首页 > 最新文献

New Phytologist最新文献

英文 中文
Warm temperature perceived at the vegetative stage affects progeny seed germination in natural accessions of Arabidopsis thaliana. 在拟南芥无性繁殖阶段感受到的温暖会影响其后代种子的萌发。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-17 DOI: 10.1111/nph.20241
Yu Wang, Tania L Zhang, Emma M Barnett, Sridevi Sureshkumar, Sureshkumar Balasubramanian, Alexandre Fournier-Level

Temperatures perceived early in the life cycle of mother plants can affect the germination of the offspring seeds. In Arabidopsis thaliana, vernalisation-insensitive mutants showed altered germination response to elevated maternal temperature, hence revealing a strong genetic determinism. However, the genetic control of this maternal effect and its prevalence across natural populations remain unclear. Here, we exposed a collection of European accessions of A. thaliana to increased temperature during the vegetative phase and assessed germination in their progeny to identify the genetic basis of transgenerational germination response. We found that genotypes with rapidly germinating progeny after early maternal exposure to elevated temperature originated from regions with low-light radiation. Combining genome-wide association, expression analysis and functional assays across multiple genetic backgrounds, we show a central role for PHYB in mediating the response to maternally perceived temperature at the vegetative stage. Differential gene expression analysis in leaves identified a similar genetic network as previously found in seed endosperm under elevated temperature, supporting the pleiotropic involvement of PHYB signalling across different tissues and stages. This provides evidence that complex environmental responses modulated by the maternal genotype can rely on a consistent set of genes yet produce different effects at the different stages of exposure.

母株生命周期早期感知到的温度会影响子代种子的萌发。在拟南芥中,对春化不敏感的突变体对母体温度升高的萌发反应发生了改变,从而揭示了强烈的遗传决定性。然而,这种母体效应的遗传控制及其在自然种群中的普遍性仍不清楚。在这里,我们将一系列欧洲的大丽花品种置于无性期温度升高的环境中,并评估其后代的发芽情况,以确定跨代发芽反应的遗传基础。我们发现,母本早期暴露于升高的温度后,后代发芽迅速的基因型来自低光辐射地区。通过跨多种遗传背景的全基因组关联、表达分析和功能测试,我们发现 PHYB 在无性繁殖阶段介导对母体感知温度的反应中起着核心作用。叶片中的差异基因表达分析发现了一个类似于之前在高温下种子胚乳中发现的遗传网络,支持了 PHYB 信号在不同组织和阶段的多效应参与。这就证明,由母本基因型调节的复杂环境反应可以依赖于一组一致的基因,但在暴露的不同阶段产生不同的效应。
{"title":"Warm temperature perceived at the vegetative stage affects progeny seed germination in natural accessions of Arabidopsis thaliana.","authors":"Yu Wang, Tania L Zhang, Emma M Barnett, Sridevi Sureshkumar, Sureshkumar Balasubramanian, Alexandre Fournier-Level","doi":"10.1111/nph.20241","DOIUrl":"https://doi.org/10.1111/nph.20241","url":null,"abstract":"<p><p>Temperatures perceived early in the life cycle of mother plants can affect the germination of the offspring seeds. In Arabidopsis thaliana, vernalisation-insensitive mutants showed altered germination response to elevated maternal temperature, hence revealing a strong genetic determinism. However, the genetic control of this maternal effect and its prevalence across natural populations remain unclear. Here, we exposed a collection of European accessions of A. thaliana to increased temperature during the vegetative phase and assessed germination in their progeny to identify the genetic basis of transgenerational germination response. We found that genotypes with rapidly germinating progeny after early maternal exposure to elevated temperature originated from regions with low-light radiation. Combining genome-wide association, expression analysis and functional assays across multiple genetic backgrounds, we show a central role for PHYB in mediating the response to maternally perceived temperature at the vegetative stage. Differential gene expression analysis in leaves identified a similar genetic network as previously found in seed endosperm under elevated temperature, supporting the pleiotropic involvement of PHYB signalling across different tissues and stages. This provides evidence that complex environmental responses modulated by the maternal genotype can rely on a consistent set of genes yet produce different effects at the different stages of exposure.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origins of xyloglucan-degrading enzymes in fungi. 真菌中木糖降解酶的起源。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-17 DOI: 10.1111/nph.20251
Emily D Trudeau, Harry Brumer, Mary L Berbee

The origin story of land plants - the pivotal evolutionary event that paved the way for terrestrial ecosystems of today to flourish - lies within their closest living relatives: the streptophyte algae. Streptophyte cell wall composition has evolved such that profiles of cell wall polysaccharides can be used as taxonomic markers. Since xyloglucan is restricted to the streptophyte lineage, we hypothesized that fungal enzymes evolved in response to xyloglucan availability in streptophyte algal or land plant cell walls. The record of the origins of these enzymes is embedded in fungal genomes, and comparing genomes of fungi that share an ancient common ancestor can provide insights into fungal interactions with early plants. This Viewpoint contributes a review of evidence underlying current assumptions about the distribution of xyloglucan in plant and algal cell walls. We evaluate evolutionary scenarios that may have given rise to the observed distribution of putative xyloglucanases in fungi and discuss possible biological contexts in which these enzymes could have evolved. Our findings suggest that fungal xyloglucanase evolution was more likely driven by land plant diversification and biomass accumulation than by the first origins of xyloglucan in streptophyte algal cell walls.

陆生植物的起源故事--为当今陆地生态系统的繁荣铺平道路的关键进化事件--就发生在陆生植物的近亲--链格藻中。链格藻细胞壁成分的进化使得细胞壁多糖的特征可以用作分类标记。由于木聚糖仅限于链格藻,我们推测真菌酶的进化是为了应对链格藻或陆地植物细胞壁中木聚糖的可用性。这些酶的起源记录蕴藏在真菌基因组中,比较具有古老共同祖先的真菌基因组可以深入了解真菌与早期植物的相互作用。本 "视点 "综述了目前关于木聚糖在植物和藻类细胞壁中分布的假设所依据的证据。我们评估了可能导致真菌中假定木聚糖酶分布的进化情景,并讨论了这些酶进化的可能生物背景。我们的研究结果表明,真菌木聚糖酶的进化更有可能是由陆生植物的多样化和生物量积累驱动的,而不是由链格藻细胞壁中木聚糖的最初起源驱动的。
{"title":"Origins of xyloglucan-degrading enzymes in fungi.","authors":"Emily D Trudeau, Harry Brumer, Mary L Berbee","doi":"10.1111/nph.20251","DOIUrl":"https://doi.org/10.1111/nph.20251","url":null,"abstract":"<p><p>The origin story of land plants - the pivotal evolutionary event that paved the way for terrestrial ecosystems of today to flourish - lies within their closest living relatives: the streptophyte algae. Streptophyte cell wall composition has evolved such that profiles of cell wall polysaccharides can be used as taxonomic markers. Since xyloglucan is restricted to the streptophyte lineage, we hypothesized that fungal enzymes evolved in response to xyloglucan availability in streptophyte algal or land plant cell walls. The record of the origins of these enzymes is embedded in fungal genomes, and comparing genomes of fungi that share an ancient common ancestor can provide insights into fungal interactions with early plants. This Viewpoint contributes a review of evidence underlying current assumptions about the distribution of xyloglucan in plant and algal cell walls. We evaluate evolutionary scenarios that may have given rise to the observed distribution of putative xyloglucanases in fungi and discuss possible biological contexts in which these enzymes could have evolved. Our findings suggest that fungal xyloglucanase evolution was more likely driven by land plant diversification and biomass accumulation than by the first origins of xyloglucan in streptophyte algal cell walls.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis). 来自 NAC 和 TCP 转录因子的防御途径可激活 BAHD 乙酰转移酶,促进 (Z)-3- 己烯基乙酸酯的生物合成,从而抵御茶树(Camellia sinensis)中的草食动物。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-17 DOI: 10.1111/nph.20283
Honglian Gu, Jiaxing Li, Dahe Qiao, Mei Li, Yingjie Yao, Hui Xie, Ke-Lin Huang, Shengrui Liu, De-Yu Xie, Chaoling Wei, Junyan Zhu

Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear. Based on transcriptomes assembled from Ectropis obliqua-fed leaves, a cDNA encoding BAHD acyltransferase, namely CsCHAT1, was highly induced in leaves fed with E. obliqua. Enzymatic assays showed that CsCHAT1 converted (Z)-3-hexenol into 3-HAC. Further suppression of CsCHAT1 expression reduced the accumulation of 3-HAC and lowered the resistance of tea plants to E. obliqua, while 3-HAC replenishment rescued the reduced resistance of CsCHAT1-silenced tea plants against E. obliqua. Two transcription factors (TFs), CsNAC30 and CsTCP11, were co-expressed with CsCHAT1. An integrative approach of biochemistry, DNA-protein interaction, gene silencing, and metabolic profiling revealed that the two TFs positively regulated the expression of CsCHAT1. The suppression of either one decreased the production of 3-HAC and eliminated the resistance of tea plants to E. obliqua. Notably, the suppression of either one considerably impaired JA-induced 3-HAC biosynthesis in tea plant. The proposed pathway can be targeted for innovative agro-biotechnologies protecting tea plants from damage by E. obliqua.

许多食草动物诱导的植物挥发物(HIPVs)在植物防御中发挥着重要作用。在茶树(Camellia sinensis)中,(Z)-3-己烯基乙酸酯(3-HAC)被认为与抵抗食草动物有关。迄今为止,茶树如何生物合成和调节 3-HAC 以抵御食草动物仍不清楚。根据从Ectropis obliqua喂食的叶片中收集的转录组,编码BAHD酰基转移酶(即CsCHAT1)的cDNA在Ectropis obliqua喂食的叶片中被高度诱导。酶测定显示,CsCHAT1 能将(Z)-3-己烯醇转化为 3-HAC。进一步抑制 CsCHAT1 的表达可减少 3-HAC 的积累,并降低茶树对 E. obliqua 的抗性,而 3-HAC 的补充则可挽救被 CsCHAT1 沉默的茶树对 E. obliqua 抗性的降低。两个转录因子(TFs)CsNAC30 和 CsTCP11 与 CsCHAT1 共同表达。生物化学、DNA 蛋白相互作用、基因沉默和代谢分析等综合方法显示,这两个转录因子对 CsCHAT1 的表达有正向调节作用。抑制其中任何一个都会减少 3-HAC 的产生,并消除茶树对 E. obliqua 的抗性。值得注意的是,抑制其中任何一种都会大大削弱 JA 诱导的茶树 3-HAC 生物合成。所提出的途径可作为创新农业生物技术的目标,保护茶树免受欧鼠李的损害。
{"title":"A defensive pathway from NAC and TCP transcription factors activates a BAHD acyltransferase for (Z)-3-hexenyl acetate biosynthesis to resist herbivore in tea plant (Camellia sinensis).","authors":"Honglian Gu, Jiaxing Li, Dahe Qiao, Mei Li, Yingjie Yao, Hui Xie, Ke-Lin Huang, Shengrui Liu, De-Yu Xie, Chaoling Wei, Junyan Zhu","doi":"10.1111/nph.20283","DOIUrl":"https://doi.org/10.1111/nph.20283","url":null,"abstract":"<p><p>Numerous herbivore-induced plant volatiles (HIPVs) play important roles in plant defense. In tea plants (Camellia sinensis), (Z)-3-hexenyl acetate (3-HAC) has been characterized as associated with resistance to herbivores. To date, how tea plants biosynthesize and regulate 3-HAC to resist herbivores remain unclear. Based on transcriptomes assembled from Ectropis obliqua-fed leaves, a cDNA encoding BAHD acyltransferase, namely CsCHAT1, was highly induced in leaves fed with E. obliqua. Enzymatic assays showed that CsCHAT1 converted (Z)-3-hexenol into 3-HAC. Further suppression of CsCHAT1 expression reduced the accumulation of 3-HAC and lowered the resistance of tea plants to E. obliqua, while 3-HAC replenishment rescued the reduced resistance of CsCHAT1-silenced tea plants against E. obliqua. Two transcription factors (TFs), CsNAC30 and CsTCP11, were co-expressed with CsCHAT1. An integrative approach of biochemistry, DNA-protein interaction, gene silencing, and metabolic profiling revealed that the two TFs positively regulated the expression of CsCHAT1. The suppression of either one decreased the production of 3-HAC and eliminated the resistance of tea plants to E. obliqua. Notably, the suppression of either one considerably impaired JA-induced 3-HAC biosynthesis in tea plant. The proposed pathway can be targeted for innovative agro-biotechnologies protecting tea plants from damage by E. obliqua.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of cell-type specificity, trans- and cis-acting functions of plant lincRNAs from single-cell transcriptomes. 从单细胞转录组中鉴定植物长链核糖核酸的细胞类型特异性、反式和顺式作用功能。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-17 DOI: 10.1111/nph.20269
Jiwei Xu, Enhui Shen, Fu Guo, Kaiqiang Wang, Yurong Hu, Leti Shen, Hongyu Chen, Xiaohan Li, Qian-Hao Zhu, Longjiang Fan, Qinjie Chu

Long noncoding RNAs, including intergenic lncRNAs (lincRNAs), play a key role in various biological processes throughout the plant life cycle, and the advent of single-cell RNA sequencing (scRNA-seq) technology has opened up a valuable avenue for scrutinizing the intricate roles of lincRNAs in cellular processes. Here, we identified a new batch of lincRNAs using scRNA-seq data from diverse tissues of plants (rice, Arabidopsis, tomato, and maize). Based on well-annotated single-cell transcriptome atlases, plant lincRNAs were found to possess the same level of cell-type specificity as mRNAs and to be involved in the differentiation of certain cell types based on pseudo-time analysis. Many lincRNAs were predicted to play a hub role in the cell-type-specific co-expression networks of lincRNAs and mRNAs, suggesting their trans-acting abilities. Besides, plant lincRNAs were revealed to have potential cis-acting properties based on their genomic distances and expression correlations with the neighboring mRNAs. Furthermore, an online platform, PscLncRNA (http://ibi.zju.edu.cn/psclncrna/), was constructed for searching and visualizing all identified plant lincRNAs with annotated potential functions. Our work provides new insights into plant lincRNAs at single-cell resolution and an important resource for understanding and further investigation of plant lincRNAs.

长非编码 RNA,包括基因间 lncRNA(lincRNA),在植物整个生命周期的各种生物过程中发挥着关键作用,单细胞 RNA 测序(scRNA-seq)技术的出现为研究 lincRNA 在细胞过程中的复杂作用开辟了一条宝贵的途径。在这里,我们利用来自不同植物组织(水稻、拟南芥、番茄和玉米)的 scRNA-seq 数据鉴定了一批新的 lincRNAs。基于完善注释的单细胞转录组图谱,我们发现植物 lincRNAs 与 mRNAs 具有相同程度的细胞类型特异性,并根据伪时间分析参与了某些细胞类型的分化。许多 lincRNAs 被预测在细胞类型特异性 lincRNAs 和 mRNAs 的共表达网络中发挥枢纽作用,这表明它们具有反式作用能力。此外,根据其基因组距离以及与邻近mRNA的表达相关性,发现植物lincRNA具有潜在的顺式作用特性。此外,我们还构建了一个在线平台 PscLncRNA (http://ibi.zju.edu.cn/psclncrna/),用于搜索和可视化所有已发现的具有潜在功能注释的植物 lincRNAs。我们的工作为单细胞分辨率下的植物 lincRNAs 提供了新的见解,也为了解和进一步研究植物 lincRNAs 提供了重要资源。
{"title":"Identification of cell-type specificity, trans- and cis-acting functions of plant lincRNAs from single-cell transcriptomes.","authors":"Jiwei Xu, Enhui Shen, Fu Guo, Kaiqiang Wang, Yurong Hu, Leti Shen, Hongyu Chen, Xiaohan Li, Qian-Hao Zhu, Longjiang Fan, Qinjie Chu","doi":"10.1111/nph.20269","DOIUrl":"https://doi.org/10.1111/nph.20269","url":null,"abstract":"<p><p>Long noncoding RNAs, including intergenic lncRNAs (lincRNAs), play a key role in various biological processes throughout the plant life cycle, and the advent of single-cell RNA sequencing (scRNA-seq) technology has opened up a valuable avenue for scrutinizing the intricate roles of lincRNAs in cellular processes. Here, we identified a new batch of lincRNAs using scRNA-seq data from diverse tissues of plants (rice, Arabidopsis, tomato, and maize). Based on well-annotated single-cell transcriptome atlases, plant lincRNAs were found to possess the same level of cell-type specificity as mRNAs and to be involved in the differentiation of certain cell types based on pseudo-time analysis. Many lincRNAs were predicted to play a hub role in the cell-type-specific co-expression networks of lincRNAs and mRNAs, suggesting their trans-acting abilities. Besides, plant lincRNAs were revealed to have potential cis-acting properties based on their genomic distances and expression correlations with the neighboring mRNAs. Furthermore, an online platform, PscLncRNA (http://ibi.zju.edu.cn/psclncrna/), was constructed for searching and visualizing all identified plant lincRNAs with annotated potential functions. Our work provides new insights into plant lincRNAs at single-cell resolution and an important resource for understanding and further investigation of plant lincRNAs.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the metabolic daylength measurement system: implications for photoperiodic growth. 探索新陈代谢昼长测量系统:对光周期生长的影响。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-15 DOI: 10.1111/nph.20275
Man-Wah Li, Joshua M Gendron

Photoperiod is an environmental signal that varies predictably across the year. Therefore, the duration of sunlight available for photosynthesis and in turn the ability of plants to accumulate carbon resources also fluctuates across the year. To adapt to these variations in photoperiod, the metabolic daylength measurement (MDLM) system measures the photosynthetic period rather than the absolute photoperiod, translating it into seasonal gene expression changes linked to photoperiodic growth. In this Tansley Insight, we briefly summarize the current understanding of the MDLM system and highlight gaps in our knowledge. Given the system's critical role in seasonal growth, understanding the MDLM system is essential for enhancing plant adaptation to different photoperiods and optimizing agricultural production.

光周期是一种环境信号,在一年中会发生可预测的变化。因此,可用于光合作用的日照时间以及植物积累碳资源的能力也会在一年中波动。为了适应光周期的这些变化,新陈代谢昼长测量(MDLM)系统测量的是光合周期而不是绝对光周期,并将其转化为与光周期生长相关的季节性基因表达变化。在本篇 "坦斯利透视"(Tansley Insight)中,我们简要总结了目前对 MDLM 系统的了解,并强调了我们知识中的空白。鉴于该系统在季节性生长中的关键作用,了解 MDLM 系统对于提高植物对不同光周期的适应性和优化农业生产至关重要。
{"title":"Exploring the metabolic daylength measurement system: implications for photoperiodic growth.","authors":"Man-Wah Li, Joshua M Gendron","doi":"10.1111/nph.20275","DOIUrl":"10.1111/nph.20275","url":null,"abstract":"<p><p>Photoperiod is an environmental signal that varies predictably across the year. Therefore, the duration of sunlight available for photosynthesis and in turn the ability of plants to accumulate carbon resources also fluctuates across the year. To adapt to these variations in photoperiod, the metabolic daylength measurement (MDLM) system measures the photosynthetic period rather than the absolute photoperiod, translating it into seasonal gene expression changes linked to photoperiodic growth. In this Tansley Insight, we briefly summarize the current understanding of the MDLM system and highlight gaps in our knowledge. Given the system's critical role in seasonal growth, understanding the MDLM system is essential for enhancing plant adaptation to different photoperiods and optimizing agricultural production.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review of nurse objects as safe sites for seedling establishment and implications for restoration. 对作为育苗安全场所的哺育对象及其对恢复的影响进行系统审查。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-15 DOI: 10.1111/nph.20247
Hagai Shemesh

Direct human activity and global climatic changes are threatening the existence of many vegetated habitats. Seedling establishment, one of the riskiest plant life stages, must be successful for such habitats to persist. The establishment of seedlings is known to be enhanced by nurse effects, but most studies to date have looked at the nursing effects of plants while sidelining inanimate objects. Nevertheless, nurse objects can support seedling establishment via diverse mechanisms such as moderating abiotic stresses like extreme temperatures and drought, reducing negative biological interactions such as herbivory while enhancing positive processes like seed dispersal, and providing protection from physical disturbances such as trampling and fire. The robust nature of nurse objects highlights their potential in habitat restoration. The addition of nurse objects allows a simple, single-effort rehabilitation strategy that can later draw on natural seed dispersal and establishment. By achieving a better understanding of the processes in which nurse objects are involved we should be able to better predict vegetation dynamics and manipulate them to minimize adverse processes and support regeneration in natural habitats.

人类的直接活动和全球气候变化正在威胁着许多植被生境的生存。育苗是风险最大的植物生命阶段之一,必须成功育苗,此类生境才能持续存在。众所周知,植物幼苗的建立可以通过哺育作用得到加强,但迄今为止的大多数研究都是研究植物的哺育作用,而忽略了无生命物体的哺育作用。然而,哺育对象可以通过多种机制支持幼苗的建立,例如减缓极端温度和干旱等非生物压力,减少食草动物等负面生物交互作用,同时加强种子传播等积极过程,以及提供保护,使幼苗免受践踏和火灾等物理干扰。保育对象的强健特性凸显了其在生境恢复方面的潜力。通过添加保育对象,可以采取简单、一次性的恢复策略,并在以后利用种子的自然传播和建立。通过更好地了解护育对象参与的过程,我们应该能够更好地预测植被动态,并对其进行操作,以尽量减少不利过程,支持自然栖息地的再生。
{"title":"A systematic review of nurse objects as safe sites for seedling establishment and implications for restoration.","authors":"Hagai Shemesh","doi":"10.1111/nph.20247","DOIUrl":"10.1111/nph.20247","url":null,"abstract":"<p><p>Direct human activity and global climatic changes are threatening the existence of many vegetated habitats. Seedling establishment, one of the riskiest plant life stages, must be successful for such habitats to persist. The establishment of seedlings is known to be enhanced by nurse effects, but most studies to date have looked at the nursing effects of plants while sidelining inanimate objects. Nevertheless, nurse objects can support seedling establishment via diverse mechanisms such as moderating abiotic stresses like extreme temperatures and drought, reducing negative biological interactions such as herbivory while enhancing positive processes like seed dispersal, and providing protection from physical disturbances such as trampling and fire. The robust nature of nurse objects highlights their potential in habitat restoration. The addition of nurse objects allows a simple, single-effort rehabilitation strategy that can later draw on natural seed dispersal and establishment. By achieving a better understanding of the processes in which nurse objects are involved we should be able to better predict vegetation dynamics and manipulate them to minimize adverse processes and support regeneration in natural habitats.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation-dependent activation of the bHLH transcription factor ICE1/SCRM promotes polarization of the Arabidopsis zygote. 磷酸化依赖性激活 bHLH 转录因子 ICE1/SCRM 可促进拟南芥子实体的极化。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-14 DOI: 10.1111/nph.20265
Houming Chen, Feng Xiong, Alexa-Maria Wangler, Torren Bischoff, Kai Wang, Yingjing Miao, Daniel Slane, Rebecca Schwab, Thomas Laux, Martin Bayer

In Arabidopsis thaliana, the asymmetric cell division (ACD) of the zygote gives rise to the embryo proper and an extraembryonic suspensor, respectively. This process is controlled by the ERECTA-YODA-MPK3/6 receptor kinase-MAP kinase-signaling pathway, which also orchestrates ACDs in the epidermis. In this context, the bHLH transcription factor ICE1/SCRM is negatively controlled by MPK3/6-directed phosphorylation. However, it is unknown whether this regulatory module is similarly involved in the zygotic ACD. We investigated the function of SCRM in zygote polarization by analyzing the effect of loss-of-function alleles and variants that cannot be phosphorylated by MPK3/6, protein accumulation, and target gene expression. Our results show that SCRM has a critical function in zygote polarization and acts in parallel with the known MPK3/6 target WRKY2 in activating WOX8. Our work further demonstrates that SCRM activity in the early embryo is positively controlled by MPK3/6-mediated phosphorylation. Therefore, the effect of MAP kinase-directed phosphorylation of the same target protein fundamentally differs between the embryo and the epidermis, shedding light on cell type-specific, differential gene regulation by common signaling pathways.

在拟南芥中,合子的不对称细胞分裂(ACD)分别产生胚胎本体和胚外悬丝。这一过程受 ERECTA-YODA-MPK3/6 受体激酶-MAP 激酶信号通路的控制,该通路还协调表皮中的不对称细胞分裂。在这种情况下,bHLH 转录因子 ICE1/SCRM 受 MPK3/6 引导的磷酸化负向控制。然而,这一调控模块是否同样参与了合子ACD的调控尚不清楚。我们通过分析功能缺失等位基因和不能被MPK3/6磷酸化的变体的影响、蛋白积累和靶基因表达,研究了SCRM在子代极化中的功能。我们的研究结果表明,SCRM 在子代极化过程中具有关键功能,并与已知的 MPK3/6 靶标 WRKY2 在激活 WOX8 的过程中并行发挥作用。我们的工作进一步证明,SCRM 在早期胚胎中的活性受到 MPK3/6 介导的磷酸化的积极控制。因此,MAP 激酶引导的磷酸化对同一靶蛋白的影响在胚胎和表皮之间存在本质区别,从而揭示了细胞类型特异性、共同信号通路对不同基因的调控。
{"title":"Phosphorylation-dependent activation of the bHLH transcription factor ICE1/SCRM promotes polarization of the Arabidopsis zygote.","authors":"Houming Chen, Feng Xiong, Alexa-Maria Wangler, Torren Bischoff, Kai Wang, Yingjing Miao, Daniel Slane, Rebecca Schwab, Thomas Laux, Martin Bayer","doi":"10.1111/nph.20265","DOIUrl":"10.1111/nph.20265","url":null,"abstract":"<p><p>In Arabidopsis thaliana, the asymmetric cell division (ACD) of the zygote gives rise to the embryo proper and an extraembryonic suspensor, respectively. This process is controlled by the ERECTA-YODA-MPK3/6 receptor kinase-MAP kinase-signaling pathway, which also orchestrates ACDs in the epidermis. In this context, the bHLH transcription factor ICE1/SCRM is negatively controlled by MPK3/6-directed phosphorylation. However, it is unknown whether this regulatory module is similarly involved in the zygotic ACD. We investigated the function of SCRM in zygote polarization by analyzing the effect of loss-of-function alleles and variants that cannot be phosphorylated by MPK3/6, protein accumulation, and target gene expression. Our results show that SCRM has a critical function in zygote polarization and acts in parallel with the known MPK3/6 target WRKY2 in activating WOX8. Our work further demonstrates that SCRM activity in the early embryo is positively controlled by MPK3/6-mediated phosphorylation. Therefore, the effect of MAP kinase-directed phosphorylation of the same target protein fundamentally differs between the embryo and the epidermis, shedding light on cell type-specific, differential gene regulation by common signaling pathways.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera. 绘制杨树叶片轮廓中由干旱引起的组织特征变化图。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-06 DOI: 10.1111/nph.20240
Mina Momayyezi, Cheyenne Chu, Jarvis A Stobbs, Raju Y Soolanayakanahally, Robert D Guy, Andrew J McElrone, Thorsten Knipfer

Leaf architecture impacts the ease of gases diffusion, biochemical process, and photosynthetic performance. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown. To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheet extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θIAS) and aids recovery by supporting leaf structural integrity. Leaves of 'Carnduff-9' with less abundant BSEs exhibited greater θIAS, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with 'Gillam-5'. Under drought conditions, Carnduff-9 showed significant changes in θIAS across leaf profile while that was little for 'Gillam-5'. Under rewatered conditions, drought-induced changes in θIAS were fully reversible in 'Gillam-5' but not in 'Carnduff-9'. Our data suggest that a 'robust' leaf structure with higher abundance of BSEs, reduced θIAS, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.

叶片结构会影响气体扩散的难易程度、生化过程和光合作用性能。对于北美广泛分布的树种--水杨来说,水分供应对叶片结构和随后的光合作用性能的影响仍然未知。为了弥补这一不足,我们利用 X 射线微计算机断层扫描技术,对土壤干燥和重新浇水后的树苗的叶片剖面进行了三维空间解剖学特征描述。我们的假设是,叶束片延伸(BSE)的丰度越高,相对于中叶体积(即中叶孔隙率θIAS)而言,干旱引起的细胞间空隙体积变化就越小,并通过支持叶片结构的完整性来帮助恢复。与'Gillam-5'相比,BSE 较少的'Carnduff-9'叶片表现出更大的θIAS、更高的海绵状中叶表面积、更小的栅栏状中叶表面积和更少的叶脉。在干旱条件下,"Carnduff-9 "叶片剖面的θIAS发生了显著变化,而 "Gillam-5 "的变化很小。在重新浇水的条件下,干旱引起的θIAS变化在'Gillam-5'中是完全可逆的,但在'Carnduff-9'中则不然。我们的数据表明,"健壮 "的叶片结构具有较高的 BSE 丰度、较低的 θIAS 和相对较大的叶肉表面积,可提高干旱条件下的光合作用能力,并支持杨树再灌水后叶片结构的恢复。
{"title":"Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera.","authors":"Mina Momayyezi, Cheyenne Chu, Jarvis A Stobbs, Raju Y Soolanayakanahally, Robert D Guy, Andrew J McElrone, Thorsten Knipfer","doi":"10.1111/nph.20240","DOIUrl":"10.1111/nph.20240","url":null,"abstract":"<p><p>Leaf architecture impacts the ease of gases diffusion, biochemical process, and photosynthetic performance. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown. To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheet extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θ<sub>IAS</sub>) and aids recovery by supporting leaf structural integrity. Leaves of 'Carnduff-9' with less abundant BSEs exhibited greater θ<sub>IAS</sub>, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with 'Gillam-5'. Under drought conditions, Carnduff-9 showed significant changes in θ<sub>IAS</sub> across leaf profile while that was little for 'Gillam-5'. Under rewatered conditions, drought-induced changes in θ<sub>IAS</sub> were fully reversible in 'Gillam-5' but not in 'Carnduff-9'. Our data suggest that a 'robust' leaf structure with higher abundance of BSEs, reduced θ<sub>IAS</sub>, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
StCDF1: A 'jack of all trades' clock output with a central role in regulating potato nitrate reduction activity. StCDF1:万能 "时钟输出,在调节马铃薯硝酸盐还原活性方面发挥核心作用。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-06 DOI: 10.1111/nph.20186
Maroof Ahmed Shaikh, Lorena Ramírez-Gonzales, José M Franco-Zorrilla, Evyatar Steiner, Marian Oortwijn, Christian W B Bachem, Salomé Prat

Transcription factors of the CYCLING DOF FACTOR (CDF) family activate in potato the SP6A FT tuberization signal in leaves. In modern cultivars, truncated StCDF1.2 alleles override strict SD control by stabilizing the StCDF1 protein, which leads to StCOL1 suppression and impaired activation of the antagonic SP5G paralog. By using DAP-seq and RNA-seq studies, we here show that StCDF1 not only acts as an upstream regulator of the day length pathway but also directly regulates several N assimilation and transport genes. StCDF1 directly represses expression of NITRATE REDUCTASE (NR/NIA), which catalyses the first reduction step in nitrate assimilation, and is encoded by a single potato locus. StCDF1 knock-down lines performed better in N-limiting conditions, and this phenotype correlated with derepressed StNR expression. Also, deletion of the StNR DAP-seq region abolished repression by StCDF1, while it did not affect NLP7-dependent activation of the StNR promoter. We identified multiple nucleotide polymorphisms in the DAP-seq region in potato cultivars with early StCDF1 alleles, suggesting that this genetic variation was selected as compensatory mechanism to the negative impact of StCDF1 stabilization. Thereby, directed modification of the StCDF1-recognition elements emerges as a promising strategy to enhance limiting StNR activity in potato.

CYCLING DOF FACTOR(CDF)家族的转录因子可激活马铃薯叶片中的SP6A FT块茎化信号。在现代栽培品种中,截短的StCDF1.2等位基因通过稳定StCDF1蛋白而超越了严格的SD控制,从而导致StCOL1受抑制,并削弱了反凝固性SP5G旁系亲属的激活。通过DAP-seq和RNA-seq研究,我们发现StCDF1不仅是昼长通路的上游调控因子,还直接调控多个氮同化和转运基因。StCDF1 直接抑制硝酸盐还原酶(NR/NIA)的表达,该酶催化硝酸盐同化作用中的第一个还原步骤,由一个马铃薯基因座编码。StCDF1基因敲除株系在硝酸盐限制条件下表现更好,这种表型与StNR表达受抑制有关。此外,StNR DAP-seq区域的缺失也消除了StCDF1的抑制作用,但并不影响NLP7对StNR启动子的依赖性激活。我们在具有早期StCDF1等位基因的马铃薯栽培品种中发现了DAP-seq区域的多个核苷酸多态性,这表明这种遗传变异是作为StCDF1稳定的负面影响的补偿机制而被选择的。因此,对 StCDF1 识别元件进行定向修饰是提高马铃薯中 StNR 限制性活性的一种有前途的策略。
{"title":"StCDF1: A 'jack of all trades' clock output with a central role in regulating potato nitrate reduction activity.","authors":"Maroof Ahmed Shaikh, Lorena Ramírez-Gonzales, José M Franco-Zorrilla, Evyatar Steiner, Marian Oortwijn, Christian W B Bachem, Salomé Prat","doi":"10.1111/nph.20186","DOIUrl":"https://doi.org/10.1111/nph.20186","url":null,"abstract":"<p><p>Transcription factors of the CYCLING DOF FACTOR (CDF) family activate in potato the SP6A FT tuberization signal in leaves. In modern cultivars, truncated StCDF1.2 alleles override strict SD control by stabilizing the StCDF1 protein, which leads to StCOL1 suppression and impaired activation of the antagonic SP5G paralog. By using DAP-seq and RNA-seq studies, we here show that StCDF1 not only acts as an upstream regulator of the day length pathway but also directly regulates several N assimilation and transport genes. StCDF1 directly represses expression of NITRATE REDUCTASE (NR/NIA), which catalyses the first reduction step in nitrate assimilation, and is encoded by a single potato locus. StCDF1 knock-down lines performed better in N-limiting conditions, and this phenotype correlated with derepressed StNR expression. Also, deletion of the StNR DAP-seq region abolished repression by StCDF1, while it did not affect NLP7-dependent activation of the StNR promoter. We identified multiple nucleotide polymorphisms in the DAP-seq region in potato cultivars with early StCDF1 alleles, suggesting that this genetic variation was selected as compensatory mechanism to the negative impact of StCDF1 stabilization. Thereby, directed modification of the StCDF1-recognition elements emerges as a promising strategy to enhance limiting StNR activity in potato.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From synthetic communities to synthetic ecosystems: exploring causalities in plant-microbe-environment interactions. 从合成群落到合成生态系统:探索植物-微生物-环境相互作用的因果关系。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-05 DOI: 10.1111/nph.20250
Guillaume Chesneau, Johannes Herpell, Rubén Garrido-Oter, Stéphane Hacquard

The plant microbiota research field has rapidly shifted from efforts aimed at gaining a descriptive understanding of microbiota composition to a focus on acquiring mechanistic insights into microbiota functions and assembly rules. This evolution was driven by our ability to establish comprehensive collections of plant-associated microbes and to reconstruct meaningful microbial synthetic communities (SynComs). We argue that this powerful deconstruction-reconstruction strategy can be used to reconstitute increasingly complex synthetic ecosystems (SynEcos) and mechanistically understand high-level biological organization. The transitioning from simple to more advanced, fully tractable and programmable gnotobiotic SynEcos is ongoing and aims at rationally simplifying natural ecosystems by engineering them. Such reconstitution ecology approaches represent an untapped strategy for bridging the gap between ecology and functional biology and for unraveling plant-microbiota-environment mechanisms that modulate ecosystem health, assembly, and functioning.

植物微生物区系研究领域已迅速从旨在获得对微生物区系组成的描述性理解,转变为侧重于从机理上深入了解微生物区系的功能和组装规则。我们有能力全面收集植物相关微生物,并重建有意义的微生物合成群落(SynComs),从而推动了这一演变。我们认为,这种强大的解构-重建策略可用于重建日益复杂的合成生态系统(SynEcos),并从机理上理解高级生物组织。从简单到更先进、完全可控和可编程的非生物合成生态系统的过渡正在进行中,其目的是通过工程设计合理地简化自然生态系统。这种重组生态学方法是一种尚未开发的策略,可弥合生态学与功能生物学之间的差距,并揭示植物-微生物群-环境调节生态系统健康、组合和功能的机制。
{"title":"From synthetic communities to synthetic ecosystems: exploring causalities in plant-microbe-environment interactions.","authors":"Guillaume Chesneau, Johannes Herpell, Rubén Garrido-Oter, Stéphane Hacquard","doi":"10.1111/nph.20250","DOIUrl":"https://doi.org/10.1111/nph.20250","url":null,"abstract":"<p><p>The plant microbiota research field has rapidly shifted from efforts aimed at gaining a descriptive understanding of microbiota composition to a focus on acquiring mechanistic insights into microbiota functions and assembly rules. This evolution was driven by our ability to establish comprehensive collections of plant-associated microbes and to reconstruct meaningful microbial synthetic communities (SynComs). We argue that this powerful deconstruction-reconstruction strategy can be used to reconstitute increasingly complex synthetic ecosystems (SynEcos) and mechanistically understand high-level biological organization. The transitioning from simple to more advanced, fully tractable and programmable gnotobiotic SynEcos is ongoing and aims at rationally simplifying natural ecosystems by engineering them. Such reconstitution ecology approaches represent an untapped strategy for bridging the gap between ecology and functional biology and for unraveling plant-microbiota-environment mechanisms that modulate ecosystem health, assembly, and functioning.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1