Purpose This study aims to propose and study a refractive index sensor based on measuring variations of the internal diffuse reflectance from a glass interface in a functional design. The device is uncomplicated to assemble with simple optical elements and it can be built as a robust and stable sensor. Design/methodology/approach This study presents a simplified theoretical model of the signal obtained with the proposed device and perform a detailed analysis of its potential resolution and merits. Findings The authors report proof-of-principle experiments with a home-made device to evaluate its performance as a refractometer and index of refraction sensor. Originality/value The main novelty of the device is the use of a diffusing surface to couple light into a glass plate with a wide range of angles of refraction, including angles larger than the critical angle with the external medium, and using the same diffusing surface to couple reflected light out of the glass plate, including light that suffered total internal reflection.
{"title":"Functional refractive-index sensor by internal reflection of diffuse light","authors":"Diana Pineda-Vázquez, A. García-Valenzuela","doi":"10.1108/sr-08-2022-0301","DOIUrl":"https://doi.org/10.1108/sr-08-2022-0301","url":null,"abstract":"\u0000Purpose\u0000This study aims to propose and study a refractive index sensor based on measuring variations of the internal diffuse reflectance from a glass interface in a functional design. The device is uncomplicated to assemble with simple optical elements and it can be built as a robust and stable sensor.\u0000\u0000\u0000Design/methodology/approach\u0000This study presents a simplified theoretical model of the signal obtained with the proposed device and perform a detailed analysis of its potential resolution and merits.\u0000\u0000\u0000Findings\u0000The authors report proof-of-principle experiments with a home-made device to evaluate its performance as a refractometer and index of refraction sensor.\u0000\u0000\u0000Originality/value\u0000The main novelty of the device is the use of a diffusing surface to couple light into a glass plate with a wide range of angles of refraction, including angles larger than the critical angle with the external medium, and using the same diffusing surface to couple reflected light out of the glass plate, including light that suffered total internal reflection.\u0000","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49513902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose With the rapid increase in the number of installed wind turbines (WTs) worldwide, requirements and expenses of maintenance have also increased significantly. The condition monitoring (CM) of WT provides a strong “soft guarantee” for preventive maintenance. The supervisory control and data acquisition (SCADA) system records a huge amount of condition data, which has become an effective means of CM. The main objective of the present study is to summarize the application of SCADA data to fault detection in wind turbines, analyze its advantages and disadvantages and predict the potential of future investigations on the use of SCADA data for fault detection. Design/methodology/approach The authors first review the means of WT CM and summarize the characteristics of CM based on SCADA data. To ensure the quality of SCADA data, data preprocessing methods are analyzed and compared. Then, the failure modes of the key components are discussed and the SCADA data used for fault detection of each component are compared. Moreover, the fault detection methods for WT are classified and a general framework for fault detection is proposed. Finally, the issues in the WT fault detection method based on SCADA data are reviewed. Findings Based on the performed analyses, it is found that although the fault detection accuracy based on SCADA data is relatively poor, it has low capital expenses and low computational cost. More specifically, when there is scarce fault data, the normal SCADA data can be used to detect the fault time. However, the specific fault type cannot be identified in this way. When a large amount of fault data are accumulated in the SCADA system, it can not only detect the occurrence time of the fault but also identify the specific fault type. Originality/value The main contribution of the present study is to summarize the pre-processing methods for SCADA data, the data required for fault detection of key components and the characteristics of the fault detection model. Then we propose a general fault detection framework for wind turbines based on SCADA data, where the maintenance workers can choose the appropriate fault detection method according to different fault detection requirements and data resources. This article is expected to provide guidance for fault detection based on time-series sensor signals and be of interest to researchers, maintenance workers and managers.
{"title":"Application of SCADA data in wind turbine fault detection – a review","authors":"Junyan Ma, Yiping Yuan","doi":"10.1108/sr-06-2022-0255","DOIUrl":"https://doi.org/10.1108/sr-06-2022-0255","url":null,"abstract":"\u0000Purpose\u0000With the rapid increase in the number of installed wind turbines (WTs) worldwide, requirements and expenses of maintenance have also increased significantly. The condition monitoring (CM) of WT provides a strong “soft guarantee” for preventive maintenance. The supervisory control and data acquisition (SCADA) system records a huge amount of condition data, which has become an effective means of CM. The main objective of the present study is to summarize the application of SCADA data to fault detection in wind turbines, analyze its advantages and disadvantages and predict the potential of future investigations on the use of SCADA data for fault detection.\u0000\u0000\u0000Design/methodology/approach\u0000The authors first review the means of WT CM and summarize the characteristics of CM based on SCADA data. To ensure the quality of SCADA data, data preprocessing methods are analyzed and compared. Then, the failure modes of the key components are discussed and the SCADA data used for fault detection of each component are compared. Moreover, the fault detection methods for WT are classified and a general framework for fault detection is proposed. Finally, the issues in the WT fault detection method based on SCADA data are reviewed.\u0000\u0000\u0000Findings\u0000Based on the performed analyses, it is found that although the fault detection accuracy based on SCADA data is relatively poor, it has low capital expenses and low computational cost. More specifically, when there is scarce fault data, the normal SCADA data can be used to detect the fault time. However, the specific fault type cannot be identified in this way. When a large amount of fault data are accumulated in the SCADA system, it can not only detect the occurrence time of the fault but also identify the specific fault type.\u0000\u0000\u0000Originality/value\u0000The main contribution of the present study is to summarize the pre-processing methods for SCADA data, the data required for fault detection of key components and the characteristics of the fault detection model. Then we propose a general fault detection framework for wind turbines based on SCADA data, where the maintenance workers can choose the appropriate fault detection method according to different fault detection requirements and data resources. This article is expected to provide guidance for fault detection based on time-series sensor signals and be of interest to researchers, maintenance workers and managers.\u0000","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46757234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengran Liu, Q. Zeng, Zeming Jian, Lei Nie, Jun Tu
Purpose Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater targets. This paper proposes a new underwater Hanbury Brown-Twiss (HBT) interference passive localization method. This study aims to achieve precise location of the underwater acoustic targets. Design/methodology/approach The principle of HBT interference with ultrasensitive detection characteristics in optical measurements was introduced in the field of hydroacoustics. The coherence of the underwater target signal was analyzed using the HBT interference measurement principle, and the corresponding relationship between the signal coherence and target position was obtained. Consequently, an HBT interference localization model was established, and its validity was verified through simulations and experiments. Findings The effects of different array structures on the localization performance were obtained by simulation analysis, and the simulations confirmed that the HBT method exhibited a higher positioning accuracy than conventional beamforming. In addition, the experimental analysis demonstrated the excellent positioning performance of the HBT method, which verified the feasibility of the proposed method. Originality/value This study provides a new method for the passive localization of underwater targets, which may be widely used in the field of oceanic explorations.
{"title":"Underwater target passive acoustic localization method based on Hanbury Brown–Twiss interference","authors":"Mengran Liu, Q. Zeng, Zeming Jian, Lei Nie, Jun Tu","doi":"10.1108/sr-03-2022-0161","DOIUrl":"https://doi.org/10.1108/sr-03-2022-0161","url":null,"abstract":"\u0000Purpose\u0000Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater targets. This paper proposes a new underwater Hanbury Brown-Twiss (HBT) interference passive localization method. This study aims to achieve precise location of the underwater acoustic targets.\u0000\u0000\u0000Design/methodology/approach\u0000The principle of HBT interference with ultrasensitive detection characteristics in optical measurements was introduced in the field of hydroacoustics. The coherence of the underwater target signal was analyzed using the HBT interference measurement principle, and the corresponding relationship between the signal coherence and target position was obtained. Consequently, an HBT interference localization model was established, and its validity was verified through simulations and experiments.\u0000\u0000\u0000Findings\u0000The effects of different array structures on the localization performance were obtained by simulation analysis, and the simulations confirmed that the HBT method exhibited a higher positioning accuracy than conventional beamforming. In addition, the experimental analysis demonstrated the excellent positioning performance of the HBT method, which verified the feasibility of the proposed method.\u0000\u0000\u0000Originality/value\u0000This study provides a new method for the passive localization of underwater targets, which may be widely used in the field of oceanic explorations.\u0000","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49045489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}