewezi","doi":"10.1111/nph.19087","DOIUrl":"https://doi.org/10.1111/nph.19087","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 </p><ul>\u0000 \u0000 <li>BAK1-INTERACTING RECEPTOR LIKE KINASE1 (BIR1) is a negative regulator of various aspects of disease resistance and immune responses.</li>\u0000 \u0000 <li>Here, we investigated the functional role of soybean (<i>Glycine max</i>) BIR1 (GmBIR1) during soybean interaction with soybean cyst nematode (SCN, <i>Heterodera glycines</i>) and the molecular mechanism through which GmBIR1 regulates plant immunity.</li>\u0000 \u0000 <li>Overexpression of wild-type variant of <i>GmBIR1</i> (<i>WT-GmBIR1</i>) using transgenic soybean hairy roots significantly increased soybean susceptibility to SCN, whereas overexpression of kinase-dead variant (<i>KD-GmBIR1</i>) significantly increased plant resistance. Transcriptome analysis revealed that genes oppositely regulated in <i>WT-GmBIR1</i> and <i>KD-GmBIR1</i> upon SCN infection were enriched primarily in defense and immunity-related functions. Quantitative phosphoproteomic analysis identified 208 proteins as putative substrates of the GmBIR1 signaling pathway, 114 of which were differentially phosphorylated upon SCN infection. In addition, the phosphoproteomic data pointed to a role of the GmBIR1 signaling pathway in regulating alternative pre-mRNA splicing. Genome-wide analysis of splicing events provided compelling evidence supporting a role of the GmBIR1 signaling pathway in establishing alternative splicing during SCN infection.</li>\u0000 \u0000 <li>Our results provide novel mechanistic insights into the function of the GmBIR1 signaling pathway in regulating soybean transcriptome and spliceome via differential phosphorylation of splicing factors and regulation of splicing events of pre-mRNA decay- and spliceosome-related genes.</li>\u0000 </ul>\u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 6","pages":"2335-2352"},"PeriodicalIF":9.4,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5721485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased aridity drives post-fire recovery of Mediterranean forests towards open shrublands 日益严重的干旱促使地中海森林在火灾后向开阔的灌木地恢复
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-20 DOI: 10.1111/nph.19012
Mara Baudena, Victor M. Santana, M. Jaime Baeza, Susana Bautista, Maarten B. Eppinga, Lia Hemerik, Angeles Garcia Mayor, Francisco Rodriguez, Alejandro Valdecantos, V. Ramon Vallejo, Ana Vasques, Max Rietkerk

Corrigendum to New Phytologist 225 (2020), 1500–1515, doi: 10.1111/nph.16252.

Since its publication, the authors of Baudena et al. (2020) have identified an error for the set of parameter values representing flammability in Table 2. In this correction, the authors would also like to report that, when using the flammability values as originally published in Baudena et al. (2020; i.e. a factor 2 larger than those actually used in the simulations), the main results do not change qualitatively (see Supporting Information Figs S1, S2 to this correction).

Namely, when increased aridity was simulated as negatively affecting oak post-fire recovery and colonization rate, while positively affecting the community flammability, the authors observed that the forest state was resilient to the separate impact of fires and increased aridity. Yet, water stress could convert forests into open shrublands by hampering post-fire recovery and at the same time either increasing flammability or decreasing the oak forest colonization rate (or both). A tipping point (emerging from bistability of the open shrubland and forest state) was detected at intermediate levels of aridity (Fig. S1). In the ‘short-term’ run, that is a century, the authors observed again that the probability of a mixed successional community becoming an oak forest after 100 yr decreased drastically with increasing aridity (moving from bottom left to top right in Fig. S2, e.g. with flammability equal to 1.5 times the baseline value as published in table 2 in Baudena et al., 2020). The main differences between the two parameter sets were that the effects of aridity were more dramatic in Figs S1 and S2, as their baseline flammability (given in table 2 in Baudena et al., 2020) was twice as high as the baseline flammability that we actually used in figs 3 and 4 in Baudena et al. (2020) (as reported here in Table 2).

We apologize to our readers for this mistake.

The authors would like to kindly acknowledge Matilde Torrassa for finding the error in the original version of the paper.

《新植物学家》225 (2020),1500-1515,doi: 10.1111/nph.16252。自发表以来,Baudena等人(2020)的作者发现表2中表示可燃性的一组参数值存在错误。在此更正中,作者还想报告,当使用最初发表在Baudena等人(2020;即比模拟中实际使用的因子大2),主要结果不会发生质的变化(见支持信息图S1, S2)。也就是说,当模拟干旱增加对橡树火灾后恢复和定植率产生负面影响,同时对群落可燃性产生积极影响时,作者观察到森林状态对火灾和干旱增加的单独影响具有弹性。然而,水压力可能通过阻碍火灾后的恢复,同时增加可燃性或降低橡树林的定植率(或两者兼而有之),将森林转变为开阔的灌木地。在中等干旱水平上发现了一个临界点(从开放灌木地和森林状态的双稳定性中出现)(图S1)。在“短期”运行中,即一个世纪,作者再次观察到,随着干旱程度的增加,100年后混合演替群落成为橡树林的可能性急剧下降(图S2从左下向右上移动,例如,根据Baudena et al., 2020年的表2,可燃性等于基线值的1.5倍)。两个参数集之间的主要区别在于,图S1和S2中干燥的影响更为显著,因为它们的基线可燃性(如Baudena等人,2020年的表2所示)是我们在Baudena等人(2020)的图3和图4中实际使用的基线可燃性的两倍(如表2所述)。我们为这个错误向读者道歉。作者在此感谢Matilde Torrassa在原文中发现了错误。
{"title":"Increased aridity drives post-fire recovery of Mediterranean forests towards open shrublands","authors":"Mara Baudena,&nbsp;Victor M. Santana,&nbsp;M. Jaime Baeza,&nbsp;Susana Bautista,&nbsp;Maarten B. Eppinga,&nbsp;Lia Hemerik,&nbsp;Angeles Garcia Mayor,&nbsp;Francisco Rodriguez,&nbsp;Alejandro Valdecantos,&nbsp;V. Ramon Vallejo,&nbsp;Ana Vasques,&nbsp;Max Rietkerk","doi":"10.1111/nph.19012","DOIUrl":"https://doi.org/10.1111/nph.19012","url":null,"abstract":"<p>Corrigendum to <i>New Phytologist</i> <b>225</b> (2020), 1500–1515, doi: 10.1111/nph.16252.</p><p>Since its publication, the authors of Baudena <i>et al</i>. (<span>2020</span>) have identified an error for the set of parameter values representing flammability in Table 2. In this correction, the authors would also like to report that, when using the flammability values as originally published in Baudena <i>et al</i>. (<span>2020</span>; i.e. a factor 2 larger than those actually used in the simulations), the main results do not change qualitatively (see Supporting Information Figs S1, S2 to this correction).</p><p>Namely, when increased aridity was simulated as negatively affecting oak post-fire recovery and colonization rate, while positively affecting the community flammability, the authors observed that the forest state was resilient to the separate impact of fires and increased aridity. Yet, water stress could convert forests into open shrublands by hampering post-fire recovery and at the same time either increasing flammability or decreasing the oak forest colonization rate (or both). A tipping point (emerging from bistability of the open shrubland and forest state) was detected at intermediate levels of aridity (Fig. S1). In the ‘short-term’ run, that is a century, the authors observed again that the probability of a mixed successional community becoming an oak forest after 100 yr decreased drastically with increasing aridity (moving from bottom left to top right in Fig. S2, e.g. with flammability equal to 1.5 times the baseline value as published in table 2 in Baudena <i>et al</i>., <span>2020</span>). The main differences between the two parameter sets were that the effects of aridity were more dramatic in Figs S1 and S2, as their baseline flammability (given in table 2 in Baudena <i>et al</i>., <span>2020</span>) was twice as high as the baseline flammability that we actually used in figs 3 and 4 in Baudena <i>et al</i>. (<span>2020</span>) (as reported here in Table 2).</p><p>We apologize to our readers for this mistake.</p><p>The authors would like to kindly acknowledge Matilde Torrassa for finding the error in the original version of the paper.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 6","pages":"2416-2417"},"PeriodicalIF":9.4,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5733529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PloiDB: the plant ploidy database 植物倍性数据库PloiDB
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-20 DOI: 10.1111/nph.19057
Keren Halabi, Anat Shafir, Itay Mayrose

Polyploidy, namely the acquisition of additional, complete sets of chromosomes to the genome, is widely recognized as a key feature of extant organismal diversity, particularly in plants. It is generally accepted that all angiosperm species have experienced at least one polyploidization event in their evolutionary past (Jiao et al., 2011). Therefore, most (if not all) plant species should be considered as paleo-polyploids that have since diploidized to some extent. As such, the distinction between diploids and polyploids should be made with respect to a reference timepoint. In recent decades, polyploid research has experienced a resurgence among plant evolutionary biologists. This is largely due to the use of genomic analyses that have revealed a rich history of genome duplications across multiple plant lineages. Indeed, numerous studies have investigated the impact of polyploidy on morphological and life-history traits, ecology, diversification patterns, and genome evolution (reviewed in Soltis & Soltis, 2000; Otto & Whitton, 2003; Ramsey & Schemske, 2003; Otto, 2007; Ramsey & Ramsey, 2014; Wendel, 2015; Soltis et al., 2016; Van de Peer et al., 2017; Fox et al., 2020). Notably, many of these studies focus on the effect of polyploidy in the context of a specific taxonomic group, which limits our ability to draw conclusions regarding the universal consequences of polyploidy, and to distinguish broad convergent trends from species-specific idiosyncrasies. There is thus a growing need to expand the examination of ploidy estimates across the seed plants clade, to obtain robust and broad information about the effect of polyploidy.

In the last few years, multiple methods for ploidy inferences based on sequenced genomic data have been developed (e.g. Jiao et al., 2011; Rabier et al., 2014; Vanneste et al., 2014; Tiley et al., 2018; Zwaenepoel & Van de Peer, 2020). However, due to the computational complexities and substantial amount of genomic data involved, the applications of such methods are still somewhat limited and are usually applied at phylogenetic scales above the species level, for example, by sampling representatives from several clades of interest. As such, the most comprehensive sequence-based analysis to date, which was conducted by the 1KP initiative and encompassed the transcriptomes of roughly 1100 plant species, has identified 244 whole-genome duplication (WGD) events occurring within Viridiplantae (One Thousand Plant Transcriptomes Initiative, 2019; Li & Barker, 2020).

Ploidy estimation at the species level is still largely based on information derived from chromosome numbers. A simple utility of chromosome number informatio

多倍体,即在基因组中获得额外的完整染色体组,被广泛认为是现存生物体多样性的一个关键特征,尤其是在植物中。人们普遍认为,所有被子植物物种在进化史上都经历过至少一次多倍体化事件(Jiao et al.,2011)。因此,大多数(如果不是全部的话)植物物种都应该被认为是在一定程度上已经多倍体化的古多倍体。因此,应该根据参考时间点来区分二倍体和多倍体。近几十年来,多倍体研究在植物进化生物学家中死灰复燃。这在很大程度上是由于使用了基因组分析,揭示了多个植物谱系中基因组重复的丰富历史。事实上,许多研究已经调查了多倍体对形态和生活史特征、生态学、多样化模式和基因组进化的影响(综述于Soltis和Soltis,2000;Otto和Whitton,2003;Ramsey和Schemske,2003;Otto,2007;Ramsey&amp;Ramsey,2014;Wendel,2015;Soltis等人,2016;Van de Peer等人,2017;Fox等人,2020)。值得注意的是,这些研究中的许多都集中在特定分类群中多倍性的影响上,这限制了我们得出关于多倍性普遍后果的结论的能力,也限制了我们区分广泛趋同趋势和物种特异性特质的能力。因此,越来越需要扩大对种子植物分支的倍性估计的检查,以获得关于多倍体效应的可靠和广泛的信息。在过去的几年里,已经开发了基于测序基因组数据进行倍性推断的多种方法(例如,Jiao等人,2011;Rabier等人,2014;Vanneste等人,2014年;Tiley等人,2018;Zwaenepoel和Van de Peer,2020)。然而,由于计算的复杂性和涉及的大量基因组数据,这种方法的应用仍然有些有限,通常在物种水平以上的系统发育尺度上应用,例如,通过从几个感兴趣的分支中采样代表。因此,迄今为止最全面的基于序列的分析,由1KP倡议进行,涵盖了大约1100个植物物种的转录组,已经确定了244个发生在病毒科内的全基因组重复(WGD)事件(一千植物转录组倡议,2019;李和巴克,2020)。物种水平上的倍性估计仍然主要基于染色体数量的信息。染色体数目信息用于确定倍性的一个简单用途是使用阈值技术,根据属中发现的最低染色体数目(或一些其他测量值)对多倍体物种进行分类(Stebbins Jr,1938;Grant,1963;Goldblatt,1980;Wood等人,2009)简约原理(Guggisberg等人,2006;Ohi-Toma等人,2006年;Timme等人,2007年)。一种更先进的方法利用染色体数量进化的似然模型,该模型解释了系统发育的分支长度,并允许染色体数量的不同类型的转变,其比率是根据数据估计的。这样的模型已经在chromEvol概率框架及其扩展中实现(Mayrose等人,2010;Glick和Mayrose,2014;Freyman和Höhna,2018;Zenil Ferguson等人,2018;Blackmon等人,2019)针对不同类型的事件。三种类型的转换对应于多倍体化事件:(1)WGD,染色体数量的精确复制;(2) 半多倍体化,染色体数量的1.5倍增殖,例如代表三倍化事件;和(3)基数转换,将推断的基数的任何乘法添加到基因组中,该基数表示焦点组的单倍体染色体数量(Glick&amp;Mayrose,2014)。除了倍性转换外,chromEvol还考虑了异倍性事件,这可能导致单个染色体数量的增加或减少。这类事件是染色体DNA重排的结果,由双链断裂和随后的断点错误修复触发。染色体数量的减少(染色体异常减少)是由至少两条非同源染色体之间的重组引起的染色体融合引起的。相比之下,染色体分裂导致染色体数量增加(上升型异倍性;Mayrose&amp;Lysak,2021)。
{"title":"PloiDB: the plant ploidy database","authors":"Keren Halabi,&nbsp;Anat Shafir,&nbsp;Itay Mayrose","doi":"10.1111/nph.19057","DOIUrl":"https://doi.org/10.1111/nph.19057","url":null,"abstract":"<p>Polyploidy, namely the acquisition of additional, complete sets of chromosomes to the genome, is widely recognized as a key feature of extant organismal diversity, particularly in plants. It is generally accepted that all angiosperm species have experienced at least one polyploidization event in their evolutionary past (Jiao <i>et al</i>., <span>2011</span>). Therefore, most (if not all) plant species should be considered as paleo-polyploids that have since diploidized to some extent. As such, the distinction between diploids and polyploids should be made with respect to a reference timepoint. In recent decades, polyploid research has experienced a resurgence among plant evolutionary biologists. This is largely due to the use of genomic analyses that have revealed a rich history of genome duplications across multiple plant lineages. Indeed, numerous studies have investigated the impact of polyploidy on morphological and life-history traits, ecology, diversification patterns, and genome evolution (reviewed in Soltis &amp; Soltis, <span>2000</span>; Otto &amp; Whitton, <span>2003</span>; Ramsey &amp; Schemske, <span>2003</span>; Otto, <span>2007</span>; Ramsey &amp; Ramsey, <span>2014</span>; Wendel, <span>2015</span>; Soltis <i>et al</i>., <span>2016</span>; Van de Peer <i>et al</i>., <span>2017</span>; Fox <i>et al</i>., <span>2020</span>). Notably, many of these studies focus on the effect of polyploidy in the context of a specific taxonomic group, which limits our ability to draw conclusions regarding the universal consequences of polyploidy, and to distinguish broad convergent trends from species-specific idiosyncrasies. There is thus a growing need to expand the examination of ploidy estimates across the seed plants clade, to obtain robust and broad information about the effect of polyploidy.</p><p>In the last few years, multiple methods for ploidy inferences based on sequenced genomic data have been developed (e.g. Jiao <i>et al</i>., <span>2011</span>; Rabier <i>et al</i>., <span>2014</span>; Vanneste <i>et al</i>., <span>2014</span>; Tiley <i>et al</i>., <span>2018</span>; Zwaenepoel &amp; Van de Peer, <span>2020</span>). However, due to the computational complexities and substantial amount of genomic data involved, the applications of such methods are still somewhat limited and are usually applied at phylogenetic scales above the species level, for example, by sampling representatives from several clades of interest. As such, the most comprehensive sequence-based analysis to date, which was conducted by the 1KP initiative and encompassed the transcriptomes of roughly 1100 plant species, has identified 244 whole-genome duplication (WGD) events occurring within Viridiplantae (One Thousand Plant Transcriptomes Initiative, <span>2019</span>; Li &amp; Barker, <span>2020</span>).</p><p>Ploidy estimation at the species level is still largely based on information derived from chromosome numbers. A simple utility of chromosome number informatio","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"918-927"},"PeriodicalIF":9.4,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Heme catabolism mediated by heme oxygenase in uninfected interstitial cells enables efficient symbiotic nitrogen fixation in Lotus japonicus nodules 在未感染的间质细胞中,由血红素加氧酶介导的血红素分解代谢使日本莲节有效的共生固氮
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-17 DOI: 10.1111/nph.19074
Yu Zhou, Longlong Wang, Maria Carmen Rubio, Carmen Pérez-Rontomé, Yumiao Zhou, Yongmei Qi, Tao Tian, Weiqing Zhang, Qiuling Fan, Manuel Becana, Deqiang Duanmu

  • Legume nodules produce large quantities of heme required for the synthesis of leghemoglobin (Lb) and other hemoproteins. Despite the crucial function of Lb in nitrogen fixation and the toxicity of free heme, the mechanisms of heme homeostasis remain elusive.
  • Biochemical, cellular, and genetic approaches were used to study the role of heme oxygenases (HOs) in heme degradation in the model legume Lotus japonicus. Heme and biliverdin were quantified and localized, HOs were characterized, and knockout LORE1 and CRISPR/Cas9 mutants for LjHO1 were generated and phenotyped.
  • We show that LjHO1, but not the LjHO2 isoform, is responsible for heme catabolism in nodules and identify biliverdin as the in vivo product of the enzyme in senescing green nodules. Spatiotemporal expression analysis revealed that LjHO1 expression and biliverdin production are restricted to the plastids of uninfected interstitial cells. The nodules of ho1 mutants showed decreased nitrogen fixation, and the development of brown, rather than green, nodules during senescence. Increased superoxide production was observed in ho1 nodules, underscoring the importance of LjHO1 in antioxidant defense.
  • We conclude that LjHO1 plays an essential role in degradation of Lb heme, uncovering a novel function of nodule plastids and uninfected interstitial cells in nitrogen fixation.
豆科结节产生大量血红素,这是合成豆血红蛋白(Lb)和其他血红蛋白所必需的。尽管Lb在固氮和游离血红素的毒性中起着至关重要的作用,但血红素稳态的机制尚不清楚。采用生化、细胞和遗传等方法研究了血红素加氧酶(HOs)在模式豆科植物荷花血红素降解中的作用。对血红素和胆绿素进行定量和定位,对HOs进行表征,生成LjHO1基因敲除的LORE1和CRISPR/Cas9突变体并进行表型分型。我们发现LjHO1,而不是LjHO2亚型,负责根瘤中的血红素分解代谢,并确定胆绿素是该酶在衰老绿色根瘤中的体内产物。时空表达分析显示LjHO1的表达和胆绿素的产生仅限于未感染的间质细胞的质体。在衰老过程中,ho1突变体的根瘤固氮减少,形成棕色而不是绿色的根瘤。在ho1结节中观察到超氧化物产生增加,强调了LjHO1在抗氧化防御中的重要性。我们得出结论,LjHO1在Lb血红素的降解中起重要作用,揭示了结节质体和未感染的间质细胞在固氮中的新功能。
{"title":"Heme catabolism mediated by heme oxygenase in uninfected interstitial cells enables efficient symbiotic nitrogen fixation in Lotus japonicus nodules","authors":"Yu Zhou,&nbsp;Longlong Wang,&nbsp;Maria Carmen Rubio,&nbsp;Carmen Pérez-Rontomé,&nbsp;Yumiao Zhou,&nbsp;Yongmei Qi,&nbsp;Tao Tian,&nbsp;Weiqing Zhang,&nbsp;Qiuling Fan,&nbsp;Manuel Becana,&nbsp;Deqiang Duanmu","doi":"10.1111/nph.19074","DOIUrl":"https://doi.org/10.1111/nph.19074","url":null,"abstract":"<div>\u0000 \u0000 <p>\u0000 \u0000 </p><ul>\u0000 \u0000 \u0000 <li>Legume nodules produce large quantities of heme required for the synthesis of leghemoglobin (Lb) and other hemoproteins. Despite the crucial function of Lb in nitrogen fixation and the toxicity of free heme, the mechanisms of heme homeostasis remain elusive.</li>\u0000 \u0000 \u0000 <li>Biochemical, cellular, and genetic approaches were used to study the role of heme oxygenases (HOs) in heme degradation in the model legume <i>Lotus japonicus</i>. Heme and biliverdin were quantified and localized, HOs were characterized, and knockout <i>LORE1</i> and CRISPR/Cas9 mutants for LjHO1 were generated and phenotyped.</li>\u0000 \u0000 \u0000 <li>We show that LjHO1, but not the LjHO2 isoform, is responsible for heme catabolism in nodules and identify biliverdin as the <i>in vivo</i> product of the enzyme in senescing green nodules. Spatiotemporal expression analysis revealed that <i>LjHO1</i> expression and biliverdin production are restricted to the plastids of uninfected interstitial cells. The nodules of <i>ho1</i> mutants showed decreased nitrogen fixation, and the development of brown, rather than green, nodules during senescence. Increased superoxide production was observed in <i>ho1</i> nodules, underscoring the importance of LjHO1 in antioxidant defense.</li>\u0000 \u0000 \u0000 <li>We conclude that LjHO1 plays an essential role in degradation of Lb heme, uncovering a novel function of nodule plastids and uninfected interstitial cells in nitrogen fixation.</li>\u0000 </ul>\u0000 \u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 5","pages":"1989-2006"},"PeriodicalIF":9.4,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5897171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The physiological role of thiol-based redox sensors in plant defense signaling 巯基氧化还原传感器在植物防御信号传导中的生理作用
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-15 DOI: 10.1111/nph.19018
Ho Byoung Chae, Su Bin Bae, Seol Ki Paeng, Seong Dong Wi, Kieu Anh Thi Phan, Min Gab Kim, Woe-Yeon Kim, Dae-Jin Yun, Sang Yeol Lee

Plants have developed multilayered defense strategies to adapt and acclimate to the kaleidoscopic environmental changes that rapidly produce reactive oxygen species (ROS) and induce redox changes. Thiol-based redox sensors containing the redox-sensitive cysteine residues act as the central machinery in plant defense signaling. Here, we review recent research on thiol-based redox sensors in plants, which perceive the changes in intracellular H2O2 levels and activate specific downstream defense signaling. The review mainly focuses on the molecular mechanism of how the thiol sensors recognize internal/external stresses and respond to them by demonstrating several instances, such as cold-, drought-, salinity-, and pathogen-resistant signaling pathways. Also, we introduce another novel complex system of thiol-based redox sensors operating through the liquid–liquid phase separation.

植物已经发展出多层次的防御策略来适应千变万化的环境变化,这些变化迅速产生活性氧(ROS)并诱导氧化还原变化。含有对氧化还原敏感的半胱氨酸残基的巯基氧化还原传感器在植物防御信号传导中起着中心机制的作用。在此,我们回顾了植物中基于硫醇的氧化还原传感器的最新研究,这些传感器感知细胞内H2O2水平的变化并激活特定的下游防御信号。本文主要介绍了硫醇传感器如何识别内外应激并对其作出反应的分子机制,并举例说明了抗寒、抗旱、耐盐和抗病原体的信号通路。此外,我们还介绍了另一种新型的复杂系统,即通过液-液相分离操作的硫醇基氧化还原传感器。
{"title":"The physiological role of thiol-based redox sensors in plant defense signaling","authors":"Ho Byoung Chae,&nbsp;Su Bin Bae,&nbsp;Seol Ki Paeng,&nbsp;Seong Dong Wi,&nbsp;Kieu Anh Thi Phan,&nbsp;Min Gab Kim,&nbsp;Woe-Yeon Kim,&nbsp;Dae-Jin Yun,&nbsp;Sang Yeol Lee","doi":"10.1111/nph.19018","DOIUrl":"https://doi.org/10.1111/nph.19018","url":null,"abstract":"<p>Plants have developed multilayered defense strategies to adapt and acclimate to the kaleidoscopic environmental changes that rapidly produce reactive oxygen species (ROS) and induce redox changes. Thiol-based redox sensors containing the redox-sensitive cysteine residues act as the central machinery in plant defense signaling. Here, we review recent research on thiol-based redox sensors in plants, which perceive the changes in intracellular H<sub>2</sub>O<sub>2</sub> levels and activate specific downstream defense signaling. The review mainly focuses on the molecular mechanism of how the thiol sensors recognize internal/external stresses and respond to them by demonstrating several instances, such as cold-, drought-, salinity-, and pathogen-resistant signaling pathways. Also, we introduce another novel complex system of thiol-based redox sensors operating through the liquid–liquid phase separation.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 4","pages":"1203-1211"},"PeriodicalIF":9.4,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5656546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance 拟南芥韧皮部定位的元aspase(AtMC3)可提高耐旱性
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-06-15 DOI: 10.1111/nph.19022
Eugenia Pitsili, Ricardo Rodriguez-Trevino, Nerea Ruiz-Solani, Fatih Demir, Elizabeth Kastanaki, Charlene Dambire, Roger de Pedro-Jové, Dominique Vercammen, Jose Salguero-Linares, Hardy Hall, Melissa Mantz, Martin Schuler, Hannele Tuominen, Frank Van Breusegem, Marc Valls, Sergi Munné-Bosch, Michael J. Holdsworth, Pitter F. Huesgen, Antia Rodriguez-Villalon, Nuria S. Coll

{"title":"A phloem-localized Arabidopsis metacaspase (AtMC3) improves drought tolerance","authors":"Eugenia Pitsili,&nbsp;Ricardo Rodriguez-Trevino,&nbsp;Nerea Ruiz-Solani,&nbsp;Fatih Demir,&nbsp;Elizabeth Kastanaki,&nbsp;Charlene Dambire,&nbsp;Roger de Pedro-Jové,&nbsp;Dominique Vercammen,&nbsp;Jose Salguero-Linares,&nbsp;Hardy Hall,&nbsp;Melissa Mantz,&nbsp;Martin Schuler,&nbsp;Hannele Tuominen,&nbsp;Frank Van Breusegem,&nbsp;Marc Valls,&nbsp;Sergi Munné-Bosch,&nbsp;Michael J. Holdsworth,&nbsp;Pitter F. Huesgen,&nbsp;Antia Rodriguez-Villalon,&nbsp;Nuria S. Coll","doi":"10.1111/nph.19022","DOIUrl":"https://doi.org/10.1111/nph.19022","url":null,"abstract":"<p>\u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"239 4","pages":"1281-1299"},"PeriodicalIF":9.4,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5869755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1