首页 > 最新文献

Soil & Tillage Research最新文献

英文 中文
Integration soil contact model – A flexible pressure-sinkage method for simulating low speed vehicles with wheels and tracks 集成土壤接触模型 - 用于模拟带车轮和履带的低速车辆的灵活压力下沉方法
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-18 DOI: 10.1016/j.still.2024.106312
S. Kulju , J. Ala-Ilomäki
An integration soil contact model and a modular terramechanics simulator VieteriSim for vehicles running on wheels and tracks were developed. The presented computational method extends the soil contact model by introducing a user defined pressure-sinkage relationship according to a theoretical function or an experimental data set, a numerical integration of pressure over a contact area with a desired resolution and vector based rolling resistance coefficient calculation. The convergence of the model and the capability of the computational method are demonstrated by simulating a cut-to-length timber forwarder running on a soft terrain with and without bogie tracks.
针对在车轮和轨道上行驶的车辆,开发了一种集成土壤接触模型和模块化地形力学模拟器 VieteriSim。所提出的计算方法扩展了土壤接触模型,根据理论函数或实验数据集引入了用户定义的压力-下沉关系,以所需的分辨率对接触面积上的压力进行数值积分,并基于矢量计算滚动阻力系数。模型的收敛性和计算方法的能力通过模拟在松软地形上行驶的带转向架履带和不带转向架履带的定尺木材运输车得到了验证。
{"title":"Integration soil contact model – A flexible pressure-sinkage method for simulating low speed vehicles with wheels and tracks","authors":"S. Kulju ,&nbsp;J. Ala-Ilomäki","doi":"10.1016/j.still.2024.106312","DOIUrl":"10.1016/j.still.2024.106312","url":null,"abstract":"<div><div>An integration soil contact model and a modular terramechanics simulator VieteriSim for vehicles running on wheels and tracks were developed. The presented computational method extends the soil contact model by introducing a user defined pressure-sinkage relationship according to a theoretical function or an experimental data set, a numerical integration of pressure over a contact area with a desired resolution and vector based rolling resistance coefficient calculation. The convergence of the model and the capability of the computational method are demonstrated by simulating a cut-to-length timber forwarder running on a soft terrain with and without bogie tracks.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"246 ","pages":"Article 106312"},"PeriodicalIF":6.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pearl millet yield reduction by soil erosion and its recovery potential through fertilizer application on an Arenosol in the Sahel 萨赫勒地区阿伦诺尔土壤侵蚀造成的珍珠粟减产及其施肥恢复潜力
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-16 DOI: 10.1016/j.still.2024.106324
Tomohiro Nishigaki , Kenta Ikazaki , Hitoshi Shinjo , Ueru Tanaka , Dougbedji Fatondji , Shinya Funakawa
Despite the heightened contribution of soil erosion to soil degradation in the Sahel, its impact, particularly topsoil loss, on crop productivity remains unclear. To address this issue, we investigated the effects of simulated erosion by removing topsoil on the grain yield of pearl millet in the Sahel. Three-year field experiments conducted on an Arenosol in Niger examined different levels of topsoil removal (0, 1.0, 2.5, 5.0, and 10 cm) and fertilization (unfertilized and fertilized) on the grain yield of pearl millet. Results showed that topsoil removal of 2.5 cm or more significantly reduced grain yield, with effects projected to become apparent in 5–6 years based on erosion rates previously reported. Under normal rainfall conditions in the first and third years, 2.5-cm topsoil removal under unfertilized conditions resulted in a yield reduction of 37 % cm⁻¹, surpassing the values reported in other humid to semi-arid regions of sub-Saharan Africa. Conversely, the grain yield remained unaffected following a 1-cm topsoil removal. Fertilizer application compensated for the grain yield loss in the plots of 2.5- and 5.0-cm topsoil removal but not effectively in the 10-cm removal plot. In conclusion, the loss of the thin Ap horizon markedly reduced plant-available water and nutrients in soils, leading to a decreased grain yield of pearl millet in the Sahel. Given the Ap horizon thinness and soil erosion prevalence in the Sahel, recognizing the topsoil loss in the early stages of soil erosion and implementing countermeasures are imperative to avoid a sharp decline in grain yield.
尽管土壤侵蚀加剧了萨赫勒地区的土壤退化,但其对作物产量的影响(尤其是表土流失)仍不明确。为了解决这个问题,我们研究了通过去除表土模拟水土流失对萨赫勒地区珍珠粟产量的影响。在尼日尔的阿雷诺索尔进行了为期三年的田间试验,研究了不同程度的表土去除(0、1.0、2.5、5.0 和 10 厘米)和施肥(未施肥和施肥)对珍珠粟产量的影响。结果表明,表土移除 2.5 厘米或更高会显著降低谷物产量,根据之前报告的侵蚀率,预计 5-6 年后影响就会显现。在第一年和第三年降雨正常的情况下,在未施肥的条件下,去除 2.5 厘米的表土会导致减产 37%cm-¹,超过了撒哈拉以南非洲其他潮湿至半干旱地区的报告值。相反,移除 1 厘米表土后,谷物产量仍未受到影响。在表土被移除 2.5 厘米和 5.0 厘米的地块中,施肥弥补了谷物产量的损失,但在表土被移除 10 厘米的地块中,施肥并不能有效弥补谷物产量的损失。总之,Ap 薄层的消失明显降低了土壤中植物可利用的水分和养分,导致萨赫勒地区珍珠粟的谷物产量下降。鉴于萨赫勒地区的 Ap 地层薄和土壤侵蚀普遍存在,在土壤侵蚀的早期阶段认识到表土流失并采取对策是避免谷物产量急剧下降的当务之急。
{"title":"Pearl millet yield reduction by soil erosion and its recovery potential through fertilizer application on an Arenosol in the Sahel","authors":"Tomohiro Nishigaki ,&nbsp;Kenta Ikazaki ,&nbsp;Hitoshi Shinjo ,&nbsp;Ueru Tanaka ,&nbsp;Dougbedji Fatondji ,&nbsp;Shinya Funakawa","doi":"10.1016/j.still.2024.106324","DOIUrl":"10.1016/j.still.2024.106324","url":null,"abstract":"<div><div>Despite the heightened contribution of soil erosion to soil degradation in the Sahel, its impact, particularly topsoil loss, on crop productivity remains unclear. To address this issue, we investigated the effects of simulated erosion by removing topsoil on the grain yield of pearl millet in the Sahel. Three-year field experiments conducted on an Arenosol in Niger examined different levels of topsoil removal (0, 1.0, 2.5, 5.0, and 10 cm) and fertilization (unfertilized and fertilized) on the grain yield of pearl millet. Results showed that topsoil removal of 2.5 cm or more significantly reduced grain yield, with effects projected to become apparent in 5–6 years based on erosion rates previously reported. Under normal rainfall conditions in the first and third years, 2.5-cm topsoil removal under unfertilized conditions resulted in a yield reduction of 37 % cm⁻¹, surpassing the values reported in other humid to semi-arid regions of sub-Saharan Africa. Conversely, the grain yield remained unaffected following a 1-cm topsoil removal. Fertilizer application compensated for the grain yield loss in the plots of 2.5- and 5.0-cm topsoil removal but not effectively in the 10-cm removal plot. In conclusion, the loss of the thin Ap horizon markedly reduced plant-available water and nutrients in soils, leading to a decreased grain yield of pearl millet in the Sahel. Given the Ap horizon thinness and soil erosion prevalence in the Sahel, recognizing the topsoil loss in the early stages of soil erosion and implementing countermeasures are imperative to avoid a sharp decline in grain yield.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"246 ","pages":"Article 106324"},"PeriodicalIF":6.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the shear behavior of fine-grained soil with herbaceous plant roots under freeze-thaw conditions using X-ray CT scan 利用 X 射线 CT 扫描量化带有草本植物根系的细粒土壤在冻融条件下的剪切行为
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-15 DOI: 10.1016/j.still.2024.106326
Baiyang Song , Dai Nakamura , Takayuki Kawaguchi , Shunzo Kawajiri , Dahu Rui
This study investigates the reinforcement effect of Kentucky bluegrass roots on slope soil under freeze-thaw conditions, with a focus on the Hokkaido region of Japan. Using direct shear tests combined with X-ray CT scanning, we analyzed the impact of root parameters (such as root mass and volume) on the shear strength of root-soil composites. The results revealed that freeze-thaw cycle did not cause significant root breakage or diminish the root system's ability to stabilize the soil compared to non-freeze-thaw conditions. Root-soil samples demonstrated notable ductility during shear deformation, with shear stress continuing to increase after reaching peak values. In contrast, soil samples stabilized after reaching peak shear stress without further increase. Although no significant differences in shear behavior were observed between root-soil and soil samples in the initial shearing stage, the freeze-thaw cycle led to some consolidation in root-soil samples, reducing their resistance to elastic deformation. Moreover, longer root growth periods resulted in a more pronounced increase in shear stress. CT scan image reconstruction allowed us to quantify root system parameters, such as root volume and distribution near the shear plane, which showed a strong correlation with maximum shear stress. Our findings demonstrate the effectiveness of herbaceous plant roots, particularly Kentucky bluegrass, in maintaining soil stability under freeze-thaw conditions.
本研究以日本北海道地区为重点,调查了肯塔基蓝草根在冻融条件下对边坡土壤的加固作用。通过直接剪切试验和 X 射线 CT 扫描,我们分析了根系参数(如根系质量和体积)对根系-土壤复合材料剪切强度的影响。结果表明,与非冻融条件相比,冻融循环不会导致根系明显断裂,也不会削弱根系稳定土壤的能力。根系-土壤样本在剪切变形过程中表现出明显的延展性,剪切应力在达到峰值后继续增加。相比之下,土壤样本在达到剪切应力峰值后会趋于稳定,不会继续增加。虽然在剪切初始阶段,根土样本和土壤样本的剪切行为没有明显差异,但冻融循环导致根土样本出现一定程度的固结,从而降低了它们对弹性变形的抵抗力。此外,根系生长时间越长,剪切应力增加越明显。通过 CT 扫描图像重建,我们可以量化根系参数,如根的体积和在剪切面附近的分布,这些参数与最大剪切应力有很强的相关性。我们的研究结果证明了草本植物根系,尤其是肯塔基蓝草,在冻融条件下保持土壤稳定性的有效性。
{"title":"Quantifying the shear behavior of fine-grained soil with herbaceous plant roots under freeze-thaw conditions using X-ray CT scan","authors":"Baiyang Song ,&nbsp;Dai Nakamura ,&nbsp;Takayuki Kawaguchi ,&nbsp;Shunzo Kawajiri ,&nbsp;Dahu Rui","doi":"10.1016/j.still.2024.106326","DOIUrl":"10.1016/j.still.2024.106326","url":null,"abstract":"<div><div>This study investigates the reinforcement effect of Kentucky bluegrass roots on slope soil under freeze-thaw conditions, with a focus on the Hokkaido region of Japan. Using direct shear tests combined with X-ray CT scanning, we analyzed the impact of root parameters (such as root mass and volume) on the shear strength of root-soil composites. The results revealed that freeze-thaw cycle did not cause significant root breakage or diminish the root system's ability to stabilize the soil compared to non-freeze-thaw conditions. Root-soil samples demonstrated notable ductility during shear deformation, with shear stress continuing to increase after reaching peak values. In contrast, soil samples stabilized after reaching peak shear stress without further increase. Although no significant differences in shear behavior were observed between root-soil and soil samples in the initial shearing stage, the freeze-thaw cycle led to some consolidation in root-soil samples, reducing their resistance to elastic deformation. Moreover, longer root growth periods resulted in a more pronounced increase in shear stress. CT scan image reconstruction allowed us to quantify root system parameters, such as root volume and distribution near the shear plane, which showed a strong correlation with maximum shear stress. Our findings demonstrate the effectiveness of herbaceous plant roots, particularly Kentucky bluegrass, in maintaining soil stability under freeze-thaw conditions.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"246 ","pages":"Article 106326"},"PeriodicalIF":6.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gully erosion susceptibility mapping considering seasonal variations of NDVI using a machine learning approach in the Mollisol region of China 利用机器学习方法绘制考虑到 NDVI 季节性变化的中国软土地区沟壑侵蚀易发性地图
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-15 DOI: 10.1016/j.still.2024.106322
Ruilu Gao , Maofang Gao , Shuihong Yao , Yanru Wen
Gully erosion is the most severe form of soil erosion, and mapping gully erosion susceptibility accurately and automatically is crucial for guiding policy decisions. Topography and vegetation cover were general factors for assessing gully susceptibility, yet little attention has been paid to the spatiotemporal variations in vegetation. This study aims to predict gully-prone areas using stable factors (topography, hydrology, soil, etc.) considering the monthly variability in vegetation based on a machine learning approach in the Mollisol region of China. A total of 1890 gully and non-gully points were extracted to establish an inventory database. Twelve treatments were conducted including the stable factors and individual NDVI from January to December, respectively. All potential factors were evaluated for contributing to the gully erosion prediction, and a set of rules based on accuracy, AUC, and kappa were used to evaluate the model performance. The results demonstrated that NDVI varied widely between gully and non-gully areas and the importance of NDVI varied in diverse months. NDVI in August was the most important explanatory factor (25 %) to gully occurrence mapping, followed by the plan curvature (14 %), and elevation (13 %), respectively. The gully-prone areas predicted by NDVI in August exhibited higher accuracy, followed by that in May and June. This was attributed to the greater difference in NDVI between the gully and non-gully areas in June (0.30), May (0.23), and August (0.16). Overall, the very low, low, moderate, high, and very high gully susceptibility levels occupied 35 %, 23 %, 18 %, 14 %, and 10 % of the study area, respectively. This study advances our understanding of spatial-temporal heterogeneity in NDVI among gully and non-gully areas that need to be considered in gully mapping. Further, an automatic and accurate gully mapping approach can provide valuable information to identify areas where urgent and appropriate measures should be applied.
沟壑侵蚀是最严重的土壤侵蚀形式,准确、自动地绘制沟壑侵蚀易发性地图对于指导决策至关重要。地形和植被覆盖是评估沟蚀易发性的一般因素,但人们很少关注植被的时空变化。本研究旨在基于机器学习方法,利用稳定因子(地形、水文、土壤等)并考虑植被的月度变化,预测中国软土地层地区的沟谷易发区。共提取了 1890 个沟谷和非沟谷点,建立了清单数据库。在 1 月至 12 月期间分别进行了 12 次处理,包括稳定因子和单个 NDVI。评估了所有潜在因子对冲沟侵蚀预测的贡献,并使用一套基于准确度、AUC 和 kappa 的规则来评价模型性能。结果表明,沟壑区和非沟壑区的 NDVI 差异很大,不同月份 NDVI 的重要性也不同。8 月份的 NDVI 是绘制沟谷发生图最重要的解释因子(25%),其次分别是平面曲率(14%)和海拔(13%)。用 8 月份的 NDVI 预测沟壑易发区的准确度较高,其次是 5 月和 6 月。这是因为 6 月(0.30)、5 月(0.23)和 8 月(0.16)的沟壑区和非沟壑区的 NDVI 差异较大。总体而言,极低、低、中、高和极高的沟壑易感等级分别占研究区域的 35%、23%、18%、14% 和 10%。这项研究加深了我们对沟壑区和非沟壑区 NDVI 时空异质性的理解,在绘制沟壑地图时需要考虑这些异质性。此外,自动和准确的沟壑绘图方法可提供宝贵的信息,以确定应采取紧急和适当措施的区域。
{"title":"Gully erosion susceptibility mapping considering seasonal variations of NDVI using a machine learning approach in the Mollisol region of China","authors":"Ruilu Gao ,&nbsp;Maofang Gao ,&nbsp;Shuihong Yao ,&nbsp;Yanru Wen","doi":"10.1016/j.still.2024.106322","DOIUrl":"10.1016/j.still.2024.106322","url":null,"abstract":"<div><div>Gully erosion is the most severe form of soil erosion, and mapping gully erosion susceptibility accurately and automatically is crucial for guiding policy decisions. Topography and vegetation cover were general factors for assessing gully susceptibility, yet little attention has been paid to the spatiotemporal variations in vegetation. This study aims to predict gully-prone areas using stable factors (topography, hydrology, soil, etc.) considering the monthly variability in vegetation based on a machine learning approach in the Mollisol region of China. A total of 1890 gully and non-gully points were extracted to establish an inventory database. Twelve treatments were conducted including the stable factors and individual NDVI from January to December, respectively. All potential factors were evaluated for contributing to the gully erosion prediction, and a set of rules based on accuracy, AUC, and kappa were used to evaluate the model performance. The results demonstrated that NDVI varied widely between gully and non-gully areas and the importance of NDVI varied in diverse months. NDVI in August was the most important explanatory factor (25 %) to gully occurrence mapping, followed by the plan curvature (14 %), and elevation (13 %), respectively. The gully-prone areas predicted by NDVI in August exhibited higher accuracy, followed by that in May and June. This was attributed to the greater difference in NDVI between the gully and non-gully areas in June (0.30), May (0.23), and August (0.16). Overall, the very low, low, moderate, high, and very high gully susceptibility levels occupied 35 %, 23 %, 18 %, 14 %, and 10 % of the study area, respectively. This study advances our understanding of spatial-temporal heterogeneity in NDVI among gully and non-gully areas that need to be considered in gully mapping. Further, an automatic and accurate gully mapping approach can provide valuable information to identify areas where urgent and appropriate measures should be applied.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106322"},"PeriodicalIF":6.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar addition enhances silt loam soil resistance to rill flow: A study based on three years of field monitoring data on China’s Loess Plateau 添加生物炭能增强淤泥质壤土对碾压流的抵抗力:基于中国黄土高原三年实地监测数据的研究
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-11 DOI: 10.1016/j.still.2024.106320
Yuanyuan Li , Yuan Yuan , Jiaqi Zhao , Jiayan Yang , Chuang Yan , Mingyi Yang , Bing Wang , Fengbao Zhang
Biochar addition can change the physiochemical properties of soil, thus likely influencing soil’s resistance to rill flow (reflected by rill erodibility (Kr, s m−1) and critical shear stress (τc, Pa). However, the persistent time effects of biochar on Kr and τc have remained unexplored. This study aimed to assess the impact of biochar composed of apple branches on Kr and τc, and to investigate the relationships between Kr, τc and soil properties. The undisturbed soil core samples to a depth of 5 cm were collected from field plots that had received biochar at rates of 0, 1, 2.5, 4, 5.5, and 7 % (w/w) after 1, 2, and 3 years, respectively. The Kr and τc of these samples were evaluated through a flume experiment, with scouring soil samples under three flow discharges (e.g., 0.00025, 0.00045, and 0.00065 m−3 s−1) and five slope gradients (e.g., 5.24, 8.75, 17.63, 26.79, and 40.40 %). The results revealed that the ranges of Kr and τc for no biochar treatments varied from 0.1947 to 0.2107 s m−1 and 1.6971–1.7314 Pa, with the averaged values of 0.2007 s m−1 and 1.7100 Pa, respectively. Compared with no biochar addition, the addition of 1–4 % biochar after 1–2 years generally resulted in a reduction in Kr ranging from 20 % to 59 %, while increasing τc by 2–4 %. Conversely, 5.5 and 7 % biochar addition increased Kr by 31 and 5 %, and reduced τc by 12 and 6 %. All biochar treatments after 3 years resulted in a 51 % reduction in Kr and a 5 % increase in τc relative to bare soil, showing an increasing trend with an increasing biochar addition rate. The fluctuations in Kr and τc could be elucidated by changes in cohesion (COH) and mean weight diameter of soil aggregates (MWD), with COH (total effect of −0.32 and 0.17, P<0.01) and MWD (total effect of −0.13 and 0.37, P<0.01) serving as reliable estimators of Kr and τc during the 1–2 years following biochar addition. After biochar addition for 3 years, total organic carbon (TOC) (total effect of −0.45 and 0.10, P<0.01) emerged as a significant factor influencing Kr and τc, making TOC a potential predictor of Kr and τc. The results demonstrate that biochar may be an effective measure for enhancing soil resistance to erosion on the Loess Plateau, especially when applied over the long term.
生物炭的添加可改变土壤的理化性质,从而可能影响土壤对碾压流的阻力(通过碾压侵蚀性(Kr,s m-1)和临界剪切应力(τc,Pa)反映出来)。然而,生物炭对 Kr 和 τc 的持续时间影响仍未得到探索。本研究旨在评估由苹果树枝组成的生物炭对 Kr 和 τc 的影响,并研究 Kr、τc 和土壤特性之间的关系。研究人员分别在施用生物炭 0%、1%、2.5%、4%、5.5% 和 7%(重量比)1 年、2 年和 3 年后的田间地块采集了深度为 5 厘米的未扰动土壤核心样本。通过水槽实验,在三种流量(如 0.00025、0.00045 和 0.00065 m-3 s-1)和五种坡度(如 5.24、8.75、17.63、26.79 和 40.40 %)下冲刷土壤样本,对这些样本的 Kr 和 τc 进行了评估。结果显示,无生物炭处理的 Kr 和 τc 范围分别为 0.1947 至 0.2107 s m-1 和 1.6971 至 1.7314 Pa,平均值分别为 0.2007 s m-1 和 1.7100 Pa。与不添加生物炭相比,1-2 年后添加 1-4 % 的生物炭通常会使 Kr 降低 20 % 至 59 %,同时使 τc 增加 2-4%。相反,5.5% 和 7% 的生物炭添加量分别使 Kr 增加了 31% 和 5%,τc 减少了 12% 和 6%。与裸土相比,3 年后所有生物炭处理都会导致 Kr 减少 51%,τc 增加 5%,并随着生物炭添加量的增加而呈上升趋势。内聚力(COH)和土壤团聚体平均重量直径(MWD)的变化可以解释 Kr 和 τc 的波动,其中 COH(总影响为 -0.32 和 0.17,P<0.01)和 MWD(总影响为 -0.13 和 0.37,P<0.01)是生物炭添加后 1-2 年期间 Kr 和 τc 的可靠估算指标。添加生物炭 3 年后,总有机碳(TOC)(总效应为-0.45 和 0.10,P<0.01)成为影响 Kr 和 τc 的重要因素,使 TOC 成为 Kr 和 τc 的潜在预测因子。结果表明,生物炭可能是提高黄土高原土壤抗侵蚀能力的有效措施,尤其是在长期应用的情况下。
{"title":"Biochar addition enhances silt loam soil resistance to rill flow: A study based on three years of field monitoring data on China’s Loess Plateau","authors":"Yuanyuan Li ,&nbsp;Yuan Yuan ,&nbsp;Jiaqi Zhao ,&nbsp;Jiayan Yang ,&nbsp;Chuang Yan ,&nbsp;Mingyi Yang ,&nbsp;Bing Wang ,&nbsp;Fengbao Zhang","doi":"10.1016/j.still.2024.106320","DOIUrl":"10.1016/j.still.2024.106320","url":null,"abstract":"<div><div>Biochar addition can change the physiochemical properties of soil, thus likely influencing soil’s resistance to rill flow (reflected by rill erodibility (K<sub><em>r</em></sub>, s m<sup>−1</sup>) and critical shear stress (τ<sub><em>c</em></sub>, Pa). However, the persistent time effects of biochar on K<sub><em>r</em></sub> and τ<sub><em>c</em></sub> have remained unexplored. This study aimed to assess the impact of biochar composed of apple branches on K<sub><em>r</em></sub> and τ<sub><em>c</em></sub>, and to investigate the relationships between K<sub><em>r</em></sub>, τ<sub><em>c</em></sub> and soil properties. The undisturbed soil core samples to a depth of 5 cm were collected from field plots that had received biochar at rates of 0, 1, 2.5, 4, 5.5, and 7 % (w/w) after 1, 2, and 3 years, respectively. The K<sub><em>r</em></sub> and τ<sub><em>c</em></sub> of these samples were evaluated through a flume experiment, with scouring soil samples under three flow discharges (e.g., 0.00025, 0.00045, and 0.00065 m<sup>−3</sup> s<sup>−1</sup>) and five slope gradients (e.g., 5.24, 8.75, 17.63, 26.79, and 40.40 %). The results revealed that the ranges of K<sub><em>r</em></sub> and τ<sub><em>c</em></sub> for no biochar treatments varied from 0.1947 to 0.2107 s m<sup>−1</sup> and 1.6971–1.7314 Pa, with the averaged values of 0.2007 s m<sup>−1</sup> and 1.7100 Pa, respectively. Compared with no biochar addition, the addition of 1–4 % biochar after 1–2 years generally resulted in a reduction in K<sub><em>r</em></sub> ranging from 20 % to 59 %, while increasing τ<sub><em>c</em></sub> by 2–4 %. Conversely, 5.5 and 7 % biochar addition increased K<sub><em>r</em></sub> by 31 and 5 %, and reduced τ<sub><em>c</em></sub> by 12 and 6 %. All biochar treatments after 3 years resulted in a 51 % reduction in K<sub><em>r</em></sub> and a 5 % increase in τ<sub><em>c</em></sub> relative to bare soil, showing an increasing trend with an increasing biochar addition rate. The fluctuations in K<sub><em>r</em></sub> and τ<sub><em>c</em></sub> could be elucidated by changes in cohesion (COH) and mean weight diameter of soil aggregates (MWD), with COH (total effect of −0.32 and 0.17, <em>P</em>&lt;0.01) and MWD (total effect of −0.13 and 0.37, <em>P</em>&lt;0.01) serving as reliable estimators of K<sub><em>r</em></sub> and τ<sub><em>c</em></sub> during the 1–2 years following biochar addition. After biochar addition for 3 years, total organic carbon (TOC) (total effect of −0.45 and 0.10, <em>P</em>&lt;0.01) emerged as a significant factor influencing K<sub><em>r</em></sub> and τ<sub><em>c</em></sub>, making TOC a potential p<sub><em>r</em></sub>edictor of K<sub><em>r</em></sub> and τ<sub><em>c</em></sub>. The results demonstrate that biochar may be an effective measure for enhancing soil resistance to erosion on the Loess Plateau, especially when applied over the long term.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106320"},"PeriodicalIF":6.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal necromass is vital for the storage of subsoil C after deep injection of compost 深层注入堆肥后,真菌坏死物质对储存底土碳至关重要
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-11 DOI: 10.1016/j.still.2024.106325
Lei Du , Sara L. Bauke , Ramona Mörchen , Oliver Schmittmann , Wulf Amelung
Organic matter (OM) injection into subsoil is expected to improve subsoil properties and thus increase crop nutrient and water uptake from the subsoil. Nevertheless, detailed knowledge of the fate and persistence of injected OM in subsoil does not yet exist. For this study, we sampled a field experiment, where two types of compost of different composition (Bio-waste compost and Green-waste compost, differing in carbon:nitrogen ratio) had been injected into the subsoil at three application amounts each (3, 5, and 7 kg dry mass m−1), and assessed the distribution of soil organic carbon (SOC) into different density fractions, the temperature sensitivity of soil respiration (Q10), and microbial necromass in subsoil. The results demonstrate that both Bio-waste and Green-waste compost injections enhanced the SOC stock, respiration rates, and temperature sensitivity in both top- and subsoil. In the subsoil, respiration rates were increased by 78 %, simultaneously compost addition enhanced microbial growth (increase in fungal residues by 123 %) but also increased the amount of carbon (C) in the mineral fraction. Significant differences in the δ13C values of density fractions and Q10 values were only detected between compost types rather than the amount of injected compost. Especially the Bio-waste compost with a narrower C:N ratio contributed to slightly greater soil labile C content, and ultimately elevated respiration rates in the subsoil. Hence, the fate of subsoil incorporated C is controlled by its composition rather than by the injected amount. Moreover, a higher contribution of fungal necromass C to the increase in Q10 values after compost injection was observed in the present study than for bacterial necromass C, suggesting that fungi are largely responsible for the final, enhanced storage of the C injected.
向底土注入有机物(OM)有望改善底土性质,从而提高作物对底土养分和水分的吸收。然而,关于注入的有机质在底土中的归宿和持久性的详细知识尚不存在。在这项研究中,我们进行了一项田间试验取样,将两种不同成分的堆肥(生物废料堆肥和绿色废料堆肥,碳氮比不同)以三种施用量(3、5 和 7 千克干重 m-1)注入底土,并评估了底土中土壤有机碳(SOC)在不同密度组分中的分布、土壤呼吸的温度敏感性(Q10)和微生物死亡量。结果表明,生物废料和绿色废料堆肥的注入都提高了表层和底层土壤的 SOC 储量、呼吸速率和温度敏感性。在底土中,呼吸速率提高了 78%,同时堆肥的添加促进了微生物的生长(真菌残留物增加了 123%),但也增加了矿物部分的碳(C)含量。只有在堆肥类型之间,而不是在堆肥注入量之间,才能检测到密度组分的 δ13C 值和 Q10 值的显著差异。尤其是 C:N 比值较小的生物废料堆肥,其土壤中的可变 C 含量略高,并最终提高了底土的呼吸速率。因此,底土中融入的碳的去向受其成分而非注入量的控制。此外,在本研究中观察到,在堆肥注入后,真菌新陈代谢产生的碳对 Q10 值增加的贡献率高于细菌新陈代谢产生的碳,这表明真菌在很大程度上对注入的碳的最终贮存起到了促进作用。
{"title":"Fungal necromass is vital for the storage of subsoil C after deep injection of compost","authors":"Lei Du ,&nbsp;Sara L. Bauke ,&nbsp;Ramona Mörchen ,&nbsp;Oliver Schmittmann ,&nbsp;Wulf Amelung","doi":"10.1016/j.still.2024.106325","DOIUrl":"10.1016/j.still.2024.106325","url":null,"abstract":"<div><div>Organic matter (OM) injection into subsoil is expected to improve subsoil properties and thus increase crop nutrient and water uptake from the subsoil. Nevertheless, detailed knowledge of the fate and persistence of injected OM in subsoil does not yet exist. For this study, we sampled a field experiment, where two types of compost of different composition (Bio-waste compost and Green-waste compost, differing in carbon:nitrogen ratio) had been injected into the subsoil at three application amounts each (3, 5, and 7 kg dry mass m<sup>−1</sup>), and assessed the distribution of soil organic carbon (SOC) into different density fractions, the temperature sensitivity of soil respiration (Q10), and microbial necromass in subsoil. The results demonstrate that both Bio-waste and Green-waste compost injections enhanced the SOC stock, respiration rates, and temperature sensitivity in both top- and subsoil. In the subsoil, respiration rates were increased by 78 %, simultaneously compost addition enhanced microbial growth (increase in fungal residues by 123 %) but also increased the amount of carbon (C) in the mineral fraction. Significant differences in the δ<sup>13</sup>C values of density fractions and Q10 values were only detected between compost types rather than the amount of injected compost. Especially the Bio-waste compost with a narrower C:N ratio contributed to slightly greater soil labile C content, and ultimately elevated respiration rates in the subsoil. Hence, the fate of subsoil incorporated C is controlled by its composition rather than by the injected amount. Moreover, a higher contribution of fungal necromass C to the increase in Q10 values after compost injection was observed in the present study than for bacterial necromass C, suggesting that fungi are largely responsible for the final, enhanced storage of the C injected.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106325"},"PeriodicalIF":6.1,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PROMETHEE-GAIA: A multi-criteria decision-making method for identifying best conservation agricultural practices PROMETHEE-GAIA:确定最佳保护性农业实践的多标准决策方法
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-07 DOI: 10.1016/j.still.2024.106315
Tufleuddin Biswas , Alessio Ishizaka , Anurup Majumder , Biswapati Mandal , Shamik Dey , Siddhartha Mukherjee , Aniket Baishya , Sahely Kanthal , Samrat Ghosh , Anwesha Mandal , Riti Chatterjee , Soumik Ray , Snehasish Bhunia , Swarnali Duary , Suvendu Bhattacharjee , Pradeep Mishra , Sankar Kr Acharya
In a first, we used Preference Ranking Organization Method and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) tool in agricultural research for identifying the best management decision with weakening factors for cultivation of mustard following rice under fifteen regimes of conservation agriculture (CA) practices, because of its versatility, simplicity and usefulness. We created the regime of CA practices based on energy spent for raising the crop combining different tillage practices viz., reduced tillage and zero tillage, and quantity of crop residues and fertilizer application. The performance of the CA regimes was evaluated over the conventional ones using conflicting criteria (31) related to soil, agronomy, plant protection, energy use and economics. With the PROMETHEE-II method, we found zero tillage with 100 % residue plus 75 % NPK (ZERO3) as the best performing alternative, while GAIA analysis identified ZERO3 and zero tillage with 50 % residue plus 100 % NPK (ZERO4). On integration, PROMETHEE-GAIA helped the decision makers to segregate the effects of the criteria on the outcome creating a scope for maneuvering the weak links for optimizing the performance of mustard crop under different CA-regimes. The tool has a huge potential for use in multi-factorial agricultural research.
由于偏好排序组织法和交互式辅助几何分析(PROMETHEE-GAIA)工具的多功能性、简便性和实用性,我们首次在农业研究中使用了该工具,以确定在 15 种保护性耕作(CA)方法下种植芥菜的最佳管理决策。我们根据作物生长所耗费的能量,结合不同的耕作方式(即减少耕作和零耕作)以及作物残留物和施肥量,创建了保护性耕作方法体系。采用与土壤、农艺、植物保护、能源使用和经济学有关的相互冲突的标准(31),对传统农业耕作制度的性能进行了评估。通过 PROMETHEE-II 方法,我们发现 100%秸秆加 75%氮磷钾的零耕作(ZERO3)是效果最好的替代方案,而 GAIA 分析则确定了 ZERO3 和 50%秸秆加 100%氮磷钾的零耕作(ZERO4)。在整合方面,PROMETHEE-GAIA 帮助决策者区分了标准对结果的影响,为在不同的 CA 制度下优化芥菜作物的表现提供了操作薄弱环节的空间。该工具在多因素农业研究中具有巨大的应用潜力。
{"title":"The PROMETHEE-GAIA: A multi-criteria decision-making method for identifying best conservation agricultural practices","authors":"Tufleuddin Biswas ,&nbsp;Alessio Ishizaka ,&nbsp;Anurup Majumder ,&nbsp;Biswapati Mandal ,&nbsp;Shamik Dey ,&nbsp;Siddhartha Mukherjee ,&nbsp;Aniket Baishya ,&nbsp;Sahely Kanthal ,&nbsp;Samrat Ghosh ,&nbsp;Anwesha Mandal ,&nbsp;Riti Chatterjee ,&nbsp;Soumik Ray ,&nbsp;Snehasish Bhunia ,&nbsp;Swarnali Duary ,&nbsp;Suvendu Bhattacharjee ,&nbsp;Pradeep Mishra ,&nbsp;Sankar Kr Acharya","doi":"10.1016/j.still.2024.106315","DOIUrl":"10.1016/j.still.2024.106315","url":null,"abstract":"<div><div>In a first, we used Preference Ranking Organization Method and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) tool in agricultural research for identifying the best management decision with weakening factors for cultivation of mustard following rice under fifteen regimes of conservation agriculture (CA) practices, because of its versatility, simplicity and usefulness. We created the regime of CA practices based on energy spent for raising the crop combining different tillage practices viz., reduced tillage and zero tillage, and quantity of crop residues and fertilizer application. The performance of the CA regimes was evaluated over the conventional ones using conflicting criteria (31) related to soil, agronomy, plant protection, energy use and economics. With the PROMETHEE-II method, we found zero tillage with 100 % residue plus 75 % NPK (ZERO<sub>3</sub>) as the best performing alternative, while GAIA analysis identified ZERO<sub>3</sub> and zero tillage with 50 % residue plus 100 % NPK (ZERO<sub>4</sub>). On integration, PROMETHEE-GAIA helped the decision makers to segregate the effects of the criteria on the outcome creating a scope for maneuvering the weak links for optimizing the performance of mustard crop under different CA-regimes. The tool has a huge potential for use in multi-factorial agricultural research.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106315"},"PeriodicalIF":6.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and digital mapping of shallow water table depth using satellite-based spectral and thermal data: Introducing a framework for digital shallow water table mapping 利用基于卫星的光谱和热数据对浅层地下水位深度进行建模和数字测绘:浅层地下水位数字测绘框架介绍
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-07 DOI: 10.1016/j.still.2024.106317
Mehrdad Jeihouni , Khalil Valizadeh Kamran , Lutfiye Kusak
Shallow groundwater is a key variable of the hydrological cycle and has significant impacts on the components of energy, carbon, and water balances. Moreover, shallow saline groundwater plays a critical role in secondary soil salinization. Therefore, comprehensive information on spatial distribution of shallow water table depth is fundamental for effective land management and sustainable development. But determining it by conventional methods is time-consuming and financially costly in large areas. Shallow groundwater naturally has signatures at the land surface, and it can be parameterized by properties inferred from satellite-based surface data. Against this background, this study is to introduce a novel approach and framework for Digital Shallow Water Table Mapping (DSWTM). The efficiency and performance of the proposed DSWTM was assessed by different covariate sets and employing different predictive models. In the DSWTM framework, remote sensing spectral/thermal indices, geographic and trend data were used as covariates and the PLSR, M5, Cubist, and RF algorithms were employed as predictive models under four scenarios. For two high-performance models in each scenario, the water table depth maps were generated, and associated uncertainties were quantified using the bootstrapping technique at a spatial resolution of 30 m. The results revealed that the prediction accuracies of each predictive model were constantly increasing from the first to the fourth scenario. Moreover, the Cubist and RF models had higher performance than PLSR and M5 in all scenarios. The uncertainties’ of prediction maps generated by Cubist and RF models were decreased from the first to the fourth scenarios. The RF generated maps in all scenarios had the lowest uncertainty and provided accurate prediction maps compared to Cubist. The RF as a predictive model showed the highest ability and is recommended to use in DSWTM studies. The presented DSWTM framework opened a new research window for accurate shallow water table mapping.
浅层地下水是水文循环中的一个关键变量,对能量、碳和水的平衡有重大影响。此外,浅层含盐地下水在土壤次生盐碱化中起着至关重要的作用。因此,有关浅层地下水位深度空间分布的综合信息对于有效的土地管理和可持续发展至关重要。但在大面积地区,用传统方法确定浅层地下水位既费时又费钱。浅层地下水天然具有地表特征,可通过卫星地表数据推断出其属性参数。在此背景下,本研究提出了一种新的数字浅层地下水位测绘(DSWTM)方法和框架。通过不同的协变量集和采用不同的预测模型,对所提出的 DSWTM 的效率和性能进行了评估。在 DSWTM 框架中,遥感光谱/热指数、地理和趋势数据被用作协变量,PLSR、M5、Cubist 和 RF 算法被用作四种情况下的预测模型。针对每个方案中的两个高性能模型,生成了地下水位深度图,并在空间分辨率为 30 米的条件下使用引导技术对相关的不确定性进行了量化。结果表明,从第一种情况到第四种情况,每种预测模型的预测精度都在不断提高。此外,在所有情况下,Cubist 和 RF 模型的性能均高于 PLSR 和 M5。从第一个场景到第四个场景,Cubist 和 RF 模型生成的预测图的不确定性都有所下降。与 Cubist 相比,RF 在所有场景中生成的地图的不确定性最低,并能提供准确的预测地图。射频作为一种预测模型显示出最高的能力,建议在 DSWTM 研究中使用。所提出的 DSWTM 框架为准确绘制浅层地下水位图打开了一扇新的研究之窗。
{"title":"Modeling and digital mapping of shallow water table depth using satellite-based spectral and thermal data: Introducing a framework for digital shallow water table mapping","authors":"Mehrdad Jeihouni ,&nbsp;Khalil Valizadeh Kamran ,&nbsp;Lutfiye Kusak","doi":"10.1016/j.still.2024.106317","DOIUrl":"10.1016/j.still.2024.106317","url":null,"abstract":"<div><div>Shallow groundwater is a key variable of the hydrological cycle and has significant impacts on the components of energy, carbon, and water balances. Moreover, shallow saline groundwater plays a critical role in secondary soil salinization. Therefore, comprehensive information on spatial distribution of shallow water table depth is fundamental for effective land management and sustainable development. But determining it by conventional methods is time-consuming and financially costly in large areas. Shallow groundwater naturally has signatures at the land surface, and it can be parameterized by properties inferred from satellite-based surface data. Against this background, this study is to introduce a novel approach and framework for Digital Shallow Water Table Mapping (DSWTM). The efficiency and performance of the proposed DSWTM was assessed by different covariate sets and employing different predictive models. In the DSWTM framework, remote sensing spectral/thermal indices, geographic and trend data were used as covariates and the PLSR, M5, Cubist, and RF algorithms were employed as predictive models under four scenarios. For two high-performance models in each scenario, the water table depth maps were generated, and associated uncertainties were quantified using the bootstrapping technique at a spatial resolution of 30 m. The results revealed that the prediction accuracies of each predictive model were constantly increasing from the first to the fourth scenario. Moreover, the Cubist and RF models had higher performance than PLSR and M5 in all scenarios. The uncertainties’ of prediction maps generated by Cubist and RF models were decreased from the first to the fourth scenarios. The RF generated maps in all scenarios had the lowest uncertainty and provided accurate prediction maps compared to Cubist. The RF as a predictive model showed the highest ability and is recommended to use in DSWTM studies. The presented DSWTM framework opened a new research window for accurate shallow water table mapping.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106317"},"PeriodicalIF":6.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The legacy of deep ploughing and liming – A 1990s experimental site revisited 深耕和石灰化的遗留问题--重访 1990 年代的一个实验点
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-07 DOI: 10.1016/j.still.2024.106323
Jari Hyväluoma , Riikka Keskinen , Viktoriia Hetmanenko , Sami Kinnunen , Arttu Miettinen , Petri Niemi , Janne Kaseva , Helena Soinne
Management of agricultural soils for increased productivity may exert positive or negative effects on soil structure, functions, and organic carbon (SOC) stocks. In this study, a field experiment established in 1993 on a clayey soil in southwest Finland was revisited to investigate the long-term effects of deep ploughing and liming on SOC concentration and stock, particulate (POC) and mineral-associated (MOC) fractions of SOC, pH, electrical conductivity (EC), bulk density (BD), porosity, critical pore size and cereal yield. The experiment comprised whole plots of conventional tillage (CT) to a maximum depth of ca. 20 cm, and plots deep ploughed to ca. 35 cm depth by a commercial (DP1) or by a self-made (DP2) plough. The tillage plots were divided into three split-plots assigned to liming treatments (low, medium and high). Three decades after implementation, the increasing liming rates still induced consistent differences in soil pH, a significant increasing effect on total porosity in the subsoil, and a marginally significant decrease in yield with an increase in soil acidity. The deep ploughing exerted a minor difference in topsoil texture, slightly lowered SOC concentration in the topsoil in DP2 in comparison to CT, and slightly higher subsoil SOC concentration in DP1 in comparison to CT, which indicated transfer of the topsoil SOC to deeper layers and dilution of the SOC in the new topsoil. However, no significant differences between the tillage treatments occurred in SOC stocks. In MOC and POC concentrations, there were no significant differences between the control and tillage treatments. The effects of deep ploughing on soil structural properties on the decadal time scale were minor and scattered. Cereal yield exhibited a slight negative trend for deep ploughing. For EC and BD, no treatment effects were recorded. Overall, the study showed that the legacy of soil management effects on soil properties can be persistent on decadal time scales, but no permanent structural damage due to deep ploughing nor gains in SOC stock accrual could be observed.
为提高生产力而对农业土壤进行管理,可能会对土壤结构、功能和有机碳 (SOC) 储量产生积极或消极的影响。本研究重新审视了 1993 年在芬兰西南部粘质土壤上进行的一项田间试验,以调查深耕和石灰化对 SOC 浓度和储量、SOC 的颗粒 (POC) 和矿物相关 (MOC) 部分、pH 值、电导率 (EC)、容重 (BD)、孔隙度、临界孔径和谷物产量的长期影响。试验包括最大耕深约 20 厘米的整块常规耕作 (CT) 地块,以及用商用犁(DP1)或自制犁(DP2)深耕至约 35 厘米的地块。耕作地块被分成三块,分别分配给不同的石灰化处理(低、中、高)。实施三十年后,土壤 pH 值仍然存在差异,底土的总孔隙度显著增加,产量随着土壤酸度的增加而略有下降。深耕使表土质地略有不同,与 CT 相比,DP2 表土中的 SOC 浓度略有降低,与 CT 相比,DP1 底土中的 SOC 浓度略有升高,这表明表土中的 SOC 转移到了深层,稀释了新表土中的 SOC。不过,不同耕作处理之间的 SOC 储量没有明显差异。在 MOC 和 POC 浓度方面,对照组和耕作处理之间没有显著差异。在十年时间尺度上,深耕对土壤结构特性的影响微小且分散。深耕对谷物产量的影响呈轻微的负趋势。对于 EC 和 BD,没有记录到任何处理效应。总之,研究表明,土壤管理对土壤特性的影响在十年时间尺度上是持续存在的,但没有观察到深耕对土壤结构造成永久性破坏,也没有观察到 SOC 储量的增加。
{"title":"The legacy of deep ploughing and liming – A 1990s experimental site revisited","authors":"Jari Hyväluoma ,&nbsp;Riikka Keskinen ,&nbsp;Viktoriia Hetmanenko ,&nbsp;Sami Kinnunen ,&nbsp;Arttu Miettinen ,&nbsp;Petri Niemi ,&nbsp;Janne Kaseva ,&nbsp;Helena Soinne","doi":"10.1016/j.still.2024.106323","DOIUrl":"10.1016/j.still.2024.106323","url":null,"abstract":"<div><div>Management of agricultural soils for increased productivity may exert positive or negative effects on soil structure, functions, and organic carbon (SOC) stocks. In this study, a field experiment established in 1993 on a clayey soil in southwest Finland was revisited to investigate the long-term effects of deep ploughing and liming on SOC concentration and stock, particulate (POC) and mineral-associated (MOC) fractions of SOC, pH, electrical conductivity (EC), bulk density (BD), porosity, critical pore size and cereal yield. The experiment comprised whole plots of conventional tillage (CT) to a maximum depth of ca. 20 cm, and plots deep ploughed to ca. 35 cm depth by a commercial (DP1) or by a self-made (DP2) plough. The tillage plots were divided into three split-plots assigned to liming treatments (low, medium and high). Three decades after implementation, the increasing liming rates still induced consistent differences in soil pH, a significant increasing effect on total porosity in the subsoil, and a marginally significant decrease in yield with an increase in soil acidity. The deep ploughing exerted a minor difference in topsoil texture, slightly lowered SOC concentration in the topsoil in DP2 in comparison to CT, and slightly higher subsoil SOC concentration in DP1 in comparison to CT, which indicated transfer of the topsoil SOC to deeper layers and dilution of the SOC in the new topsoil. However, no significant differences between the tillage treatments occurred in SOC stocks. In MOC and POC concentrations, there were no significant differences between the control and tillage treatments. The effects of deep ploughing on soil structural properties on the decadal time scale were minor and scattered. Cereal yield exhibited a slight negative trend for deep ploughing. For EC and BD, no treatment effects were recorded. Overall, the study showed that the legacy of soil management effects on soil properties can be persistent on decadal time scales, but no permanent structural damage due to deep ploughing nor gains in SOC stock accrual could be observed.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106323"},"PeriodicalIF":6.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of an arbuscular mycorrhizal fungus on Amorpha fruticosa roots and soil preferential flow in an arid area of opencast coal mine waste 露天煤矿废弃物干旱地区丛枝菌根真菌对芒萁根系和土壤优先流动的影响
IF 6.1 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2024-10-05 DOI: 10.1016/j.still.2024.106321
Yinli Bi , Xinpeng Du , Lexuan Tian , Mingchao Li , Kejing Yin
Preferential flow plays a key role in soil hydrological processes in arid and semi-arid areas of opencast coal mine waste. Inoculation with arbuscular mycorrhizal (AM) fungi can significantly affect vegetation root growth and improve soil physical structure. However, the impact on preferential flow in new areas of waste remains poorly understood. Here, the effects of AM fungal inoculation on root spatial distribution and preferential flow within the waste area at Heidaigou opencast coal mine in China were analyzed where Amorpha fruticosa was grown for revegetation. A staining tracer method and a grid sampling method were used. Preferential flow pathway development in the newly formed waste areas was affected mainly by A. fruticosa root systems, with closer proximity to A. fruticosa resulting in more preferential flow pathways. Inoculation with the AM fungus Funneliformis mosseae significantly increased preferential flow development. In the profile closest to the A. fruticosa, the dye coverage increased by 59 %, the uniform infiltration depth by 73 %, and the maximum stained depth by 80 %. Plant roots occurred mainly at 0−20 cm soil depth, accounting for ∼ 80 % of the total root length of the entire root system. In the profile closest to A. fruticosa, inoculation with F. mosseae increased the total number of roots and the root length density by 32 %. The preferential flow pathways were developed only in roots with diameters of > 2 mm and more widely distributed at both 0−10 and 10−20 cm soil depths. Substrate infiltration was influenced mainly by roots with diameters of < 4 mm but deep infiltration was more dependent on roots with diameters > 2 mm. Mycorrhizal hyphae contributed to the preferential flow. Inoculation with the AM fungus increased the preferential flow of the newly formed drainage sites and this effect should be considered in the ecological restoration of opencast coal mine wastes in arid and semi-arid areas.
在干旱和半干旱地区的露天煤矿废弃物土壤水文过程中,优先流起着关键作用。接种丛枝菌根(AM)真菌可显著影响植被根系的生长,改善土壤物理结构。然而,人们对废料新区优先流的影响仍然知之甚少。本文分析了接种AM真菌对中国黑岱沟露天煤矿废弃区内根系空间分布和优先流动的影响。研究采用了染色示踪法和网格取样法。在新形成的废料区,优先流道的发展主要受蕨类植物根系的影响,离蕨类植物越近,优先流道越多。接种 AM 真菌 Funneliformis mosseae 能显著增加优先流的发展。在最靠近 A. fruticosa 的剖面上,染料覆盖率增加了 59%,均匀渗透深度增加了 73%,最大染色深度增加了 80%。植物根系主要分布在 0-20 厘米的土壤深度,占整个根系总长度的 80%。在最靠近 A. fruticosa 的剖面上,接种 F. mosseae 后,根的总数和根长密度增加了 32%。只有直径为 > 2 毫米的根系才有优先流动路径,而且在 0-10 厘米和 10-20 厘米的土壤深度分布更广。基质渗透主要受直径为 4 毫米的根的影响,但深层渗透更依赖于直径为 2 毫米的根。菌根菌丝促成了优先流动。接种AM真菌增加了新形成的排水点的优先流量,在干旱和半干旱地区露天煤矿废弃物的生态恢复中应考虑这种效应。
{"title":"Effects of an arbuscular mycorrhizal fungus on Amorpha fruticosa roots and soil preferential flow in an arid area of opencast coal mine waste","authors":"Yinli Bi ,&nbsp;Xinpeng Du ,&nbsp;Lexuan Tian ,&nbsp;Mingchao Li ,&nbsp;Kejing Yin","doi":"10.1016/j.still.2024.106321","DOIUrl":"10.1016/j.still.2024.106321","url":null,"abstract":"<div><div>Preferential flow plays a key role in soil hydrological processes in arid and semi-arid areas of opencast coal mine waste. Inoculation with arbuscular mycorrhizal (AM) fungi can significantly affect vegetation root growth and improve soil physical structure. However, the impact on preferential flow in new areas of waste remains poorly understood. Here, the effects of AM fungal inoculation on root spatial distribution and preferential flow within the waste area at Heidaigou opencast coal mine in China were analyzed where <em>Amorpha fruticosa</em> was grown for revegetation. A staining tracer method and a grid sampling method were used. Preferential flow pathway development in the newly formed waste areas was affected mainly by <em>A. fruticosa</em> root systems<em>,</em> with closer proximity to <em>A. fruticosa</em> resulting in more preferential flow pathways. Inoculation with the AM fungus <em>Funneliformis mosseae</em> significantly increased preferential flow development. In the profile closest to the <em>A. fruticosa</em>, the dye coverage increased by 59 %, the uniform infiltration depth by 73 %, and the maximum stained depth by 80 %. Plant roots occurred mainly at 0−20 cm soil depth, accounting for ∼ 80 % of the total root length of the entire root system. In the profile closest to <em>A. fruticosa</em>, inoculation with <em>F. mosseae</em> increased the total number of roots and the root length density by 32 %. The preferential flow pathways were developed only in roots with diameters of &gt; 2 mm and more widely distributed at both 0−10 and 10−20 cm soil depths. Substrate infiltration was influenced mainly by roots with diameters of &lt; 4 mm but deep infiltration was more dependent on roots with diameters &gt; 2 mm. Mycorrhizal hyphae contributed to the preferential flow. Inoculation with the AM fungus increased the preferential flow of the newly formed drainage sites and this effect should be considered in the ecological restoration of opencast coal mine wastes in arid and semi-arid areas.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"245 ","pages":"Article 106321"},"PeriodicalIF":6.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Soil & Tillage Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1