Pub Date : 2025-01-03DOI: 10.1016/j.still.2024.106435
Geng Guo , Zhiying Deng , Jie Kuai , Xiaoying Peng , Lihua Wu , Guangruo Zeng , Zhen Ouyang , Jiayi Miao , Jie Lin
Water erosion exerts a profound impact on the terrestrial C cycling and its source/sink patterns through strongly affecting soil respiration (Rs). However, the systematic mechanism of erosion-induced CO2 emissions remains inadequately elucidated. Herein, we conducted a one-year field experiment to examine the effects of erosion and deposition on Rs, as well as the relationships between different environmental factors and Rs on a typical eroded slope in southern China. Samples of the topsoil (0–20 cm), classified as Ultisols, were collected from four landscape positions (top, up, middle and toe) with different erosional and depositional characteristics along three transects. We also utilized Biolog-Eco microplates to investigate the response of soil microbial community function to water erosion. The results indicated the accumulative Rs significantly differed among different sites (P < 0.05), primarily in the order of mid-slope< up-slope< toe-slope< top-slope, with the maximum and minimum values of 18.75 and 9.75 t CO2 ha−1 yr−1, respectively. Moreover, erosion remarkably reduced the soil organic carbon (SOC), nutrients, and the average well color development (AWCD) of the carbon sources in soil microbial communities, while deposition enhanced them. The Structural Equation Modeling (SEM) elucidated the multi-factor driving mechanism of erosional site, soil temperature (Ts5), moisture (SWC10), microbial biomass carbon (MBC), SOC, and Shannon’s index on Rs (R2=84.20 %). More importantly, SEM revealed that Ts5, SWC10, MBC, SOC were the most significant predictors of Rs. In summary, Rs was regulated by the interplay of hydrothermal factors, soil properties, and microbial characteristics under erosion and deposition conditions. There is a need to incorporate additional soil properties other than the hydrothermal double-factor model. Our findings highlighted the importance of water erosion on Rs and clarified its driving mechanism, providing a theoretical basis for better predicting and managing carbon-climate feedbacks.
水侵蚀通过强烈影响土壤呼吸(Rs),对陆地碳循环及其源汇模式产生深远影响。然而,侵蚀引起的二氧化碳排放的系统机制仍然没有充分阐明。通过为期一年的野外试验,研究了侵蚀和沉积对土壤中Rs的影响,以及不同环境因子与Rs的关系。表层土壤样品(0 ~ 20 cm)被划分为Ultisols,收集于3个样带上具有不同侵蚀和沉积特征的4个景观位置(顶部、上部、中部和趾部)。利用bio - eco微孔板研究了土壤微生物群落功能对水分侵蚀的响应。结果表明,不同站点间累积Rs差异显著(P <; 0.05),主要以中坡<; 上坡<; 下坡<; 顶坡顺序排列,最大值和最小值分别为18.75和9.75 t CO2 ha - 1 yr - 1。此外,侵蚀显著降低了土壤有机碳(SOC)、养分和土壤微生物群落碳源的平均井色发育(AWCD),而沉积则增强了它们。结构方程模型(SEM)揭示了侵蚀部位、土壤温度(Ts5)、水分(SWC10)、微生物生物量碳(MBC)、有机碳(SOC)和Shannon’s指数对Rs的多因素驱动机制(R2=84.20 %)。SEM结果显示,Ts5、SWC10、MBC、SOC是Rs的最显著预测因子。综上所述,Rs受侵蚀和沉积条件下热液因子、土壤性质和微生物特征的共同调控。除了热液双因素模型外,还需要纳入其他土壤特性。研究结果突出了水土流失对土壤的影响,阐明了水土流失的驱动机制,为更好地预测和管理碳-气候反馈提供了理论依据。
{"title":"Revealing the driving mechanism of soil respiration induced by water erosion in Ultisols landscape of southern China","authors":"Geng Guo , Zhiying Deng , Jie Kuai , Xiaoying Peng , Lihua Wu , Guangruo Zeng , Zhen Ouyang , Jiayi Miao , Jie Lin","doi":"10.1016/j.still.2024.106435","DOIUrl":"10.1016/j.still.2024.106435","url":null,"abstract":"<div><div>Water erosion exerts a profound impact on the terrestrial C cycling and its source/sink patterns through strongly affecting soil respiration (<em>Rs</em>). However, the systematic mechanism of erosion-induced CO<sub>2</sub> emissions remains inadequately elucidated. Herein, we conducted a one-year field experiment to examine the effects of erosion and deposition on <em>Rs</em>, as well as the relationships between different environmental factors and <em>Rs</em> on a typical eroded slope in southern China. Samples of the topsoil (0–20 cm), classified as <em>Ultisols</em>, were collected from four landscape positions (top, up, middle and toe) with different erosional and depositional characteristics along three transects. We also utilized Biolog-Eco microplates to investigate the response of soil microbial community function to water erosion. The results indicated the accumulative <em>Rs</em> significantly differed among different sites (<em>P</em> < 0.05), primarily in the order of mid-slope< up-slope< toe-slope< top-slope, with the maximum and minimum values of 18.75 and 9.75 t CO<sub>2</sub> ha<sup>−1</sup> yr<sup>−1</sup>, respectively. Moreover, erosion remarkably reduced the soil organic carbon (SOC), nutrients, and the average well color development (AWCD) of the carbon sources in soil microbial communities, while deposition enhanced them. The Structural Equation Modeling (SEM) elucidated the multi-factor driving mechanism of erosional site, soil temperature (<em>T</em><sub><em>s5</em></sub>), moisture (<em>SWC</em><sub><em>10</em></sub>), microbial biomass carbon (MBC), SOC, and Shannon’s index on <em>Rs</em> (<em>R</em><sup><em>2</em></sup>=84.20 %). More importantly, SEM revealed that <em>T</em><sub><em>s5</em></sub>, <em>SWC</em><sub><em>10</em></sub>, MBC, SOC were the most significant predictors of <em>Rs</em>. In summary, <em>Rs</em> was regulated by the interplay of hydrothermal factors, soil properties, and microbial characteristics under erosion and deposition conditions. There is a need to incorporate additional soil properties other than the hydrothermal double-factor model. Our findings highlighted the importance of water erosion on <em>Rs</em> and clarified its driving mechanism, providing a theoretical basis for better predicting and managing carbon-climate feedbacks.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106435"},"PeriodicalIF":6.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1016/j.still.2024.106439
Shijie Qin , Lingling Liu , W. Richard Whalley , Hu Zhou , Tusheng Ren , Weida Gao
The role of macropores is often ignored in classical models for predicting root elongation using soil penetrometer resistance (PR). In this study, we propose an empirical model that includes the effects of macropores and PR on maize (Zea mays L.) root elongation rate (RER) and compare its performance with three previous models. Undisturbed soil cores were collected from an 11-yr tillage experiment (including no-tillage and conventional tillage systems) in Northeast China. For each soil core, soil bulk density (BD), penetrometer resistance (PR), air-filled porosity (AFP), and pore size distribution from water release characteristics, and RER of maize seedlings at a matric potential of −20 kPa were determined. Results showed that RER negatively correlated with BD, PR, and the volume of ε<6 (the volume of pores less than 6 µm), but it was positively correlated with the AFP and ε>60 (the volume of pores greater than 60 µm) (P < 0.001). RER exhibited a 50 % reduction when PR was over 1.3 MPa or AFP was below 10 %. Additionally, RER became less sensitive to PR change at PR values greater than 1.3 MPa. The new RER model, which accounts for the influences of PR and macroporosity (> 60 µm), performed better in predicting RER than the previous models, with a root mean square error (RMSE) of 0.36. The new model is useful in simulating maize root distribution under field conditions.
{"title":"An improved approach for estimating root elongation rate from penetrometer resistance and macropore porosity on a silty clay loam soil","authors":"Shijie Qin , Lingling Liu , W. Richard Whalley , Hu Zhou , Tusheng Ren , Weida Gao","doi":"10.1016/j.still.2024.106439","DOIUrl":"10.1016/j.still.2024.106439","url":null,"abstract":"<div><div>The role of macropores is often ignored in classical models for predicting root elongation using soil penetrometer resistance (<em>PR</em>). In this study, we propose an empirical model that includes the effects of macropores and <em>PR</em> on maize (<em>Zea mays L</em>.) root elongation rate (<em>RER</em>) and compare its performance with three previous models. Undisturbed soil cores were collected from an 11-yr tillage experiment (including no-tillage and conventional tillage systems) in Northeast China. For each soil core, soil bulk density (<em>BD</em>), penetrometer resistance (<em>PR</em>), air-filled porosity <em>(AFP</em>), and pore size distribution from water release characteristics, and <em>RER</em> of maize seedlings at a matric potential of −20 kPa were determined. Results showed that <em>RER</em> negatively correlated with <em>BD</em>, <em>PR</em>, and the volume of <em>ε</em><sub><6</sub> (the volume of pores less than 6 µm), but it was positively correlated with the <em>AFP</em> and <em>ε</em><sub>>60</sub> (the volume of pores greater than 60 µm) (<em>P</em> < 0.001). <em>RER</em> exhibited a 50 % reduction when <em>PR</em> was over 1.3 MPa or <em>AFP</em> was below 10 %. Additionally, <em>RER</em> became less sensitive to <em>PR</em> change at <em>PR</em> values greater than 1.3 MPa. The new <em>RER</em> model, which accounts for the influences of <em>PR</em> and macroporosity (> 60 µm), performed better in predicting <em>RER</em> than the previous models, with a root mean square error (<em>RMSE</em>) of 0.36. The new model is useful in simulating maize root distribution under field conditions.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106439"},"PeriodicalIF":6.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1016/j.still.2024.106443
Meng-Ying Li , Wei Wang , Hai-Hong Yin , Yinglong Chen , Muhammad Ashraf , Hong-Yan Tao , Shi-Sheng Li , Wen-Ying Wang , Chang-Lang Yang , Yun-Li Xiao , Li Zhu , You-Cai Xiong
Arbuscular mycorrhizal fungi (AMF) are known to influence soil organic carbon (SOC) stock, but the mechanisms by which they affect SOC stability in the rhizosphere remains poorly understood. To address this gap, a 7-year field observation was conducted in a rainfed dryland maize field, with AMF inoculation, AMF exclusion (only benomyl treatment), and the control (no AMF and no benomyl). AMF introduction increased soil occluded particulate organic carbon (oPOC) and mineral-associated organic carbon (MAOC) contents by 15.6 % and 7.1 %, respectively, compared to the control. However, no significant changes were observed in free particulate organic carbon (fPOC) levels. As expected, AMF exclusion led to a general reduction in SOC content. Analyses of in situ13C labeling showed that AMF inoculation evidently promoted the retention of 13C in oPOC (13.6 %) and MAOC (5.4 %), thereby enhancing SOC stability. High-throughput sequencing results revealed that AMF inoculation led to significant increases in the diversity and abundance of rhizosphere fungal community, with higher co-occurrence network complexity. Meanwhile, the diversity and abundance of rhizosphere bacterial community were substantially reduced (p < 0.05). Importantly, long-term AMF inoculation was observed to weaken soil N stocks, and inhibit microbial hydrolase secretion for C sources. The findings suggest that AMF inoculation can conserve and stabilize SOC by enhancing fungal community proliferation, while reducing microbial extracellular enzyme activity through soil N depletion. Therefore, AMF can be considered rhizosphere carbon engineer that boost persistent carbon sink in drylands via selectively affecting SOC components. The findings provide new insights into global nature-based carbon neutrality strategies.
{"title":"The functional role of arbuscular mycorrhizal fungi in enhancing soil organic carbon stocks and stability in dryland","authors":"Meng-Ying Li , Wei Wang , Hai-Hong Yin , Yinglong Chen , Muhammad Ashraf , Hong-Yan Tao , Shi-Sheng Li , Wen-Ying Wang , Chang-Lang Yang , Yun-Li Xiao , Li Zhu , You-Cai Xiong","doi":"10.1016/j.still.2024.106443","DOIUrl":"10.1016/j.still.2024.106443","url":null,"abstract":"<div><div>Arbuscular mycorrhizal fungi (AMF) are known to influence soil organic carbon (SOC) stock, but the mechanisms by which they affect SOC stability in the rhizosphere remains poorly understood. To address this gap, a 7-year field observation was conducted in a rainfed dryland maize field, with AMF inoculation, AMF exclusion (only benomyl treatment), and the control (no AMF and no benomyl). AMF introduction increased soil occluded particulate organic carbon (oPOC) and mineral-associated organic carbon (MAOC) contents by 15.6 % and 7.1 %, respectively, compared to the control. However, no significant changes were observed in free particulate organic carbon (fPOC) levels. As expected, AMF exclusion led to a general reduction in SOC content. Analyses of <em>in situ</em> <sup>13</sup>C labeling showed that AMF inoculation evidently promoted the retention of <sup>13</sup>C in oPOC (13.6 %) and MAOC (5.4 %), thereby enhancing SOC stability. High-throughput sequencing results revealed that AMF inoculation led to significant increases in the diversity and abundance of rhizosphere fungal community, with higher co-occurrence network complexity. Meanwhile, the diversity and abundance of rhizosphere bacterial community were substantially reduced (<em>p</em> < 0.05). Importantly, long-term AMF inoculation was observed to weaken soil N stocks, and inhibit microbial hydrolase secretion for C sources. The findings suggest that AMF inoculation can conserve and stabilize SOC by enhancing fungal community proliferation, while reducing microbial extracellular enzyme activity through soil N depletion. Therefore, AMF can be considered rhizosphere carbon engineer that boost persistent carbon sink in drylands via selectively affecting SOC components. The findings provide new insights into global nature-based carbon neutrality strategies.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106443"},"PeriodicalIF":6.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.still.2024.106427
Hui Yang, Manoj K. Shukla, John Begay
Uncultivated agricultural land management by leaving biomass of the last crop planted in the field can prevent soil health degradation over time. However, the effects of different uncultivated land management practices on soil organic carbon stock, total nitrogen stock, and soil health changes remain unclear. A field experiment from June 2021 to September 2023 investigated the effects of integrated crop residue-uncultivated land management. The treatments include winter wheat in fall then uncultivated with entire crop biomass left in the farm (WT); corn in summer then uncultivated with biomass (CT); bare or no vegetation (BT); and continuous annual irrigated winter wheat (CWT). The study focused on investigating changes in soil organic carbon (SOC), soil inorganic carbon (SIC), total carbon (TC), and total nitrogen (TN) in 100 cm soil depth and quantifying cost budgeting, energy budgeting, and carbon budgeting in various treatments. The results showed that the highest SOC stock for 0–100 cm soil depth (115.2 Mg/ha) with an increase of 49.6 % was observed in CWT. However, the SIC stocks in CWT were 37.4 %, 52.4 %, and 36.3 % lower than those in BT, CT, and WT, respectively. No significant differences in TN stocks were observed between the four treatments after 3-year implementations of land management, WT showed slightly higher TN stock in 100 cm depth than the other three treatments. Considering the budgets of cost, energy, and carbon, although CT had the highest net returns of 7726.3 US$/ha, WT increased surface coverage thereby enhancing the net energy (275776.4 MJ/ha), energy use efficiency (12.0), energy profitability (10.97), carbon efficiency (12.41) and carbon sustainability index (11.41), accompanied by second highest net returns of 6610.6 US$/ha. Planting winter wheat in one season and then leaving the land uncultivated, with the entire biomass left on the land, not only reduces soil degradation but also improves carbon and energy efficiency. This approach could be an effective solution for land management and groundwater conservation in the Lower Rio Grande Valley.
{"title":"Soil carbon, nitrogen dynamics, and energy, carbon budgeting in response to uncultivated land management with crop biomass in the southwestern US","authors":"Hui Yang, Manoj K. Shukla, John Begay","doi":"10.1016/j.still.2024.106427","DOIUrl":"10.1016/j.still.2024.106427","url":null,"abstract":"<div><div>Uncultivated agricultural land management by leaving biomass of the last crop planted in the field can prevent soil health degradation over time. However, the effects of different uncultivated land management practices on soil organic carbon stock, total nitrogen stock, and soil health changes remain unclear. A field experiment from June 2021 to September 2023 investigated the effects of integrated crop residue-uncultivated land management. The treatments include winter wheat in fall then uncultivated with entire crop biomass left in the farm (WT); corn in summer then uncultivated with biomass (CT); bare or no vegetation (BT); and continuous annual irrigated winter wheat (CWT). The study focused on investigating changes in soil organic carbon (SOC), soil inorganic carbon (SIC), total carbon (TC), and total nitrogen (TN) in 100 cm soil depth and quantifying cost budgeting, energy budgeting, and carbon budgeting in various treatments. The results showed that the highest SOC stock for 0–100 cm soil depth (115.2 Mg/ha) with an increase of 49.6 % was observed in CWT. However, the SIC stocks in CWT were 37.4 %, 52.4 %, and 36.3 % lower than those in BT, CT, and WT, respectively. No significant differences in TN stocks were observed between the four treatments after 3-year implementations of land management, WT showed slightly higher TN stock in 100 cm depth than the other three treatments. Considering the budgets of cost, energy, and carbon, although CT had the highest net returns of 7726.3 US$/ha, WT increased surface coverage thereby enhancing the net energy (275776.4 MJ/ha), energy use efficiency (12.0), energy profitability (10.97), carbon efficiency (12.41) and carbon sustainability index (11.41), accompanied by second highest net returns of 6610.6 US$/ha. Planting winter wheat in one season and then leaving the land uncultivated, with the entire biomass left on the land, not only reduces soil degradation but also improves carbon and energy efficiency. This approach could be an effective solution for land management and groundwater conservation in the Lower Rio Grande Valley.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106427"},"PeriodicalIF":6.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.still.2024.106437
Lin Zhou , Jiangwen Li , Chenyang Xu , Wei Du , Zhe Liu , Feinan Hu
The degradation of soil structure in sandy regions undermines soil functionality and poses a significant threat to environmental sustainability. The incorporation of Pisha sandstone, a natural soil amendment, has been recognized as an effective intervention to reduce soil erosion and expand arable land in the Mu Us Sandy Land, China. However, the microstructural stability and resilience of amended sandy soil formed by mixing Pisha sandstone with sandy soils remain inadequately understood. This study aims to evaluate the effects of Pisha sandstone addition on the microstructural stability of sandy soils. Four amendment rates of Pisha sandstone (16.7 %, 33.3 %, 50 %, and 100 % w/w) and five water content levels (40 %-80 %) were tested. Key parameters related to microstructural stability and structural resilience were assessed using amplitude sweep and rotational shear tests via a rheometer. Results indicated that soil shear resistance (τLVR, τmax, τy), storage modulus (G'YP) and viscosity (η0) decreased with the addition of Pisha sandstone, attributed to its lubricating effect and swelling properties. Additionally, Pisha sandstone enhanced physical elasticity (γLVR) and structural recovery of sandy soil under conditions of low disturbance. However, when water content exceeded 50 %, the fluidity of the amended sandy soil increased with Pisha sandstone addition. The sandy soil with a Pisha sandstone addition rate of 16.7 % exhibited optimal structural elasticity, shear resistance, and stiffness. These findings provide valuable insights into the enhancement of sandy soil structural stability using Pisha sandstone, offering a scientific foundation for refining amendment ratios and advancing agricultural management practices.
{"title":"Effects of Pisha sandstone additions on microstructural stability of sandy soil in Mu Us Sandy Land, China","authors":"Lin Zhou , Jiangwen Li , Chenyang Xu , Wei Du , Zhe Liu , Feinan Hu","doi":"10.1016/j.still.2024.106437","DOIUrl":"10.1016/j.still.2024.106437","url":null,"abstract":"<div><div>The degradation of soil structure in sandy regions undermines soil functionality and poses a significant threat to environmental sustainability. The incorporation of Pisha sandstone, a natural soil amendment, has been recognized as an effective intervention to reduce soil erosion and expand arable land in the Mu Us Sandy Land, China. However, the microstructural stability and resilience of amended sandy soil formed by mixing Pisha sandstone with sandy soils remain inadequately understood. This study aims to evaluate the effects of Pisha sandstone addition on the microstructural stability of sandy soils. Four amendment rates of Pisha sandstone (16.7 %, 33.3 %, 50 %, and 100 % w/w) and five water content levels (40 %-80 %) were tested. Key parameters related to microstructural stability and structural resilience were assessed using amplitude sweep and rotational shear tests via a rheometer. Results indicated that soil shear resistance (τ<sub>LVR</sub>, τ<sub>max</sub>, τ<sub>y</sub>), storage modulus (G'<sub>YP</sub>) and viscosity (η<sub>0</sub>) decreased with the addition of Pisha sandstone, attributed to its lubricating effect and swelling properties. Additionally, Pisha sandstone enhanced physical elasticity (γ<sub>LVR</sub>) and structural recovery of sandy soil under conditions of low disturbance. However, when water content exceeded 50 %, the fluidity of the amended sandy soil increased with Pisha sandstone addition. The sandy soil with a Pisha sandstone addition rate of 16.7 % exhibited optimal structural elasticity, shear resistance, and stiffness. These findings provide valuable insights into the enhancement of sandy soil structural stability using Pisha sandstone, offering a scientific foundation for refining amendment ratios and advancing agricultural management practices.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106437"},"PeriodicalIF":6.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.still.2024.106438
Jingyi Shao , Ling Liu , Jichao Cui , Hong Yang , Yecheng Zhang , Ruxin Li , Yi Lv , Yifei Ma , Qin Fang , Shengkai Sun , Siyu Chen , Huifang Han
Subsoiling is a well-known practice for improving soil structure, increasing soil nutrient content and enhancing crop growth. However, studies applying the coupling coordination analysis (CCA) model to reflect the coupling coordination between soil properties and crop production via subsoiling are still scarce. This study used the CCA to analyse the coupling coordination between soil properties and yield based on a long-term tillage positioning experiment. Tillage treatments included subsoiling (SS35 and SS40—subsoiling shovel) and rotary tillage (RT15—harrow blade, control). Soil pore structure was analysed using X-ray computed tomography and mercury injection tests. Results showed that SS35 and SS40 increased the macropore area by 82.0 %–130.7 % and the cumulative pore volume by 47.8 %–62.1 % in the 20–40 cm soil layer compared to RT15. This led to a 1.3 %–1.8 % increase in soil macro-aggregates, 9.0 %–14.5 % increase in mean weight diameter and 6.9 %–12.1 % increase in geometric mean diameter in case of SS35 and SS40 compared to RT15. These results indicated that subsoiling significantly enhanced the pore characteristics and aggregate stability in the 20–40 cm soil layer. The impact of SS40 on soil pore properties and aggregate stability surpassed that of SS35. As a result, SS35 and SS40 significantly increased carbon sequestration by 2.4 %–14.5 % and maize yield by 8.9 %–11.9 % compared to RT15. The CCA model analysis showed that SS35 and SS40 increased the coupling coordination (D) between soil properties and crop production compared to RT15, especially in the 30–40 cm soil layer. The D value was 0.617–0.899 for SS35 and 0.631–0.817 for SS40. This study provides new insights into quantifying the role of tillage for multi-indicators in the soil–crop system. The findings will guide policymakers in formulating for more sustainable tillage to improve crop production and ensure carbon mitigation.
{"title":"Enhancing the coupling coordination of soil–crop systems by optimising soil properties and crop production via subsoiling","authors":"Jingyi Shao , Ling Liu , Jichao Cui , Hong Yang , Yecheng Zhang , Ruxin Li , Yi Lv , Yifei Ma , Qin Fang , Shengkai Sun , Siyu Chen , Huifang Han","doi":"10.1016/j.still.2024.106438","DOIUrl":"10.1016/j.still.2024.106438","url":null,"abstract":"<div><div>Subsoiling is a well-known practice for improving soil structure, increasing soil nutrient content and enhancing crop growth. However, studies applying the coupling coordination analysis (CCA) model to reflect the coupling coordination between soil properties and crop production via subsoiling are still scarce. This study used the CCA to analyse the coupling coordination between soil properties and yield based on a long-term tillage positioning experiment. Tillage treatments included subsoiling (SS35 and SS40—subsoiling shovel) and rotary tillage (RT15—harrow blade, control). Soil pore structure was analysed using X-ray computed tomography and mercury injection tests. Results showed that SS35 and SS40 increased the macropore area by 82.0 %–130.7 % and the cumulative pore volume by 47.8 %–62.1 % in the 20–40 cm soil layer compared to RT15. This led to a 1.3 %–1.8 % increase in soil macro-aggregates, 9.0 %–14.5 % increase in mean weight diameter and 6.9 %–12.1 % increase in geometric mean diameter in case of SS35 and SS40 compared to RT15. These results indicated that subsoiling significantly enhanced the pore characteristics and aggregate stability in the 20–40 cm soil layer. The impact of SS40 on soil pore properties and aggregate stability surpassed that of SS35. As a result, SS35 and SS40 significantly increased carbon sequestration by 2.4 %–14.5 % and maize yield by 8.9 %–11.9 % compared to RT15. The CCA model analysis showed that SS35 and SS40 increased the coupling coordination (D) between soil properties and crop production compared to RT15, especially in the 30–40 cm soil layer. The D value was 0.617–0.899 for SS35 and 0.631–0.817 for SS40. This study provides new insights into quantifying the role of tillage for multi-indicators in the soil–crop system. The findings will guide policymakers in formulating for more sustainable tillage to improve crop production and ensure carbon mitigation.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106438"},"PeriodicalIF":6.1,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1016/j.still.2024.106421
Mariano Santiago Iseas, Claudia Mabel Sainato, Catalina Romay
The use of supplemental irrigation could stabilise crop yields in the Pampean region in the face of climate variability. However, inadequate management of this practice could compromise soil quality. The effect supplemental irrigation on soil salinity and sodicity, nutrients, organic carbon and some physical properties was studied on a farm, with production of grains and oilseeds, in the Pampean region of Argentina. Although the groundwater used for irrigation is classified as sodium bicarbonate type, it has no risk of soil salinity and sodicity. This work was carried out on 7 plots with different conditions of soil type, soil cover and recovery time after last irrigation. Significant increases in salinity, sodicity and alkalinity due to supplemental irrigation were observed. Phosphates content (PO4) and organic carbon (OC) slightly decreased, while nitrate content (NO3) did not change significantly. It is assumed that PO4 may have decreased due to increased leaching and/or consumption by the irrigated crop, while the change in OC may be related to an increased rate of organic decomposition. Changes in physical properties were less important. Slight increases in aggregate stability (AS), bulk density (BD) and loss of clay content were observed. It may be hypothesised that the observed joint increase in salinity and sodicity may stabilise the flocculation-dispersion processes that give structure and aggregation to the soil, thus neutralising the effects of irrigation on physical properties.
{"title":"Supplemental irrigation in the humid Pampean region: Effects on soil salinity, physical properties, nutrients and organic carbon","authors":"Mariano Santiago Iseas, Claudia Mabel Sainato, Catalina Romay","doi":"10.1016/j.still.2024.106421","DOIUrl":"10.1016/j.still.2024.106421","url":null,"abstract":"<div><div>The use of supplemental irrigation could stabilise crop yields in the Pampean region in the face of climate variability. However, inadequate management of this practice could compromise soil quality. The effect supplemental irrigation on soil salinity and sodicity, nutrients, organic carbon and some physical properties was studied on a farm, with production of grains and oilseeds, in the Pampean region of Argentina. Although the groundwater used for irrigation is classified as sodium bicarbonate type, it has no risk of soil salinity and sodicity. This work was carried out on 7 plots with different conditions of soil type, soil cover and recovery time after last irrigation. Significant increases in salinity, sodicity and alkalinity due to supplemental irrigation were observed. Phosphates content (PO<sub>4</sub>) and organic carbon (OC) slightly decreased, while nitrate content (NO<sub>3</sub>) did not change significantly. It is assumed that PO<sub>4</sub> may have decreased due to increased leaching and/or consumption by the irrigated crop, while the change in OC may be related to an increased rate of organic decomposition. Changes in physical properties were less important. Slight increases in aggregate stability (AS), bulk density (BD) and loss of clay content were observed. It may be hypothesised that the observed joint increase in salinity and sodicity may stabilise the flocculation-dispersion processes that give structure and aggregation to the soil, thus neutralising the effects of irrigation on physical properties.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106421"},"PeriodicalIF":6.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div>The sustained intensification of agricultural production to meet increasing food, feed and fibre demands has aggravated soil deformation, thereby accelerating soil degradation. The conversion of some of these degraded arable lands to permanent grassland has been recommended to recover the soil functions. However, there is still a considerable gap in understanding the timeline for the effective recovery of degraded land in terms of its stability (resistance and resilience to disturbance). Moreover, the dynamics of the recovery process in ameliorative grasslands are still not fully understood. In this study, the physical, hydraulic, and mechanical properties including the coefficient of compressibility (C<sub>n</sub>) and precompression stress were investigated in degraded arable land at three different depths (0–5, 10–15 and 20–25 cm) after 1-, 2-, 8-, 13-, 19-, and 25-years ameliorative grassland conversion. To fully understand and finalise the dynamics of the recovery process as a function of time since the amelioratory conversion, we combined the analysed data from 2 different sets of measurements (loading conditions) on samples predrained to − 60 hPa matric potential. The loading conditions were (a). static - confined compression with normal stresses applied for 4 h in steps of 1, 20, 50, 100, 200, and 400 kPa without stress relaxation on each sample, and (b). dynamic - cyclic loading at 50 kPa with 30 seconds of loading and unloading (relaxation). We included data concerning porewater pressure dynamics under the cyclic loading condition to document possible changes in elasticity. Our results showed that settlement during loading and the elastic rebound during unloading were related to the sward age and the sampled depth. Before the cyclic loading experiment, higher values of effective stress were recorded in the older swards, but the values changed after loading in response to the change in the porewater pressure. The effective stress values were less negative during loading than when unloading. At soil depth of 0–5 cm in the 25 years old sward, the rebound rate (values) and the coefficient of compressibility were higher due to changes in soil properties, particularly the soil bulk density, while at the 10–15 and 20–25 cm depths, the mean values were much closer. When the rebound rate was considered, the highest mean value occurred at 13 years after conversion. In addition, significantly higher values of pre-compression stress were observed in the 8-year-old sward under static loading, which decreased by 19 years. Higher values of pre-compression stress were mostly recorded at the lower depths under static loading. Finally, the results showed that a period between 8 and 13 years is needed to document the starting of strength regain and the recovery of the physical properties and functions, after conversion to grassland. This recovery was observed even up to deeper depths of 20–25 cm for precompression stress and for the soil compres
{"title":"Changes in mechanical and resilience characteristics of degraded arable land under long-term grassland management","authors":"Ayodele Ebenezer Ajayi , Oluwaseun Temitope Faloye , Jens Rostek , Veronika Schroeren , Abayomi Fasina , Rainer Horn","doi":"10.1016/j.still.2024.106387","DOIUrl":"10.1016/j.still.2024.106387","url":null,"abstract":"<div><div>The sustained intensification of agricultural production to meet increasing food, feed and fibre demands has aggravated soil deformation, thereby accelerating soil degradation. The conversion of some of these degraded arable lands to permanent grassland has been recommended to recover the soil functions. However, there is still a considerable gap in understanding the timeline for the effective recovery of degraded land in terms of its stability (resistance and resilience to disturbance). Moreover, the dynamics of the recovery process in ameliorative grasslands are still not fully understood. In this study, the physical, hydraulic, and mechanical properties including the coefficient of compressibility (C<sub>n</sub>) and precompression stress were investigated in degraded arable land at three different depths (0–5, 10–15 and 20–25 cm) after 1-, 2-, 8-, 13-, 19-, and 25-years ameliorative grassland conversion. To fully understand and finalise the dynamics of the recovery process as a function of time since the amelioratory conversion, we combined the analysed data from 2 different sets of measurements (loading conditions) on samples predrained to − 60 hPa matric potential. The loading conditions were (a). static - confined compression with normal stresses applied for 4 h in steps of 1, 20, 50, 100, 200, and 400 kPa without stress relaxation on each sample, and (b). dynamic - cyclic loading at 50 kPa with 30 seconds of loading and unloading (relaxation). We included data concerning porewater pressure dynamics under the cyclic loading condition to document possible changes in elasticity. Our results showed that settlement during loading and the elastic rebound during unloading were related to the sward age and the sampled depth. Before the cyclic loading experiment, higher values of effective stress were recorded in the older swards, but the values changed after loading in response to the change in the porewater pressure. The effective stress values were less negative during loading than when unloading. At soil depth of 0–5 cm in the 25 years old sward, the rebound rate (values) and the coefficient of compressibility were higher due to changes in soil properties, particularly the soil bulk density, while at the 10–15 and 20–25 cm depths, the mean values were much closer. When the rebound rate was considered, the highest mean value occurred at 13 years after conversion. In addition, significantly higher values of pre-compression stress were observed in the 8-year-old sward under static loading, which decreased by 19 years. Higher values of pre-compression stress were mostly recorded at the lower depths under static loading. Finally, the results showed that a period between 8 and 13 years is needed to document the starting of strength regain and the recovery of the physical properties and functions, after conversion to grassland. This recovery was observed even up to deeper depths of 20–25 cm for precompression stress and for the soil compres","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106387"},"PeriodicalIF":6.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1016/j.still.2024.106423
Congwei Sun , Hui Wu , Subramaniam Gopalakrishnan , Enke Liu , Xurong Mei
Plastic film mulching combined with nitrogen application is a prime chief strategy for enhancing maize yields in rain-fed agricultural areas. However, how the practice affects the productivity and functions of soil by altering nitrogen transformation mediated by rhizosphere microorganisms in the Loess Plateau, remains unclear. In this research, an 7-year field location experiment was conducted to ascertain the effects of plastic film mulching with nitrogen application (225 kg N ha−1) on the rhizosphere microbial nitrogen transformation in a rain-fed maize field on the Loess Plateau. Plastic film mulching with nitrogen application reduced the pH value and also increased the abundance of microorganisms (e.g., Nitrosospira, Halomonas) and genes (e.g., pmoB-amoB, hao, nirB, and nirD) during the vegetative stage. This promoted nitrification and dissimilatory nitrate reduction to ammonium, which increased the content of inorganic nitrogen in the rhizosphere. During the reproductive stages, plastic flim mulching reduced the relative abundance of aerobic bacteria (e.g., Skermanella, Sphingomonas), and the ratio of (nirK + nirS) / nosZ, which inhibited denitrification and dinitrogen oxide emission potential. Overall, our findings highlight the feedback mechanism of soil nitrogen transformation to plastic film mulching with nitrogen application in the Loess Plateau, providing valuable insights for manipulating specific microorganisms to regulate nitrogen transformation and promoting the sustainability of soil ecosystems.
在雨养农业区,覆膜配施氮肥是提高玉米产量的主要策略。然而,这种做法如何通过改变黄土高原根际微生物介导的氮转化来影响土壤的生产力和功能尚不清楚。本研究通过为期7年的田间定位试验,研究了覆膜施氮(225 kg N ha−1)对黄土高原旱作玉米根际微生物氮转化的影响。覆盖地膜施氮降低了土壤的pH值,也增加了营养阶段微生物(如亚硝基螺旋体、盐单胞菌)和基因(如pmoB-amoB、hao、nirB和nirD)的丰度。这促进了硝化作用和异化硝态氮还原为铵态氮,从而增加了根际无机氮的含量。在繁殖阶段,地膜覆盖降低了好氧菌(Skermanella,鞘氨单胞菌)的相对丰度和(nirK + nirS) / nosZ的比值,从而抑制了反硝化作用和二氮氧化物排放势。综上所述,本研究揭示了黄土高原土壤氮素向地膜转化的反馈机制,为调控特定微生物调控氮素转化,促进土壤生态系统的可持续性提供了有价值的见解。
{"title":"Plastic film mulching with nitrogen application activates rhizosphere microbial nitrification and dissimilatory nitrate reduction in the Loess Plateau","authors":"Congwei Sun , Hui Wu , Subramaniam Gopalakrishnan , Enke Liu , Xurong Mei","doi":"10.1016/j.still.2024.106423","DOIUrl":"10.1016/j.still.2024.106423","url":null,"abstract":"<div><div>Plastic film mulching combined with nitrogen application is a prime chief strategy for enhancing maize yields in rain-fed agricultural areas. However, how the practice affects the productivity and functions of soil by altering nitrogen transformation mediated by rhizosphere microorganisms in the Loess Plateau, remains unclear. In this research, an 7-year field location experiment was conducted to ascertain the effects of plastic film mulching with nitrogen application (225 kg N ha<sup>−1</sup>) on the rhizosphere microbial nitrogen transformation in a rain-fed maize field on the Loess Plateau. Plastic film mulching with nitrogen application reduced the pH value and also increased the abundance of microorganisms (e.g., <em>Nitrosospira</em>, <em>Halomonas</em>) and genes (e.g., <em>pmoB-amoB</em>, <em>hao</em>, <em>nirB</em>, and <em>nirD</em>) during the vegetative stage. This promoted nitrification and dissimilatory nitrate reduction to ammonium, which increased the content of inorganic nitrogen in the rhizosphere. During the reproductive stages, plastic flim mulching reduced the relative abundance of aerobic bacteria (e.g., <em>Skermanella</em>, <em>Sphingomonas</em>), and the ratio of (<em>nirK</em> + <em>nirS</em>) / <em>nosZ</em>, which inhibited denitrification and dinitrogen oxide emission potential. Overall, our findings highlight the feedback mechanism of soil nitrogen transformation to plastic film mulching with nitrogen application in the Loess Plateau, providing valuable insights for manipulating specific microorganisms to regulate nitrogen transformation and promoting the sustainability of soil ecosystems.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106423"},"PeriodicalIF":6.1,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1016/j.still.2024.106430
Adnan Anwar Khan , Imran Azeem , Jing Hui , Yupei Chen , Yuqi Yuan , Tahir Shah , Muhammad Adeel , Noman Shakoor , Rana Muhammad Ammar Asghar , Weidong Cao , Dabin Zhang , Yajun Gao
Incorporating the green manure (GM) approach in agroecosystems enhances phosphorus (P) availability and reduces mineral P-fertilizer input. Despite global promotion, a comprehensive global synthesis of the GM effect on soil P fractions is lacking. To address this gap, we conducted a meta-analysis of 48 published studies to evaluate the impact of climatic, edaphic, and agronomic variables on soil P fractions, enzyme activities, subsequent crop yield, and P uptake under a GM cropping system. Overall, GMs significantly increased the labile P fraction (n = 592) by 18 % compared with fallow management. Non-leguminous GMs showed a 21 % increase in labile P, resulting in an 18 % increase in subsequent crop yield and a 30 % increase in subsequent crop P uptake compared with fallow. Leguminous GMs stimulated soil enzyme activities, elevating acid phosphatase (ACP) by 40 % and β-glucosidase by 182 % compared with fallow. Compared to no-till (NT), GMs under conventional tillage (CT) significantly increased soil enzyme activities, including ACP, alkaline phosphatase (ALP), β-glucosidase, as well as subsequent crop yield, and P uptake. Long-term GM incorporation (5–10 yrs) significantly reduced moderately labile P by 25 %, leading to increased labile P fraction. Linear regression analysis demonstrated a positive correlation between labile P and soil organic carbon (SOC), but a negative with mean annual precipitation (MAP) and mean annual temperature (MAT). These findings suggest that incorporating GMs into a CT management system can potentially accelerate soil P cycling by promoting soil enzyme activities, enhancing subsequent crop production, and providing an alternative approach to reducing mineral P-fertilizer dependency. This approach exemplifies sustainable food production practices and underscores the significance of GMs for long-term agricultural resilience and soil health worldwide.
{"title":"Non-leguminous green manures improve labile phosphorus availability and crop yield in agroecosystems: A global meta-analysis","authors":"Adnan Anwar Khan , Imran Azeem , Jing Hui , Yupei Chen , Yuqi Yuan , Tahir Shah , Muhammad Adeel , Noman Shakoor , Rana Muhammad Ammar Asghar , Weidong Cao , Dabin Zhang , Yajun Gao","doi":"10.1016/j.still.2024.106430","DOIUrl":"10.1016/j.still.2024.106430","url":null,"abstract":"<div><div>Incorporating the green manure (GM) approach in agroecosystems enhances phosphorus (P) availability and reduces mineral P-fertilizer input. Despite global promotion, a comprehensive global synthesis of the GM effect on soil P fractions is lacking. To address this gap, we conducted a meta-analysis of 48 published studies to evaluate the impact of climatic, edaphic, and agronomic variables on soil P fractions, enzyme activities, subsequent crop yield, and P uptake under a GM cropping system. Overall, GMs significantly increased the labile P fraction (n = 592) by 18 % compared with fallow management. Non-leguminous GMs showed a 21 % increase in labile P, resulting in an 18 % increase in subsequent crop yield and a 30 % increase in subsequent crop P uptake compared with fallow. Leguminous GMs stimulated soil enzyme activities, elevating acid phosphatase (ACP) by 40 % and β-glucosidase by 182 % compared with fallow. Compared to no-till (NT), GMs under conventional tillage (CT) significantly increased soil enzyme activities, including ACP, alkaline phosphatase (ALP), β-glucosidase, as well as subsequent crop yield, and P uptake. Long-term GM incorporation (5–10 yrs) significantly reduced moderately labile P by 25 %, leading to increased labile P fraction. Linear regression analysis demonstrated a positive correlation between labile P and soil organic carbon (SOC), but a negative with mean annual precipitation (MAP) and mean annual temperature (MAT). These findings suggest that incorporating GMs into a CT management system can potentially accelerate soil P cycling by promoting soil enzyme activities, enhancing subsequent crop production, and providing an alternative approach to reducing mineral P-fertilizer dependency. This approach exemplifies sustainable food production practices and underscores the significance of GMs for long-term agricultural resilience and soil health worldwide.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"248 ","pages":"Article 106430"},"PeriodicalIF":6.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}