The tall eucalypt forests (TEFs) of the Australian tropics are often portrayed as threatened by 'invasive' neighboring rainforests, requiring 'protective' burning. This framing overlooks that Australian rainforests have suffered twice the historical losses of TEFs and ignores the ecological and paleobiological significance of rainforest margins. Early Eocene fossils from Argentina show that biodiverse rainforests with abundant Eucalyptus existed > 50 million years ago (Ma) in West Gondwana, shaped by nonfire disturbance factors such as landslides and volcanic flows. Humid volcanic environments with eucalypts were also present in eastern Australia over much of the Cenozoic. The dominance of fire-adapted eucalypts appears to be geologically recent and is linked to Neogene C4 grassland expansion, Pleistocene climate cycles, and human activity. We suggest that characterizing TEFs and rainforests as adversarial results from misinterpreting the evolutionary history and expansion-contraction dynamics of a single humid forest system, whose features are now heavily modified by human activities. The resulting management practices damage the outstanding World Heritage values and carbon storage of affected areas and thus have impacts far beyond Australia. The fossil evidence shows that rainforest margins preserve ancient, still evolving, and globally significant forest interactions that should be prioritized for restoration and research.
{"title":"Paleobotany reframes the fiery debate on Australia's rainforest edges.","authors":"Peter Wilf, Robert M Kooyman","doi":"10.1111/nph.20301","DOIUrl":"https://doi.org/10.1111/nph.20301","url":null,"abstract":"<p><p>The tall eucalypt forests (TEFs) of the Australian tropics are often portrayed as threatened by 'invasive' neighboring rainforests, requiring 'protective' burning. This framing overlooks that Australian rainforests have suffered twice the historical losses of TEFs and ignores the ecological and paleobiological significance of rainforest margins. Early Eocene fossils from Argentina show that biodiverse rainforests with abundant Eucalyptus existed > 50 million years ago (Ma) in West Gondwana, shaped by nonfire disturbance factors such as landslides and volcanic flows. Humid volcanic environments with eucalypts were also present in eastern Australia over much of the Cenozoic. The dominance of fire-adapted eucalypts appears to be geologically recent and is linked to Neogene C<sub>4</sub> grassland expansion, Pleistocene climate cycles, and human activity. We suggest that characterizing TEFs and rainforests as adversarial results from misinterpreting the evolutionary history and expansion-contraction dynamics of a single humid forest system, whose features are now heavily modified by human activities. The resulting management practices damage the outstanding World Heritage values and carbon storage of affected areas and thus have impacts far beyond Australia. The fossil evidence shows that rainforest margins preserve ancient, still evolving, and globally significant forest interactions that should be prioritized for restoration and research.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piecing together oomycete effector processing and host translocation.","authors":"Claudia-Nicole Meisrimler, Sophie Eccersall","doi":"10.1111/nph.20291","DOIUrl":"https://doi.org/10.1111/nph.20291","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengqi Wu, Shuwen Liu, Julien Lamour, Owen K Atkin, Nan Yang, Tingting Dong, Weiying Xu, Nicholas G Smith, Zhihui Wang, Han Wang, Yanjun Su, Xiaojuan Liu, Yue Shi, Aijun Xing, Guanhua Dai, Jinlong Dong, Nathan G Swenson, Jens Kattge, Peter B Reich, Shawn P Serbin, Alistair Rogers, Jin Wu, Zhengbing Yan
Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed. Here, we analyzed Rdark variability and its associations with Vcmax and other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative. We found that leaf magnesium and calcium concentrations were more significant in explaining cross-site Rdark than commonly used traits like LMA, N and P concentrations, but univariate trait-Rdark relationships were always weak (r2 ≤ 0.15) and forest-specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait-Rdark relationships, accurately predicted cross-site Rdark (r2 = 0.65) and pinpointed the factors contributing to Rdark variability. Our findings reveal a few novel traits with greater cross-site scalability regarding Rdark, challenging the use of empirical trait-Rdark relationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimating Rdark, which could ultimately improve process modeling of terrestrial plant respiration.
{"title":"Linking leaf dark respiration to leaf traits and reflectance spectroscopy across diverse forest types.","authors":"Fengqi Wu, Shuwen Liu, Julien Lamour, Owen K Atkin, Nan Yang, Tingting Dong, Weiying Xu, Nicholas G Smith, Zhihui Wang, Han Wang, Yanjun Su, Xiaojuan Liu, Yue Shi, Aijun Xing, Guanhua Dai, Jinlong Dong, Nathan G Swenson, Jens Kattge, Peter B Reich, Shawn P Serbin, Alistair Rogers, Jin Wu, Zhengbing Yan","doi":"10.1111/nph.20267","DOIUrl":"10.1111/nph.20267","url":null,"abstract":"<p><p>Leaf dark respiration (R<sub>dark</sub>), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (V<sub>cmax</sub>), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed. Here, we analyzed R<sub>dark</sub> variability and its associations with V<sub>cmax</sub> and other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative. We found that leaf magnesium and calcium concentrations were more significant in explaining cross-site R<sub>dark</sub> than commonly used traits like LMA, N and P concentrations, but univariate trait-R<sub>dark</sub> relationships were always weak (r<sup>2</sup> ≤ 0.15) and forest-specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait-R<sub>dark</sub> relationships, accurately predicted cross-site R<sub>dark</sub> (r<sup>2</sup> = 0.65) and pinpointed the factors contributing to R<sub>dark</sub> variability. Our findings reveal a few novel traits with greater cross-site scalability regarding R<sub>dark</sub>, challenging the use of empirical trait-R<sub>dark</sub> relationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimating R<sub>dark</sub>, which could ultimately improve process modeling of terrestrial plant respiration.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cross-kingdom RNA interference (ckRNAi) is a mechanism of interspecies communication where small RNAs (sRNAs) are transported from one organism to another; these sRNAs silence target genes in trans by loading into host AGO proteins. In this work, we investigated the occurrence of ckRNAi in Arbuscular Mycorrhizal Symbiosis (AMS). We used an in silico prediction analysis to identify a sRNA (Rir2216) from the AM fungus Rhizophagus irregularis and its putative plant gene target, the Medicago truncatula MtWRKY69 transcription factor. Heterologous co-expression assays in Nicotiana benthamiana, 5' RACE reactions and AGO1-immunoprecipitation assays from mycorrhizal roots were used to characterize the Rir2216-MtWRKY69 interaction. We further analyzed MtWRKY69 expression profile and the contribution of constitutive and conditional MtWRKY69 expression to AMS. We show that Rir2216 is loaded into an AGO1 silencing complex from the host plant M. truncatula, leading to cleavage of a host target transcript encoding for the MtWRKY69 transcription factor. MtWRKY69 is specifically downregulated in arbusculated cells in mycorrhizal roots and increased levels of MtWRKY69 expression led to a reduced AM colonization level. Our results indicate that MtWRKY69 silencing, mediated by a fungal sRNA, is relevant for AMS; we thus present the first experimental evidence of fungus to plant ckRNAi in AMS.
{"title":"A fungal sRNA silences a host plant transcription factor to promote arbuscular mycorrhizal symbiosis.","authors":"Alessandro Silvestri, William Conrad Ledford, Valentina Fiorilli, Cristina Votta, Alessia Scerna, Jacopo Tucconi, Antonio Mocchetti, Gianluca Grasso, Raffaella Balestrini, Hailing Jin, Ignacio Rubio-Somoza, Luisa Lanfranco","doi":"10.1111/nph.20273","DOIUrl":"https://doi.org/10.1111/nph.20273","url":null,"abstract":"<p><p>Cross-kingdom RNA interference (ckRNAi) is a mechanism of interspecies communication where small RNAs (sRNAs) are transported from one organism to another; these sRNAs silence target genes in trans by loading into host AGO proteins. In this work, we investigated the occurrence of ckRNAi in Arbuscular Mycorrhizal Symbiosis (AMS). We used an in silico prediction analysis to identify a sRNA (Rir2216) from the AM fungus Rhizophagus irregularis and its putative plant gene target, the Medicago truncatula MtWRKY69 transcription factor. Heterologous co-expression assays in Nicotiana benthamiana, 5' RACE reactions and AGO1-immunoprecipitation assays from mycorrhizal roots were used to characterize the Rir2216-MtWRKY69 interaction. We further analyzed MtWRKY69 expression profile and the contribution of constitutive and conditional MtWRKY69 expression to AMS. We show that Rir2216 is loaded into an AGO1 silencing complex from the host plant M. truncatula, leading to cleavage of a host target transcript encoding for the MtWRKY69 transcription factor. MtWRKY69 is specifically downregulated in arbusculated cells in mycorrhizal roots and increased levels of MtWRKY69 expression led to a reduced AM colonization level. Our results indicate that MtWRKY69 silencing, mediated by a fungal sRNA, is relevant for AMS; we thus present the first experimental evidence of fungus to plant ckRNAi in AMS.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Direct human activity and global climatic changes are threatening the existence of many vegetated habitats. Seedling establishment, one of the riskiest plant life stages, must be successful for such habitats to persist. The establishment of seedlings is known to be enhanced by nurse effects, but most studies to date have looked at the nursing effects of plants while sidelining inanimate objects. Nevertheless, nurse objects can support seedling establishment via diverse mechanisms such as moderating abiotic stresses like extreme temperatures and drought, reducing negative biological interactions such as herbivory while enhancing positive processes like seed dispersal, and providing protection from physical disturbances such as trampling and fire. The robust nature of nurse objects highlights their potential in habitat restoration. The addition of nurse objects allows a simple, single-effort rehabilitation strategy that can later draw on natural seed dispersal and establishment. By achieving a better understanding of the processes in which nurse objects are involved we should be able to better predict vegetation dynamics and manipulate them to minimize adverse processes and support regeneration in natural habitats.
{"title":"A systematic review of nurse objects as safe sites for seedling establishment and implications for restoration.","authors":"Hagai Shemesh","doi":"10.1111/nph.20247","DOIUrl":"10.1111/nph.20247","url":null,"abstract":"<p><p>Direct human activity and global climatic changes are threatening the existence of many vegetated habitats. Seedling establishment, one of the riskiest plant life stages, must be successful for such habitats to persist. The establishment of seedlings is known to be enhanced by nurse effects, but most studies to date have looked at the nursing effects of plants while sidelining inanimate objects. Nevertheless, nurse objects can support seedling establishment via diverse mechanisms such as moderating abiotic stresses like extreme temperatures and drought, reducing negative biological interactions such as herbivory while enhancing positive processes like seed dispersal, and providing protection from physical disturbances such as trampling and fire. The robust nature of nurse objects highlights their potential in habitat restoration. The addition of nurse objects allows a simple, single-effort rehabilitation strategy that can later draw on natural seed dispersal and establishment. By achieving a better understanding of the processes in which nurse objects are involved we should be able to better predict vegetation dynamics and manipulate them to minimize adverse processes and support regeneration in natural habitats.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Houming Chen, Feng Xiong, Alexa-Maria Wangler, Torren Bischoff, Kai Wang, Yingjing Miao, Daniel Slane, Rebecca Schwab, Thomas Laux, Martin Bayer
In Arabidopsis thaliana, the asymmetric cell division (ACD) of the zygote gives rise to the embryo proper and an extraembryonic suspensor, respectively. This process is controlled by the ERECTA-YODA-MPK3/6 receptor kinase-MAP kinase-signaling pathway, which also orchestrates ACDs in the epidermis. In this context, the bHLH transcription factor ICE1/SCRM is negatively controlled by MPK3/6-directed phosphorylation. However, it is unknown whether this regulatory module is similarly involved in the zygotic ACD. We investigated the function of SCRM in zygote polarization by analyzing the effect of loss-of-function alleles and variants that cannot be phosphorylated by MPK3/6, protein accumulation, and target gene expression. Our results show that SCRM has a critical function in zygote polarization and acts in parallel with the known MPK3/6 target WRKY2 in activating WOX8. Our work further demonstrates that SCRM activity in the early embryo is positively controlled by MPK3/6-mediated phosphorylation. Therefore, the effect of MAP kinase-directed phosphorylation of the same target protein fundamentally differs between the embryo and the epidermis, shedding light on cell type-specific, differential gene regulation by common signaling pathways.
{"title":"Phosphorylation-dependent activation of the bHLH transcription factor ICE1/SCRM promotes polarization of the Arabidopsis zygote.","authors":"Houming Chen, Feng Xiong, Alexa-Maria Wangler, Torren Bischoff, Kai Wang, Yingjing Miao, Daniel Slane, Rebecca Schwab, Thomas Laux, Martin Bayer","doi":"10.1111/nph.20265","DOIUrl":"10.1111/nph.20265","url":null,"abstract":"<p><p>In Arabidopsis thaliana, the asymmetric cell division (ACD) of the zygote gives rise to the embryo proper and an extraembryonic suspensor, respectively. This process is controlled by the ERECTA-YODA-MPK3/6 receptor kinase-MAP kinase-signaling pathway, which also orchestrates ACDs in the epidermis. In this context, the bHLH transcription factor ICE1/SCRM is negatively controlled by MPK3/6-directed phosphorylation. However, it is unknown whether this regulatory module is similarly involved in the zygotic ACD. We investigated the function of SCRM in zygote polarization by analyzing the effect of loss-of-function alleles and variants that cannot be phosphorylated by MPK3/6, protein accumulation, and target gene expression. Our results show that SCRM has a critical function in zygote polarization and acts in parallel with the known MPK3/6 target WRKY2 in activating WOX8. Our work further demonstrates that SCRM activity in the early embryo is positively controlled by MPK3/6-mediated phosphorylation. Therefore, the effect of MAP kinase-directed phosphorylation of the same target protein fundamentally differs between the embryo and the epidermis, shedding light on cell type-specific, differential gene regulation by common signaling pathways.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Baroukh, Léo Gerlin, Antoine Escourrou, Stéphane Genin
Ralstonia pseudosolanacearum, a plant pathogen responsible for bacterial wilt in numerous plant species, exhibits paradoxical growth in the host by achieving high bacterial densities in xylem sap, an environment traditionally considered nutrient-poor. This study combined in vitro experiments and mathematical modeling to elucidate the population dynamics of R. pseudosolanacearum within plants. To simulate the xylem environment, a tomato xylem-mimicking medium was developed. Then, a mathematical model was constructed using in vitro data and employed to simulate the dynamics of bacterial density and xylem sap composition during plant infection. The model accurately reproduced in planta experimental observations, including high bacterial densities and the depletion of glutamine and asparagine. Additionally, the model estimated the minimal number of bacteria required to initiate infection, the timing of infection post-inoculation, the bacterial mortality rate within the plant and the rate at which bacterial putrescine is assimilated by the plant. The findings demonstrate that xylem sap can sustain high bacterial densities, provides an explanatory framework for the presence of acetate, putrescine and 3-hydroxybutyrate in the sap of infected xylem and give clues as to the role of putrescine in the virulence of R. pseudosolanacearum.
假丝酵母菌(Ralstonia pseudosolanacearum)是一种植物病原体,可导致多种植物物种的细菌性枯萎病,它在寄主体内的生长表现出自相矛盾的特点,在木质部汁液中的细菌密度很高,而木质部汁液历来被认为是养分贫乏的环境。本研究将体外实验和数学建模相结合,以阐明 R. pseudosolanacearum 在植物体内的种群动态。为了模拟木质部环境,开发了一种番茄木质部模拟培养基。然后,利用体外数据构建了一个数学模型,用于模拟植物感染过程中细菌密度和木质部汁液成分的动态变化。该模型准确地再现了植物体内的实验观察结果,包括高细菌密度以及谷氨酰胺和天冬酰胺的耗竭。此外,该模型还估算了启动感染所需的最低细菌数量、接种后的感染时间、植物体内的细菌死亡率以及细菌腐胺被植物同化的速度。研究结果表明木质部汁液可以维持较高的细菌密度,为受感染木质部汁液中存在醋酸盐、腐霉胺和 3-hydroxybutyrate 提供了解释框架,并为腐霉胺在 R. pseudosolanacearum 的毒力中的作用提供了线索。
{"title":"Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling.","authors":"Caroline Baroukh, Léo Gerlin, Antoine Escourrou, Stéphane Genin","doi":"10.1111/nph.20216","DOIUrl":"https://doi.org/10.1111/nph.20216","url":null,"abstract":"<p><p>Ralstonia pseudosolanacearum, a plant pathogen responsible for bacterial wilt in numerous plant species, exhibits paradoxical growth in the host by achieving high bacterial densities in xylem sap, an environment traditionally considered nutrient-poor. This study combined in vitro experiments and mathematical modeling to elucidate the population dynamics of R. pseudosolanacearum within plants. To simulate the xylem environment, a tomato xylem-mimicking medium was developed. Then, a mathematical model was constructed using in vitro data and employed to simulate the dynamics of bacterial density and xylem sap composition during plant infection. The model accurately reproduced in planta experimental observations, including high bacterial densities and the depletion of glutamine and asparagine. Additionally, the model estimated the minimal number of bacteria required to initiate infection, the timing of infection post-inoculation, the bacterial mortality rate within the plant and the rate at which bacterial putrescine is assimilated by the plant. The findings demonstrate that xylem sap can sustain high bacterial densities, provides an explanatory framework for the presence of acetate, putrescine and 3-hydroxybutyrate in the sap of infected xylem and give clues as to the role of putrescine in the virulence of R. pseudosolanacearum.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela Fraga Porto, Diego V Anjos, Pedro Luna, Kleber Del-Claro
Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.
{"title":"A global overview of insect-fern interactions and its ecological trends.","authors":"Gabriela Fraga Porto, Diego V Anjos, Pedro Luna, Kleber Del-Claro","doi":"10.1111/nph.20229","DOIUrl":"https://doi.org/10.1111/nph.20229","url":null,"abstract":"<p><p>Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloe Zubieta, Stephanie Hutin, Jae-Hoon Jung, Xuelei Lai
{"title":"Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together.","authors":"Chloe Zubieta, Stephanie Hutin, Jae-Hoon Jung, Xuelei Lai","doi":"10.1111/nph.20232","DOIUrl":"https://doi.org/10.1111/nph.20232","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caixia Wei, Mao Li, Limi Mao, Luke Mander, Phillip E Jardine, William D Gosling, Carina Hoorn
Grass-dominated biomes in South America comprise c. 20 million years of history, yet their evolution and underlying drivers remain poorly understood. Here we apply a novel approach that combines scanning electron microscopy imaging with computational analysis to quantify the morphometrics of grass (Poaceae) pollen micro-ornamentation from the Neotropics since the Early Miocene (23 million years ago). Three spatial-temporal pollen sets were assembled to further elucidate the variation and evolutionary traits of grasses through space and time. Our results reveals that three spatial-temporal pollen groups occupy unique, partially overlapping regions of their exine morphospace. The direction of this shift is consistent over time, progressing towards less dense ornamentation. Interestingly, the extent of the occupied morphospace did not vary significantly. This is the first time that the true morphological variation in Poaceae pollen micro-ornamentation becomes apparent through time. We hypothesize that changes in grass pollen exine since the Early Miocene were driven by evolutionary processes (evolutionary drift and/or directional selection), and potentially migration at the continental scale. The high diversity in pollen micro-ornamentation is likely related to their evolutionary success in the Neogene.
{"title":"A 23-million-year record of morphological evolution within Neotropical grass pollen.","authors":"Caixia Wei, Mao Li, Limi Mao, Luke Mander, Phillip E Jardine, William D Gosling, Carina Hoorn","doi":"10.1111/nph.20214","DOIUrl":"https://doi.org/10.1111/nph.20214","url":null,"abstract":"<p><p>Grass-dominated biomes in South America comprise c. 20 million years of history, yet their evolution and underlying drivers remain poorly understood. Here we apply a novel approach that combines scanning electron microscopy imaging with computational analysis to quantify the morphometrics of grass (Poaceae) pollen micro-ornamentation from the Neotropics since the Early Miocene (23 million years ago). Three spatial-temporal pollen sets were assembled to further elucidate the variation and evolutionary traits of grasses through space and time. Our results reveals that three spatial-temporal pollen groups occupy unique, partially overlapping regions of their exine morphospace. The direction of this shift is consistent over time, progressing towards less dense ornamentation. Interestingly, the extent of the occupied morphospace did not vary significantly. This is the first time that the true morphological variation in Poaceae pollen micro-ornamentation becomes apparent through time. We hypothesize that changes in grass pollen exine since the Early Miocene were driven by evolutionary processes (evolutionary drift and/or directional selection), and potentially migration at the continental scale. The high diversity in pollen micro-ornamentation is likely related to their evolutionary success in the Neogene.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}