首页 > 最新文献

New Phytologist最新文献

英文 中文
Unravelling meiosis in wheat. 揭开小麦减数分裂的神秘面纱。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-20 DOI: 10.1111/nph.19853
Dylan W Phillips, Andrew Lloyd
{"title":"Unravelling meiosis in wheat.","authors":"Dylan W Phillips, Andrew Lloyd","doi":"10.1111/nph.19853","DOIUrl":"https://doi.org/10.1111/nph.19853","url":null,"abstract":"","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. 气孔对蒸汽压力不足的反应推动了热带森林光合作用的表观温度反应。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-12 DOI: 10.1111/nph.19806
Martijn Slot, Sami W Rifai, Chinedu E Eze, Klaus Winter

As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (Topt) of trees from a VPD-confounded apparent Topt of c. 30-31°C to a VPD-independent Topt of c. 33-36°C, while for lianas no VPD-independent Topt was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining Topt misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.

随着气温的升高,热带森林的净碳吸收量会减少,但人们对其深层机理并不十分清楚。高温可以直接限制光合作用,例如通过降低生化能力,或通过增加蒸气压差(VPD)导致气孔关闭来间接限制光合作用。为了探索温度和蒸气压差对光合作用的独立影响,我们使用广义相加模型分析了巴拿马两片热带雨林树冠上部的光合作用数据。气孔导度和光合作用始终随着 VPD 的升高而降低,而根据 VPD 的统计结果,乔木的光合作用最适温度(Topt)从与 VPD 有关的约 30-31°C 的表观 Topt 提高到了与 VPD 无关的约 33-36°C 的 Topt,而藤本植物在测量的温度范围内没有达到与 VPD 无关的 Topt。尽管两个森林的年平均降雨量相差 1500 毫米,但树木和藤本植物对温度和 VPD 的反应相似。在与生态相关的温度范围内,热带森林的光合作用主要受限于变暖的间接影响,即 VPD 的变化,而非光合生物化学的直接变暖效应。在确定 Topt 时,如果不考虑 VPD,就会错误地归因于潜在的因果机制,从而阻碍从机理上理解全球变暖对热带森林碳动态的影响。
{"title":"The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests.","authors":"Martijn Slot, Sami W Rifai, Chinedu E Eze, Klaus Winter","doi":"10.1111/nph.19806","DOIUrl":"https://doi.org/10.1111/nph.19806","url":null,"abstract":"<p><p>As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (T<sub>opt</sub>) of trees from a VPD-confounded apparent T<sub>opt</sub> of c. 30-31°C to a VPD-independent T<sub>opt</sub> of c. 33-36°C, while for lianas no VPD-independent T<sub>opt</sub> was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining T<sub>opt</sub> misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GLR-dependent calcium and electrical signals are not coupled to systemic, oxylipin-based wound-induced gene expression in Marchantia polymorpha. 依赖于 GLR 的钙信号和电信号并不与基于氧化脂的系统性伤口诱导基因表达相关联。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-05-10 DOI: 10.1111/nph.19803
Maite Sanmartín, Enrique Rojo, Andrzej Kurenda, Beatriz Larruy-García, Ángel M Zamarreño, M Otilia Delgadillo, Pavel Brito-Gutiérrez, José M García-Mina, Edward E Farmer, Jose J Sánchez-Serrano

In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca2+ ([Ca2+]cyt) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca2+]cyt waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca2+]cyt waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca2+]cyt waves, contribute to systemic activation of defences in tracheophytes.

在被子植物中,来自伤口的信号通过脉管系统激活整个植株的防御反应。在拟南芥中,脉管特异性 3 族谷氨酸受体样(GLR)通道的活性是电信号和细胞膜 Ca2+ ([Ca2+]cyt)波从受伤叶片传输到远端组织所必需的,从而触发了依赖氧脂素的防御激活。非维管束植物在受伤时是否会产生系统反应仍是未知数。为了探索系统防御反应的演变,我们研究了非维管束植物 Marchantia polymorpha 的电信号和钙信号。我们发现,电信号和[Ca2+]cyt 波是对机械伤口的反应,并传播到多甲马钱科植物未受损的远端组织。MpGLR 是 M. polymorpha 基因组中唯一编码的 GLR,对它的功能分析表明,它的活性对于伤口诱导的电信号和[Ca2+]cyt 波的系统传播是必要的,这一点与维管植物类似。然而,这些信号的传播既没有与氧化脂素的系统积累相联系,也没有与受伤的多甲藻植物远端组织的转录防御反应相联系。我们的研究结果表明,缺乏脉管系统阻碍了其他信号因子的转移,而这些信号因子与电信号和[Ca2+]cyt 波一起,有助于激活气管植物的系统防御能力。
{"title":"GLR-dependent calcium and electrical signals are not coupled to systemic, oxylipin-based wound-induced gene expression in Marchantia polymorpha.","authors":"Maite Sanmartín, Enrique Rojo, Andrzej Kurenda, Beatriz Larruy-García, Ángel M Zamarreño, M Otilia Delgadillo, Pavel Brito-Gutiérrez, José M García-Mina, Edward E Farmer, Jose J Sánchez-Serrano","doi":"10.1111/nph.19803","DOIUrl":"https://doi.org/10.1111/nph.19803","url":null,"abstract":"<p><p>In angiosperms, wound-derived signals travel through the vasculature to systemically activate defence responses throughout the plant. In Arabidopsis thaliana, activity of vasculature-specific Clade 3 glutamate receptor-like (GLR) channels is required for the transmission of electrical signals and cytosolic Ca<sup>2+</sup> ([Ca<sup>2+</sup>]<sub>cyt</sub>) waves from wounded leaves to distal tissues, triggering activation of oxylipin-dependent defences. Whether nonvascular plants mount systemic responses upon wounding remains unknown. To explore the evolution of systemic defence responses, we investigated electrical and calcium signalling in the nonvascular plant Marchantia polymorpha. We found that electrical signals and [Ca<sup>2+</sup>]<sub>cyt</sub> waves are generated in response to mechanical wounding and propagated to nondamaged distal tissues in M. polymorpha. Functional analysis of MpGLR, the only GLR encoded in the genome of M. polymorpha, indicates that its activity is necessary for the systemic transmission of wound-induced electrical signals and [Ca<sup>2+</sup>]<sub>cyt</sub> waves, similar to vascular plants. However, spread of these signals is neither coupled to systemic accumulation of oxylipins nor to a transcriptional defence response in the distal tissues of wounded M. polymorpha plants. Our results suggest that lack of vasculature prevents translocation of additional signalling factors that, together with electrical signals and [Ca<sup>2+</sup>]<sub>cyt</sub> waves, contribute to systemic activation of defences in tracheophytes.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis 干扰对世界森林冠层植物群落的复杂影响:综述和综合。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-10-10 DOI: 10.1111/nph.19245
Nalini M. Nadkarni

Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human-induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch-clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.

表生植物及其相关生物群越来越被认为有助于生物多样性和填补世界森林的关键生态系统功能。然而,使它们在树冠环境中取得成功的特性也使它们容易受到自然和人类引起的干扰。利用生态学框架来理解干扰,我对干扰对附生材料的驱动因素和后果进行了分类和综合。在所有影响中,扰动因子在热带和温带地区都更有可能导致负面影响,而不是正面影响。值得注意的是,更多的研究报告了对丰度、多样性、群落组成和连通性的负面影响,但一些研究表明,干扰增强了这些属性。尽管特定的干扰因素对个体后果的影响没有不同,但它们解释了合计总量变化的很大一部分。令人惊讶的是,相对于人类的干扰,自然干扰更有可能导致负面影响。许多研究为有效的社会应对措施提供了建议,以减轻负面影响,如在林业作业中保留大型老树,为附生植物收割进行斑块清理,最大限度地扩大森林碎片大小,使用附生植物作为干扰的生物指标,以及将社区林业原则应用于土地管理。未来的行动还应包括向决策者和土地管理者传达这些结果。
{"title":"Complex consequences of disturbance on canopy plant communities of world forests: a review and synthesis","authors":"Nalini M. Nadkarni","doi":"10.1111/nph.19245","DOIUrl":"10.1111/nph.19245","url":null,"abstract":"<p>Epiphytes and their associated biota are increasingly recognized as contributing to biodiversity and to filling critical ecosystem functions in world forests. However, the attributes that have made them successful in canopy environments also make them vulnerable to natural and human-induced disturbances. Drawing upon ecological frameworks to understand disturbance, I categorized and synthesized the drivers and the consequences of disturbances on epiphytic materials. Across all impacts, disturbance agents were significantly more likely to lead to negative, rather than positive, effects in both tropical and temperate locales. Significantly more studies reported negative effects on abundance, diversity, community composition and connectivity, but some studies showed that disturbances enhanced these attributes. Although particular disturbance agents did not differently influence individual consequences, they explained a significant portion of variation in aggregated totals. Surprisingly, relative to human disturbances, natural disturbances were more likely to lead to negative effects. Many studies provided recommendations for effective societal responses to mitigate negative impacts, such as retaining large, old trees in forestry operations, patch-clearing for epiphyte harvest, maximizing forest fragment size, using epiphytes as bioindicators of disturbance, and applying principles of community forestry to land management. Future actions should also include communication of these results to policymakers and land managers.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41216833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tackling redundancy: genetic mechanisms underlying paralog compensation in plants 处理冗余:植物同源补偿的遗传机制。
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-09-19 DOI: 10.1111/nph.19267
Sessen Daniel Iohannes, David Jackson

Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed ‘a geneticist's nightmare’: It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies – the next frontier in plant functional studies.

基因复制是生物创新的强大来源,产生了经历不同命运的同源基因。同源基因之间的冗余是重复基因进化的一个有趣结果,长期以来,它在进化过程中的维持一直被认为是一个悖论。冗余也可以被称为“遗传学家的噩梦”:它阻碍了基因组编辑结果的可预测性,并限制了我们将基因型与表型联系起来的能力。对酵母和植物的遗传学研究表明,古代冗余复制品补偿功能丧失引起的剂量扰动的能力取决于基因表达的重新编程,这种现象被称为主动补偿。从对驱动冗余进化稳定性的化学计量约束的考虑开始,这篇综述旨在深入了解重复之间的主动补偿机制,这些机制可以用来打破并行依赖关系 - 植物功能研究的下一个前沿。
{"title":"Tackling redundancy: genetic mechanisms underlying paralog compensation in plants","authors":"Sessen Daniel Iohannes,&nbsp;David Jackson","doi":"10.1111/nph.19267","DOIUrl":"10.1111/nph.19267","url":null,"abstract":"<div>\u0000 \u0000 <p>Gene duplication is a powerful source of biological innovation giving rise to paralogous genes that undergo diverse fates. Redundancy between paralogous genes is an intriguing outcome of duplicate gene evolution, and its maintenance over evolutionary time has long been considered a paradox. Redundancy can also be dubbed ‘a geneticist's nightmare’: It hinders the predictability of genome editing outcomes and limits our ability to link genotypes to phenotypes. Genetic studies in yeast and plants have suggested that the ability of ancient redundant duplicates to compensate for dosage perturbations resulting from a loss of function depends on the reprogramming of gene expression, a phenomenon known as active compensation. Starting from considerations on the stoichiometric constraints that drive the evolutionary stability of redundancy, this review aims to provide insights into the mechanisms of active compensation between duplicates that could be targeted for breaking paralog dependencies – the next frontier in plant functional studies.</p>\u0000 </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41148514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry 通过探索性深度学习和成像流式细胞术对环境样本中的花粉进行演绎式自动分类
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-09-07 DOI: 10.1111/nph.19186
Claire M. Barnes, Ann L. Power, Daniel G. Barber, Richard K. Tennant, Richard T. Jones, G. Rob Lee, Jackie Hatton, Angela Elliott, Joana Zaragoza-Castells, Stephen M. Haley, Huw D. Summers, Minh Doan, Anne E. Carpenter, Paul Rees, John Love

{"title":"Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry","authors":"Claire M. Barnes,&nbsp;Ann L. Power,&nbsp;Daniel G. Barber,&nbsp;Richard K. Tennant,&nbsp;Richard T. Jones,&nbsp;G. Rob Lee,&nbsp;Jackie Hatton,&nbsp;Angela Elliott,&nbsp;Joana Zaragoza-Castells,&nbsp;Stephen M. Haley,&nbsp;Huw D. Summers,&nbsp;Minh Doan,&nbsp;Anne E. Carpenter,&nbsp;Paul Rees,&nbsp;John Love","doi":"10.1111/nph.19186","DOIUrl":"https://doi.org/10.1111/nph.19186","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conservation of beneficial microbes between the rhizosphere and the cyanosphere 根际和蓝层之间有益微生物的保护
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-09-05 DOI: 10.1111/nph.19225
Qing Zheng, Yuntao Hu, Suzanne M. Kosina, Marc W. Van Goethem, Susannah G. Tringe, Benjamin P. Bowen, Trent R. Northen

{"title":"Conservation of beneficial microbes between the rhizosphere and the cyanosphere","authors":"Qing Zheng,&nbsp;Yuntao Hu,&nbsp;Suzanne M. Kosina,&nbsp;Marc W. Van Goethem,&nbsp;Susannah G. Tringe,&nbsp;Benjamin P. Bowen,&nbsp;Trent R. Northen","doi":"10.1111/nph.19225","DOIUrl":"https://doi.org/10.1111/nph.19225","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thinking outside the F-box: how UFO controls angiosperm development F盒子之外的思考:不明飞行物如何控制被子植物的发育
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-09-04 DOI: 10.1111/nph.19234
Philippe Rieu, Mo?ra Arnoux-Courseaux, Gabrielle Tichtinsky, Fran?ois Parcy

The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.

花序和花朵的形成对被子植物的成功繁殖至关重要。在过去的几十年里,遗传学研究已经确定LEAFY转录因子和不明飞行物F-box蛋白是广泛被子植物物种花朵发育的两个主要调节因子。最近的研究表明,不明飞行物是一种转录辅因子,将LEAFY花调节因子重定向到新的顺式元件。在这篇综述中,我们总结了不明飞行物在不同物种中的各种作用,根据新发现分析了过去的结果,并强调了有待解决的关键问题。
{"title":"Thinking outside the F-box: how UFO controls angiosperm development","authors":"Philippe Rieu,&nbsp;Mo?ra Arnoux-Courseaux,&nbsp;Gabrielle Tichtinsky,&nbsp;Fran?ois Parcy","doi":"10.1111/nph.19234","DOIUrl":"https://doi.org/10.1111/nph.19234","url":null,"abstract":"<p>The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel <i>cis</i>-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19234","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3) MicroRNA 4407通过抑制根特异性异戊基转移酶(GmIPT3)调节大豆结瘤
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-31 DOI: 10.1111/nph.19222
Kejing Fan, Zhili Wang, Ching-Ching Sze, Yongchao Niu, Fuk-Ling Wong, Man-Wah Li, Hon-Ming Lam

{"title":"MicroRNA 4407 modulates nodulation in soybean by repressing a root-specific ISOPENTENYLTRANSFERASE (GmIPT3)","authors":"Kejing Fan,&nbsp;Zhili Wang,&nbsp;Ching-Ching Sze,&nbsp;Yongchao Niu,&nbsp;Fuk-Ling Wong,&nbsp;Man-Wah Li,&nbsp;Hon-Ming Lam","doi":"10.1111/nph.19222","DOIUrl":"https://doi.org/10.1111/nph.19222","url":null,"abstract":"<p>\u0000 \u0000 </p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41087865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Red macroalgae in the genomic era 基因组时代的红藻
IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-30 DOI: 10.1111/nph.19211
Michael Borg, Stacy A. Krueger-Hadfield, Christophe Destombe, Jonas Collén, Agnieszka Lipinska, Susana M. Coelho

Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.

红藻门(或红藻)是一个多样性和物种丰富的类群,形成了古菌门的三个主要谱系之一,古菌门是一个真核超类群,其质体来源于单一的初级内共生。红藻有几个特征,如相对较小的内含子贫乏的基因组,缺乏与运动相关的细胞骨架结构,如鞭毛和中心粒,以及高效的光合能力。多细胞红藻(或大型藻类)是最早进化出复杂多细胞性的分化真核生物谱系之一,尽管它们在生态、进化和商业上具有重要意义,但它们仍然是一组研究不足的生物。考虑到红藻基因组序列的可用性越来越高,我们对红藻生物学的基本方面进行了广泛的概述,并假设这将如何在未来几年加速红藻生物学许多领域的研究。
{"title":"Red macroalgae in the genomic era","authors":"Michael Borg,&nbsp;Stacy A. Krueger-Hadfield,&nbsp;Christophe Destombe,&nbsp;Jonas Collén,&nbsp;Agnieszka Lipinska,&nbsp;Susana M. Coelho","doi":"10.1111/nph.19211","DOIUrl":"https://doi.org/10.1111/nph.19211","url":null,"abstract":"<p>Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.19211","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41081736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
New Phytologist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1