首页 > 最新文献

New Phytologist最新文献

英文 中文
Paleobotany reframes the fiery debate on Australia's rainforest edges. 古植物学重构了关于澳大利亚热带雨林边缘的激烈辩论。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-27 DOI: 10.1111/nph.20301
Peter Wilf, Robert M Kooyman

The tall eucalypt forests (TEFs) of the Australian tropics are often portrayed as threatened by 'invasive' neighboring rainforests, requiring 'protective' burning. This framing overlooks that Australian rainforests have suffered twice the historical losses of TEFs and ignores the ecological and paleobiological significance of rainforest margins. Early Eocene fossils from Argentina show that biodiverse rainforests with abundant Eucalyptus existed > 50 million years ago (Ma) in West Gondwana, shaped by nonfire disturbance factors such as landslides and volcanic flows. Humid volcanic environments with eucalypts were also present in eastern Australia over much of the Cenozoic. The dominance of fire-adapted eucalypts appears to be geologically recent and is linked to Neogene C4 grassland expansion, Pleistocene climate cycles, and human activity. We suggest that characterizing TEFs and rainforests as adversarial results from misinterpreting the evolutionary history and expansion-contraction dynamics of a single humid forest system, whose features are now heavily modified by human activities. The resulting management practices damage the outstanding World Heritage values and carbon storage of affected areas and thus have impacts far beyond Australia. The fossil evidence shows that rainforest margins preserve ancient, still evolving, and globally significant forest interactions that should be prioritized for restoration and research.

澳大利亚热带地区的高大桉树林(TEFs)经常被描述为受到邻近热带雨林 "入侵 "的威胁,需要 "保护性 "燃烧。这种说法忽视了澳大利亚雨林遭受的损失是热带雨林历史损失的两倍,也忽视了雨林边缘的生态和古生物学意义。阿根廷早始新世的化石表明,在距今 5000 万年前的西冈瓦纳地区,生物多样性丰富的雨林中生长着大量的桉树,这些雨林是由山体滑坡和火山流等非火灾干扰因素形成的。在新生代的大部分时间里,澳大利亚东部也存在着桉树的潮湿火山环境。适应火的桉树占主导地位似乎是最近才出现的地质现象,与新近纪C4草原扩张、更新世气候周期和人类活动有关。我们认为,将 TEFs 和热带雨林定性为对立的原因在于曲解了单一湿润森林系统的进化历史和扩张-收缩动态,而人类活动目前已严重改变了这一系统的特征。由此产生的管理实践破坏了受影响地区杰出的世界遗产价值和碳储存,因此其影响远远超出了澳大利亚。化石证据表明,雨林边缘保留了古老的、仍在演变的、具有全球意义的森林相互作用,应优先进行恢复和研究。
{"title":"Paleobotany reframes the fiery debate on Australia's rainforest edges.","authors":"Peter Wilf, Robert M Kooyman","doi":"10.1111/nph.20301","DOIUrl":"https://doi.org/10.1111/nph.20301","url":null,"abstract":"<p><p>The tall eucalypt forests (TEFs) of the Australian tropics are often portrayed as threatened by 'invasive' neighboring rainforests, requiring 'protective' burning. This framing overlooks that Australian rainforests have suffered twice the historical losses of TEFs and ignores the ecological and paleobiological significance of rainforest margins. Early Eocene fossils from Argentina show that biodiverse rainforests with abundant Eucalyptus existed > 50 million years ago (Ma) in West Gondwana, shaped by nonfire disturbance factors such as landslides and volcanic flows. Humid volcanic environments with eucalypts were also present in eastern Australia over much of the Cenozoic. The dominance of fire-adapted eucalypts appears to be geologically recent and is linked to Neogene C<sub>4</sub> grassland expansion, Pleistocene climate cycles, and human activity. We suggest that characterizing TEFs and rainforests as adversarial results from misinterpreting the evolutionary history and expansion-contraction dynamics of a single humid forest system, whose features are now heavily modified by human activities. The resulting management practices damage the outstanding World Heritage values and carbon storage of affected areas and thus have impacts far beyond Australia. The fossil evidence shows that rainforest margins preserve ancient, still evolving, and globally significant forest interactions that should be prioritized for restoration and research.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piecing together oomycete effector processing and host translocation. 拼凑卵菌效应子处理和宿主转运。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-23 DOI: 10.1111/nph.20291
Claudia-Nicole Meisrimler, Sophie Eccersall
{"title":"Piecing together oomycete effector processing and host translocation.","authors":"Claudia-Nicole Meisrimler, Sophie Eccersall","doi":"10.1111/nph.20291","DOIUrl":"https://doi.org/10.1111/nph.20291","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking leaf dark respiration to leaf traits and reflectance spectroscopy across diverse forest types. 将不同森林类型的叶片暗呼吸与叶片特征和反射光谱学联系起来。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-19 DOI: 10.1111/nph.20267
Fengqi Wu, Shuwen Liu, Julien Lamour, Owen K Atkin, Nan Yang, Tingting Dong, Weiying Xu, Nicholas G Smith, Zhihui Wang, Han Wang, Yanjun Su, Xiaojuan Liu, Yue Shi, Aijun Xing, Guanhua Dai, Jinlong Dong, Nathan G Swenson, Jens Kattge, Peter B Reich, Shawn P Serbin, Alistair Rogers, Jin Wu, Zhengbing Yan

Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed. Here, we analyzed Rdark variability and its associations with Vcmax and other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative. We found that leaf magnesium and calcium concentrations were more significant in explaining cross-site Rdark than commonly used traits like LMA, N and P concentrations, but univariate trait-Rdark relationships were always weak (r2 ≤ 0.15) and forest-specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait-Rdark relationships, accurately predicted cross-site Rdark (r2 = 0.65) and pinpointed the factors contributing to Rdark variability. Our findings reveal a few novel traits with greater cross-site scalability regarding Rdark, challenging the use of empirical trait-Rdark relationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimating Rdark, which could ultimately improve process modeling of terrestrial plant respiration.

叶片暗呼吸(Rdark)是森林生态系统中碳循环的一个重要组成部分,但却很少被量化。在陆地生物圈模型中,叶片暗呼吸通常是通过叶片的特征(如最大羧化能力(Vcmax)、叶片单位面积质量(LMA)、氮(N)和磷(P)浓度)来模拟的。然而,这些关系在不同森林类型中的有效性仍有待全面评估。在这里,我们分析了 Rdark 变异性及其与 Vcmax 和其他叶片特征的关系,涉及中国的三类温带、亚热带和热带森林,评估了叶片光谱作为一种优质监测替代方法的有效性。我们发现,叶片镁和钙的浓度比 LMA、氮和磷的浓度等常用性状在解释跨地点 Rdark 方面更为显著,但是单变量性状与 Rdark 的关系总是很弱(r2 ≤ 0.15),而且具有森林特异性。虽然叶片性状的多变量关系提高了模型的性能,但叶片光谱学优于性状-Rdark 关系,能准确预测跨地点 Rdark(r2 = 0.65),并能精确定位导致 Rdark 变异的因素。我们的研究结果揭示了一些新的性状,这些性状在Rdark方面具有更大的跨位点可扩展性,这对在过程模型中使用经验性性状-Rdark关系提出了挑战,并强调了叶光谱作为估算Rdark的一种有前途的替代方法的潜力,最终可改进陆生植物呼吸过程模型。
{"title":"Linking leaf dark respiration to leaf traits and reflectance spectroscopy across diverse forest types.","authors":"Fengqi Wu, Shuwen Liu, Julien Lamour, Owen K Atkin, Nan Yang, Tingting Dong, Weiying Xu, Nicholas G Smith, Zhihui Wang, Han Wang, Yanjun Su, Xiaojuan Liu, Yue Shi, Aijun Xing, Guanhua Dai, Jinlong Dong, Nathan G Swenson, Jens Kattge, Peter B Reich, Shawn P Serbin, Alistair Rogers, Jin Wu, Zhengbing Yan","doi":"10.1111/nph.20267","DOIUrl":"10.1111/nph.20267","url":null,"abstract":"<p><p>Leaf dark respiration (R<sub>dark</sub>), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (V<sub>cmax</sub>), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed. Here, we analyzed R<sub>dark</sub> variability and its associations with V<sub>cmax</sub> and other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative. We found that leaf magnesium and calcium concentrations were more significant in explaining cross-site R<sub>dark</sub> than commonly used traits like LMA, N and P concentrations, but univariate trait-R<sub>dark</sub> relationships were always weak (r<sup>2</sup> ≤ 0.15) and forest-specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait-R<sub>dark</sub> relationships, accurately predicted cross-site R<sub>dark</sub> (r<sup>2</sup> = 0.65) and pinpointed the factors contributing to R<sub>dark</sub> variability. Our findings reveal a few novel traits with greater cross-site scalability regarding R<sub>dark</sub>, challenging the use of empirical trait-R<sub>dark</sub> relationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimating R<sub>dark</sub>, which could ultimately improve process modeling of terrestrial plant respiration.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fungal sRNA silences a host plant transcription factor to promote arbuscular mycorrhizal symbiosis. 真菌的 sRNA 能抑制宿主植物的转录因子,促进丛枝菌根共生。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-18 DOI: 10.1111/nph.20273
Alessandro Silvestri, William Conrad Ledford, Valentina Fiorilli, Cristina Votta, Alessia Scerna, Jacopo Tucconi, Antonio Mocchetti, Gianluca Grasso, Raffaella Balestrini, Hailing Jin, Ignacio Rubio-Somoza, Luisa Lanfranco

Cross-kingdom RNA interference (ckRNAi) is a mechanism of interspecies communication where small RNAs (sRNAs) are transported from one organism to another; these sRNAs silence target genes in trans by loading into host AGO proteins. In this work, we investigated the occurrence of ckRNAi in Arbuscular Mycorrhizal Symbiosis (AMS). We used an in silico prediction analysis to identify a sRNA (Rir2216) from the AM fungus Rhizophagus irregularis and its putative plant gene target, the Medicago truncatula MtWRKY69 transcription factor. Heterologous co-expression assays in Nicotiana benthamiana, 5' RACE reactions and AGO1-immunoprecipitation assays from mycorrhizal roots were used to characterize the Rir2216-MtWRKY69 interaction. We further analyzed MtWRKY69 expression profile and the contribution of constitutive and conditional MtWRKY69 expression to AMS. We show that Rir2216 is loaded into an AGO1 silencing complex from the host plant M. truncatula, leading to cleavage of a host target transcript encoding for the MtWRKY69 transcription factor. MtWRKY69 is specifically downregulated in arbusculated cells in mycorrhizal roots and increased levels of MtWRKY69 expression led to a reduced AM colonization level. Our results indicate that MtWRKY69 silencing, mediated by a fungal sRNA, is relevant for AMS; we thus present the first experimental evidence of fungus to plant ckRNAi in AMS.

跨域 RNA 干扰(ckRNAi)是一种种间交流机制,即小 RNA(sRNA)从一种生物体运输到另一种生物体;这些 sRNA 通过加载到宿主 AGO 蛋白中,反式抑制目标基因。在这项工作中,我们研究了丛枝菌根共生(AMS)中ckRNAi的发生。我们利用硅预测分析确定了来自AM真菌Rhizophagus irregularis的sRNA(Rir2216)及其推测的植物基因靶标--Medicago truncatula MtWRKY69转录因子。我们利用烟草中的异源共表达实验、5' RACE 反应和菌根中的 AGO1 免疫沉淀实验来确定 Rir2216-MtWRKY69 相互作用的特征。我们进一步分析了 MtWRKY69 的表达谱以及组成型和条件型 MtWRKY69 表达对 AMS 的贡献。我们发现,Rir2216 被加载到宿主植物 M. truncatula 的 AGO1 沉默复合体中,导致宿主目标转录本编码 MtWRKY69 转录因子被裂解。MtWRKY69在菌根的假根细胞中特异性下调,MtWRKY69表达水平的增加导致AM定殖水平的降低。我们的研究结果表明,由真菌 sRNA 介导的 MtWRKY69 沉默与 AMS 有关;因此,我们首次提出了 AMS 中真菌对植物 ckRNAi 的实验证据。
{"title":"A fungal sRNA silences a host plant transcription factor to promote arbuscular mycorrhizal symbiosis.","authors":"Alessandro Silvestri, William Conrad Ledford, Valentina Fiorilli, Cristina Votta, Alessia Scerna, Jacopo Tucconi, Antonio Mocchetti, Gianluca Grasso, Raffaella Balestrini, Hailing Jin, Ignacio Rubio-Somoza, Luisa Lanfranco","doi":"10.1111/nph.20273","DOIUrl":"https://doi.org/10.1111/nph.20273","url":null,"abstract":"<p><p>Cross-kingdom RNA interference (ckRNAi) is a mechanism of interspecies communication where small RNAs (sRNAs) are transported from one organism to another; these sRNAs silence target genes in trans by loading into host AGO proteins. In this work, we investigated the occurrence of ckRNAi in Arbuscular Mycorrhizal Symbiosis (AMS). We used an in silico prediction analysis to identify a sRNA (Rir2216) from the AM fungus Rhizophagus irregularis and its putative plant gene target, the Medicago truncatula MtWRKY69 transcription factor. Heterologous co-expression assays in Nicotiana benthamiana, 5' RACE reactions and AGO1-immunoprecipitation assays from mycorrhizal roots were used to characterize the Rir2216-MtWRKY69 interaction. We further analyzed MtWRKY69 expression profile and the contribution of constitutive and conditional MtWRKY69 expression to AMS. We show that Rir2216 is loaded into an AGO1 silencing complex from the host plant M. truncatula, leading to cleavage of a host target transcript encoding for the MtWRKY69 transcription factor. MtWRKY69 is specifically downregulated in arbusculated cells in mycorrhizal roots and increased levels of MtWRKY69 expression led to a reduced AM colonization level. Our results indicate that MtWRKY69 silencing, mediated by a fungal sRNA, is relevant for AMS; we thus present the first experimental evidence of fungus to plant ckRNAi in AMS.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review of nurse objects as safe sites for seedling establishment and implications for restoration. 对作为育苗安全场所的哺育对象及其对恢复的影响进行系统审查。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-15 DOI: 10.1111/nph.20247
Hagai Shemesh

Direct human activity and global climatic changes are threatening the existence of many vegetated habitats. Seedling establishment, one of the riskiest plant life stages, must be successful for such habitats to persist. The establishment of seedlings is known to be enhanced by nurse effects, but most studies to date have looked at the nursing effects of plants while sidelining inanimate objects. Nevertheless, nurse objects can support seedling establishment via diverse mechanisms such as moderating abiotic stresses like extreme temperatures and drought, reducing negative biological interactions such as herbivory while enhancing positive processes like seed dispersal, and providing protection from physical disturbances such as trampling and fire. The robust nature of nurse objects highlights their potential in habitat restoration. The addition of nurse objects allows a simple, single-effort rehabilitation strategy that can later draw on natural seed dispersal and establishment. By achieving a better understanding of the processes in which nurse objects are involved we should be able to better predict vegetation dynamics and manipulate them to minimize adverse processes and support regeneration in natural habitats.

人类的直接活动和全球气候变化正在威胁着许多植被生境的生存。育苗是风险最大的植物生命阶段之一,必须成功育苗,此类生境才能持续存在。众所周知,植物幼苗的建立可以通过哺育作用得到加强,但迄今为止的大多数研究都是研究植物的哺育作用,而忽略了无生命物体的哺育作用。然而,哺育对象可以通过多种机制支持幼苗的建立,例如减缓极端温度和干旱等非生物压力,减少食草动物等负面生物交互作用,同时加强种子传播等积极过程,以及提供保护,使幼苗免受践踏和火灾等物理干扰。保育对象的强健特性凸显了其在生境恢复方面的潜力。通过添加保育对象,可以采取简单、一次性的恢复策略,并在以后利用种子的自然传播和建立。通过更好地了解护育对象参与的过程,我们应该能够更好地预测植被动态,并对其进行操作,以尽量减少不利过程,支持自然栖息地的再生。
{"title":"A systematic review of nurse objects as safe sites for seedling establishment and implications for restoration.","authors":"Hagai Shemesh","doi":"10.1111/nph.20247","DOIUrl":"10.1111/nph.20247","url":null,"abstract":"<p><p>Direct human activity and global climatic changes are threatening the existence of many vegetated habitats. Seedling establishment, one of the riskiest plant life stages, must be successful for such habitats to persist. The establishment of seedlings is known to be enhanced by nurse effects, but most studies to date have looked at the nursing effects of plants while sidelining inanimate objects. Nevertheless, nurse objects can support seedling establishment via diverse mechanisms such as moderating abiotic stresses like extreme temperatures and drought, reducing negative biological interactions such as herbivory while enhancing positive processes like seed dispersal, and providing protection from physical disturbances such as trampling and fire. The robust nature of nurse objects highlights their potential in habitat restoration. The addition of nurse objects allows a simple, single-effort rehabilitation strategy that can later draw on natural seed dispersal and establishment. By achieving a better understanding of the processes in which nurse objects are involved we should be able to better predict vegetation dynamics and manipulate them to minimize adverse processes and support regeneration in natural habitats.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation-dependent activation of the bHLH transcription factor ICE1/SCRM promotes polarization of the Arabidopsis zygote. 磷酸化依赖性激活 bHLH 转录因子 ICE1/SCRM 可促进拟南芥子实体的极化。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-14 DOI: 10.1111/nph.20265
Houming Chen, Feng Xiong, Alexa-Maria Wangler, Torren Bischoff, Kai Wang, Yingjing Miao, Daniel Slane, Rebecca Schwab, Thomas Laux, Martin Bayer

In Arabidopsis thaliana, the asymmetric cell division (ACD) of the zygote gives rise to the embryo proper and an extraembryonic suspensor, respectively. This process is controlled by the ERECTA-YODA-MPK3/6 receptor kinase-MAP kinase-signaling pathway, which also orchestrates ACDs in the epidermis. In this context, the bHLH transcription factor ICE1/SCRM is negatively controlled by MPK3/6-directed phosphorylation. However, it is unknown whether this regulatory module is similarly involved in the zygotic ACD. We investigated the function of SCRM in zygote polarization by analyzing the effect of loss-of-function alleles and variants that cannot be phosphorylated by MPK3/6, protein accumulation, and target gene expression. Our results show that SCRM has a critical function in zygote polarization and acts in parallel with the known MPK3/6 target WRKY2 in activating WOX8. Our work further demonstrates that SCRM activity in the early embryo is positively controlled by MPK3/6-mediated phosphorylation. Therefore, the effect of MAP kinase-directed phosphorylation of the same target protein fundamentally differs between the embryo and the epidermis, shedding light on cell type-specific, differential gene regulation by common signaling pathways.

在拟南芥中,合子的不对称细胞分裂(ACD)分别产生胚胎本体和胚外悬丝。这一过程受 ERECTA-YODA-MPK3/6 受体激酶-MAP 激酶信号通路的控制,该通路还协调表皮中的不对称细胞分裂。在这种情况下,bHLH 转录因子 ICE1/SCRM 受 MPK3/6 引导的磷酸化负向控制。然而,这一调控模块是否同样参与了合子ACD的调控尚不清楚。我们通过分析功能缺失等位基因和不能被MPK3/6磷酸化的变体的影响、蛋白积累和靶基因表达,研究了SCRM在子代极化中的功能。我们的研究结果表明,SCRM 在子代极化过程中具有关键功能,并与已知的 MPK3/6 靶标 WRKY2 在激活 WOX8 的过程中并行发挥作用。我们的工作进一步证明,SCRM 在早期胚胎中的活性受到 MPK3/6 介导的磷酸化的积极控制。因此,MAP 激酶引导的磷酸化对同一靶蛋白的影响在胚胎和表皮之间存在本质区别,从而揭示了细胞类型特异性、共同信号通路对不同基因的调控。
{"title":"Phosphorylation-dependent activation of the bHLH transcription factor ICE1/SCRM promotes polarization of the Arabidopsis zygote.","authors":"Houming Chen, Feng Xiong, Alexa-Maria Wangler, Torren Bischoff, Kai Wang, Yingjing Miao, Daniel Slane, Rebecca Schwab, Thomas Laux, Martin Bayer","doi":"10.1111/nph.20265","DOIUrl":"10.1111/nph.20265","url":null,"abstract":"<p><p>In Arabidopsis thaliana, the asymmetric cell division (ACD) of the zygote gives rise to the embryo proper and an extraembryonic suspensor, respectively. This process is controlled by the ERECTA-YODA-MPK3/6 receptor kinase-MAP kinase-signaling pathway, which also orchestrates ACDs in the epidermis. In this context, the bHLH transcription factor ICE1/SCRM is negatively controlled by MPK3/6-directed phosphorylation. However, it is unknown whether this regulatory module is similarly involved in the zygotic ACD. We investigated the function of SCRM in zygote polarization by analyzing the effect of loss-of-function alleles and variants that cannot be phosphorylated by MPK3/6, protein accumulation, and target gene expression. Our results show that SCRM has a critical function in zygote polarization and acts in parallel with the known MPK3/6 target WRKY2 in activating WOX8. Our work further demonstrates that SCRM activity in the early embryo is positively controlled by MPK3/6-mediated phosphorylation. Therefore, the effect of MAP kinase-directed phosphorylation of the same target protein fundamentally differs between the embryo and the epidermis, shedding light on cell type-specific, differential gene regulation by common signaling pathways.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling. 通过数学建模揭示植物病原体 Ralstonia pseudosolanacearum 在植物体内的种群动态。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-04 DOI: 10.1111/nph.20216
Caroline Baroukh, Léo Gerlin, Antoine Escourrou, Stéphane Genin

Ralstonia pseudosolanacearum, a plant pathogen responsible for bacterial wilt in numerous plant species, exhibits paradoxical growth in the host by achieving high bacterial densities in xylem sap, an environment traditionally considered nutrient-poor. This study combined in vitro experiments and mathematical modeling to elucidate the population dynamics of R. pseudosolanacearum within plants. To simulate the xylem environment, a tomato xylem-mimicking medium was developed. Then, a mathematical model was constructed using in vitro data and employed to simulate the dynamics of bacterial density and xylem sap composition during plant infection. The model accurately reproduced in planta experimental observations, including high bacterial densities and the depletion of glutamine and asparagine. Additionally, the model estimated the minimal number of bacteria required to initiate infection, the timing of infection post-inoculation, the bacterial mortality rate within the plant and the rate at which bacterial putrescine is assimilated by the plant. The findings demonstrate that xylem sap can sustain high bacterial densities, provides an explanatory framework for the presence of acetate, putrescine and 3-hydroxybutyrate in the sap of infected xylem and give clues as to the role of putrescine in the virulence of R. pseudosolanacearum.

假丝酵母菌(Ralstonia pseudosolanacearum)是一种植物病原体,可导致多种植物物种的细菌性枯萎病,它在寄主体内的生长表现出自相矛盾的特点,在木质部汁液中的细菌密度很高,而木质部汁液历来被认为是养分贫乏的环境。本研究将体外实验和数学建模相结合,以阐明 R. pseudosolanacearum 在植物体内的种群动态。为了模拟木质部环境,开发了一种番茄木质部模拟培养基。然后,利用体外数据构建了一个数学模型,用于模拟植物感染过程中细菌密度和木质部汁液成分的动态变化。该模型准确地再现了植物体内的实验观察结果,包括高细菌密度以及谷氨酰胺和天冬酰胺的耗竭。此外,该模型还估算了启动感染所需的最低细菌数量、接种后的感染时间、植物体内的细菌死亡率以及细菌腐胺被植物同化的速度。研究结果表明木质部汁液可以维持较高的细菌密度,为受感染木质部汁液中存在醋酸盐、腐霉胺和 3-hydroxybutyrate 提供了解释框架,并为腐霉胺在 R. pseudosolanacearum 的毒力中的作用提供了线索。
{"title":"Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling.","authors":"Caroline Baroukh, Léo Gerlin, Antoine Escourrou, Stéphane Genin","doi":"10.1111/nph.20216","DOIUrl":"https://doi.org/10.1111/nph.20216","url":null,"abstract":"<p><p>Ralstonia pseudosolanacearum, a plant pathogen responsible for bacterial wilt in numerous plant species, exhibits paradoxical growth in the host by achieving high bacterial densities in xylem sap, an environment traditionally considered nutrient-poor. This study combined in vitro experiments and mathematical modeling to elucidate the population dynamics of R. pseudosolanacearum within plants. To simulate the xylem environment, a tomato xylem-mimicking medium was developed. Then, a mathematical model was constructed using in vitro data and employed to simulate the dynamics of bacterial density and xylem sap composition during plant infection. The model accurately reproduced in planta experimental observations, including high bacterial densities and the depletion of glutamine and asparagine. Additionally, the model estimated the minimal number of bacteria required to initiate infection, the timing of infection post-inoculation, the bacterial mortality rate within the plant and the rate at which bacterial putrescine is assimilated by the plant. The findings demonstrate that xylem sap can sustain high bacterial densities, provides an explanatory framework for the presence of acetate, putrescine and 3-hydroxybutyrate in the sap of infected xylem and give clues as to the role of putrescine in the virulence of R. pseudosolanacearum.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A global overview of insect-fern interactions and its ecological trends. 昆虫与蕨类植物相互作用及其生态趋势的全球概览。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-11-03 DOI: 10.1111/nph.20229
Gabriela Fraga Porto, Diego V Anjos, Pedro Luna, Kleber Del-Claro

Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.

从历史上看,蕨类植物被昆虫利用不足。然而,研究表明昆虫与蕨类植物相互作用的多样性,尽管这些相互作用的进化和生态驱动因素仍有待解开。为了填补这些空白,我们从文献中整理了100多年来全球昆虫与蕨类植物相互作用的数据,包括374种蕨类植物和649种昆虫。利用这个数据库,我们评估了蕨类植物的营养特化、系统发育关系和气候是如何影响它们与昆虫的相互作用的。我们的研究结果表明,蕨类植物与昆虫之间的相互作用可以用它们之间的系统发育关系来解释。我们观察到,隶属于内页目(Endopterygota)支系的昆虫目倾向于与相似的蕨类植物发生相互作用,这可能是由于系统发育的生态位保护主义,内页目(Endopterygota)的祖先继承了蕨类植物。在生态背景下,蕨类植物的特化程度随着温度、降水量和气候稳定性的增加而增加。我们的研究结果表明,气候可能是解释昆虫与蕨类植物相互作用空间差异的主要因素之一,这一推测也得到了所研究的蕨类植物物种系统发育聚类的支持。我们的研究凸显了昆虫与蕨类植物相互作用的复杂性和多面性,进化史和生态因素共同塑造了这些关系。
{"title":"A global overview of insect-fern interactions and its ecological trends.","authors":"Gabriela Fraga Porto, Diego V Anjos, Pedro Luna, Kleber Del-Claro","doi":"10.1111/nph.20229","DOIUrl":"https://doi.org/10.1111/nph.20229","url":null,"abstract":"<p><p>Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together. GSK3s 磷酸化 phyB,这是温度传感器结合在一起的关键机制。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-28 DOI: 10.1111/nph.20232
Chloe Zubieta, Stephanie Hutin, Jae-Hoon Jung, Xuelei Lai
{"title":"Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together.","authors":"Chloe Zubieta, Stephanie Hutin, Jae-Hoon Jung, Xuelei Lai","doi":"10.1111/nph.20232","DOIUrl":"https://doi.org/10.1111/nph.20232","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 23-million-year record of morphological evolution within Neotropical grass pollen. 新热带禾本科花粉形态演变的 2300 万年记录。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-10-27 DOI: 10.1111/nph.20214
Caixia Wei, Mao Li, Limi Mao, Luke Mander, Phillip E Jardine, William D Gosling, Carina Hoorn

Grass-dominated biomes in South America comprise c. 20 million years of history, yet their evolution and underlying drivers remain poorly understood. Here we apply a novel approach that combines scanning electron microscopy imaging with computational analysis to quantify the morphometrics of grass (Poaceae) pollen micro-ornamentation from the Neotropics since the Early Miocene (23 million years ago). Three spatial-temporal pollen sets were assembled to further elucidate the variation and evolutionary traits of grasses through space and time. Our results reveals that three spatial-temporal pollen groups occupy unique, partially overlapping regions of their exine morphospace. The direction of this shift is consistent over time, progressing towards less dense ornamentation. Interestingly, the extent of the occupied morphospace did not vary significantly. This is the first time that the true morphological variation in Poaceae pollen micro-ornamentation becomes apparent through time. We hypothesize that changes in grass pollen exine since the Early Miocene were driven by evolutionary processes (evolutionary drift and/or directional selection), and potentially migration at the continental scale. The high diversity in pollen micro-ornamentation is likely related to their evolutionary success in the Neogene.

南美洲以草为主的生物群落已有约 2000 万年的历史,但人们对它们的演化和内在驱动因素仍然知之甚少。在这里,我们采用了一种结合扫描电子显微镜成像和计算分析的新方法,对新热带地区自早中新世(2300 万年前)以来的禾本科(Poaceae)花粉微角的形态计量进行了量化。我们收集了三个时空花粉集,以进一步阐明禾本科植物在不同时空的变异和进化特征。我们的研究结果表明,三个空间-时间花粉组占据了其外显子形态空间中独特的、部分重叠的区域。随着时间的推移,这种转变的方向是一致的,都是朝着较不密集的装饰物方向发展。有趣的是,所占据的形态空间范围并无明显变化。这是首次发现禾本科植物花粉微装饰随着时间的推移而发生的真正形态变化。我们推测,早中新世以来禾本科花粉微丝的变化是由进化过程(进化漂移和/或定向选择)以及可能的大陆尺度迁移所驱动的。花粉微角的高度多样性很可能与它们在新近纪的成功进化有关。
{"title":"A 23-million-year record of morphological evolution within Neotropical grass pollen.","authors":"Caixia Wei, Mao Li, Limi Mao, Luke Mander, Phillip E Jardine, William D Gosling, Carina Hoorn","doi":"10.1111/nph.20214","DOIUrl":"https://doi.org/10.1111/nph.20214","url":null,"abstract":"<p><p>Grass-dominated biomes in South America comprise c. 20 million years of history, yet their evolution and underlying drivers remain poorly understood. Here we apply a novel approach that combines scanning electron microscopy imaging with computational analysis to quantify the morphometrics of grass (Poaceae) pollen micro-ornamentation from the Neotropics since the Early Miocene (23 million years ago). Three spatial-temporal pollen sets were assembled to further elucidate the variation and evolutionary traits of grasses through space and time. Our results reveals that three spatial-temporal pollen groups occupy unique, partially overlapping regions of their exine morphospace. The direction of this shift is consistent over time, progressing towards less dense ornamentation. Interestingly, the extent of the occupied morphospace did not vary significantly. This is the first time that the true morphological variation in Poaceae pollen micro-ornamentation becomes apparent through time. We hypothesize that changes in grass pollen exine since the Early Miocene were driven by evolutionary processes (evolutionary drift and/or directional selection), and potentially migration at the continental scale. The high diversity in pollen micro-ornamentation is likely related to their evolutionary success in the Neogene.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1