Pub Date : 2021-04-29DOI: 10.23967/J.RIMNI.2021.04.006
Bing Wang, Lin Li, Yao Yu, Benyong Huo, Jian Liu, Jie Liu
Cemented paste backfill (CPB) is prepared by mixing cementitious materials, tailings and water. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CPB. Ultrasonic pulse velocity (UPV) testing which is a non-destructive measurement, can also be applied to determine the mechanical properties of cement-based materials such as CPB. In order to study the failure mechanism of CPB,144 CPB samples prepared at different mass fraction and cement-tailing ratios were subjected to the UCS and UPV tests at 7,14 and 28 days of curing age. The effect of cement-tailing ratio and mass fraction on the UCS and UPV of CPB samples were obtained, the UCS values were correlated with the corresponding UPV data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the UCS data. The results show that the UCS and UPV values of CPB increased with cement-tailing ratio, mass fraction and curing time. Based on the experimental results, the damage constitutive equations and the damage evolution equations of different backfills were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. The results acquired by this paper provide a scientific basis for the rational strength design of backfill mine.
{"title":"Analysis of damage failure in uniaxial compressive of cemented paste backfill by ultrasonic pulse velocity test","authors":"Bing Wang, Lin Li, Yao Yu, Benyong Huo, Jian Liu, Jie Liu","doi":"10.23967/J.RIMNI.2021.04.006","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.04.006","url":null,"abstract":"Cemented paste backfill (CPB) is prepared by mixing cementitious materials, tailings and water. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CPB. Ultrasonic pulse velocity (UPV) testing which is a non-destructive measurement, can also be applied to determine the mechanical properties of cement-based materials such as CPB. In order to study the failure mechanism of CPB,144 CPB samples prepared at different mass fraction and cement-tailing ratios were subjected to the UCS and UPV tests at 7,14 and 28 days of curing age. The effect of cement-tailing ratio and mass fraction on the UCS and UPV of CPB samples were obtained, the UCS values were correlated with the corresponding UPV data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the UCS data. The results show that the UCS and UPV values of CPB increased with cement-tailing ratio, mass fraction and curing time. Based on the experimental results, the damage constitutive equations and the damage evolution equations of different backfills were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. The results acquired by this paper provide a scientific basis for the rational strength design of backfill mine.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"5 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79999184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-14DOI: 10.23967/J.RIMNI.2021.04.004
Yang Liu, Liang Ye, Yifeng Teng
The special-shaped column structure system has more advantages than the rectangular column system in terms of architectural design and actual use. As a relatively new structural form, the concrete special-shaped column structure has not accumulated enough engineering practical experience. In this study, the rotation-moment curve of the plastic hinge of special-shaped column frame element was defined, the coupled PMM hinge applied to the frame element was studied, and the yield surface of the hinge was drawn. On this basis, an elastoplastic pushover analysis was conducted on a 12-storey special-shaped column frame model, its failure under different earthquakes was simulated, and its seismic performance was studied. The work of this article can provide reference for the engineering application of special-shaped column frame structure.
{"title":"Research on 3D elastoplastic seismic performance of reinforced concrete special-shaped column frame","authors":"Yang Liu, Liang Ye, Yifeng Teng","doi":"10.23967/J.RIMNI.2021.04.004","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.04.004","url":null,"abstract":"The special-shaped column structure system has more advantages than the rectangular column system in terms of architectural design and actual use. As a relatively new structural form, the concrete special-shaped column structure has not accumulated enough engineering practical experience. In this study, the rotation-moment curve of the plastic hinge of special-shaped column frame element was defined, the coupled PMM hinge applied to the frame element was studied, and the yield surface of the hinge was drawn. On this basis, an elastoplastic pushover analysis was conducted on a 12-storey special-shaped column frame model, its failure under different earthquakes was simulated, and its seismic performance was studied. The work of this article can provide reference for the engineering application of special-shaped column frame structure.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82713381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-27DOI: 10.23967/J.RIMNI.2021.01.007
B. Camargos, H. D. Souza, Angélica Maciel Gomes, A. Ladeira, R. Reis, Lidianne de Paula Pinto Mapa
Natural ventilation portrays an effective technique for lowering the internal temperature, without spending electricity, and directly contributes to the renewal of indoor air by establishing a healthy environment for workers. Given this, it is usual to have air vent openings located at the top of the roof (continuous roof vents), in addition to those present on the facades of sheds. In naturally ventilated buildings, it is recommended to give due importance to the provision of these openings, since depending on the proposed arrangement, the wind may or may not help in the effectiveness of this strategy. In this work, it is evaluated via computer simulation (EnergyPlus, version 8.7.0), for the climatic conditions of the city of Belo Horizonte/Brazil, the influence of the wind direction in the flow rate of indoor air through the ridge vents, of the longitudinal and transversal type, present in industrial sheds endowed with an internal source of high-intensity heat release. The results obtained show that the flow rate has a symmetrical behavior in the openings of the longitudinal continuous roof vent, that is, when an opening is with the maximum outflow of the internal air, the opening opposite the predominant wind direction is acting as an entry point for the air external. The transverse continuous roof vents are more sensitive about the wind direction since they are positioned perpendicular to the building. The best result found is for the wind situation occurring parallel to the shed, obtaining a reduction in the internal temperature of up to 1°C, an increase in the rate of air changes per hour, in the internal environment, at 1acph, and an increase of up to 10,7% in the volume of air infiltrated into the shed.
{"title":"Naturally ventilated industrial sheds: an investigation about the influence of wind direction in flow rate efficiency in continuous roof vents","authors":"B. Camargos, H. D. Souza, Angélica Maciel Gomes, A. Ladeira, R. Reis, Lidianne de Paula Pinto Mapa","doi":"10.23967/J.RIMNI.2021.01.007","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.01.007","url":null,"abstract":"Natural ventilation portrays an effective technique for lowering the internal temperature, without spending electricity, and directly contributes to the renewal of indoor air by establishing a healthy environment for workers. Given this, it is usual to have air vent openings located at the top of the roof (continuous roof vents), in addition to those present on the facades of sheds. In naturally ventilated buildings, it is recommended to give due importance to the provision of these openings, since depending on the proposed arrangement, the wind may or may not help in the effectiveness of this strategy. In this work, it is evaluated via computer simulation (EnergyPlus, version 8.7.0), for the climatic conditions of the city of Belo Horizonte/Brazil, the influence of the wind direction in the flow rate of indoor air through the ridge vents, of the longitudinal and transversal type, present in industrial sheds endowed with an internal source of high-intensity heat release. The results obtained show that the flow rate has a symmetrical behavior in the openings of the longitudinal continuous roof vent, that is, when an opening is with the maximum outflow of the internal air, the opening opposite the predominant wind direction is acting as an entry point for the air external. The transverse continuous roof vents are more sensitive about the wind direction since they are positioned perpendicular to the building. The best result found is for the wind situation occurring parallel to the shed, obtaining a reduction in the internal temperature of up to 1°C, an increase in the rate of air changes per hour, in the internal environment, at 1acph, and an increase of up to 10,7% in the volume of air infiltrated into the shed.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"148 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68781399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-25DOI: 10.23967/J.RIMNI.2021.01.001
Yan Tan, J. Shang, Yuyou Zhan
Research on engine icing is a hot topic among the world. Different from the aircraft wing or airframe icing, the evaporation phenomenon in the internal flow field has a great influence on the engine icing. Moreover, the thermodynamic coupling between droplets and flow field is not available in current particle trajectory calculations, or only for one-dimensional situation. Therefore, a three-dimensional droplet trajectory calculation model based on Eulerian method is used to demonstrate the thermodynamic coupling between droplets and flow field. The model was verified by NRC small engine icing wind tunnel test data and the flow field evolution is obtained which cannot be obtained by the one-dimensional coupling model. In the meanwhile, the effects of different initial LWC, relative humidity and MVD on the internal flow evaporation were studied, and the trends of droplets and flow field affected by evaporation were obtained. The numerical method in this paper can provide guidance for the subsequent research on engine icing
{"title":"A study of droplet evaporation coupling model based on Eulerian method","authors":"Yan Tan, J. Shang, Yuyou Zhan","doi":"10.23967/J.RIMNI.2021.01.001","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.01.001","url":null,"abstract":"Research on engine icing is a hot topic among the world. Different from the aircraft wing or airframe icing, the evaporation phenomenon in the internal flow field has a great influence on the engine icing. Moreover, the thermodynamic coupling between droplets and flow field is not available in current particle trajectory calculations, or only for one-dimensional situation. Therefore, a three-dimensional droplet trajectory calculation model based on Eulerian method is used to demonstrate the thermodynamic coupling between droplets and flow field. The model was verified by NRC small engine icing wind tunnel test data and the flow field evolution is obtained which cannot be obtained by the one-dimensional coupling model. In the meanwhile, the effects of different initial LWC, relative humidity and MVD on the internal flow evaporation were studied, and the trends of droplets and flow field affected by evaporation were obtained. The numerical method in this paper can provide guidance for the subsequent research on engine icing","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"30 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80755721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-22DOI: 10.23967/J.RIMNI.2021.01.002
Long Wang, Zheng-quan Yang, Jian-ming Zhao, Xiaogang Wang, Zhu Kaibin, Xiao-sheng Liu
The dynamic response characteristics of an earth-rock fill dam on a deep overburden are the focus of seismic research. In particular, evaluating the influence of the earthquake safety of the dam. A dynamic response analysis of earth-rock fill dam on a deep overburden based on viscoelastic boundary conditions was used to study the influence of boundary conditions (including fixed boundary conditions and viscoelastic boundary conditions). The results show that the fixed boundary condition greatly improves the dynamic response level of the dam during an earthquake and has no obvious influence on the distribution of the acceleration response in the dam and the foundation. The difference in the calculation results under the two boundary conditions is related to the seismic input characteristics and dynamic deformation characteristics of the soil material. An analysis of the acceleration response spectrum shows that the influence of the boundary conditions on the calculation results is limited to the magnitude level of the acceleration response, while the spectral characteristics of the vibration of the dam and the foundation do not have a significant impact.
{"title":"Seismic response analysis of earth-rock fill dam on deep overburden under viscoelastic boundary condition","authors":"Long Wang, Zheng-quan Yang, Jian-ming Zhao, Xiaogang Wang, Zhu Kaibin, Xiao-sheng Liu","doi":"10.23967/J.RIMNI.2021.01.002","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.01.002","url":null,"abstract":"The dynamic response characteristics of an earth-rock fill dam on a deep overburden are the focus of seismic research. In particular, evaluating the influence of the earthquake safety of the dam. A dynamic response analysis of earth-rock fill dam on a deep overburden based on viscoelastic boundary conditions was used to study the influence of boundary conditions (including fixed boundary conditions and viscoelastic boundary conditions). The results show that the fixed boundary condition greatly improves the dynamic response level of the dam during an earthquake and has no obvious influence on the distribution of the acceleration response in the dam and the foundation. The difference in the calculation results under the two boundary conditions is related to the seismic input characteristics and dynamic deformation characteristics of the soil material. An analysis of the acceleration response spectrum shows that the influence of the boundary conditions on the calculation results is limited to the magnitude level of the acceleration response, while the spectral characteristics of the vibration of the dam and the foundation do not have a significant impact.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"42 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85772116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-21DOI: 10.23967/J.RIMNI.2021.01.005
Z. Wang, Y. Wang, S. Zhang, Z. Xiong
Adding personal perceptions to manufacturing engineering can be very challenging, especially when engineering-based methods are used to make artisans understand the designer's ideas. Unfortunately, the two-dimensional engineering definition can be extremely time-consuming for individuals who lack creativity or imagination, and model-based definition would be incapable of breaking the separation between the virtual space and the real world, which makes the interaction between natural persons exist spatial perception error. The emergence of Augmented Reality (AR), which allows individuals to perceive the intentions and strategies of the designer with visual cues that are attached to actual objects, fills this gap. In this paper, augmented engineering definition (AED) is proposed to enhance the information exchange between natural persons in a succinct, accurate and acceptable form of visual impression. Motivated by visual representation in remote collaboration, the specific empathy scenario bases on the AED design, which leads to the establishment of a mapping relationship between the visual cues and the augmented information. An inquiry had been conducted by involving participants who were paired up for the parts’ inspection, interacting via 2D visualization data only, interaction with 3D projection data, interaction with 3D visualization data, AED-based communication. The experimental results showed that participants with AED exhibited higher situational appeal and information understanding than using three other interactions. Besides, we discussed the feasibility of using AED in a collaborative manufacturing environment and the impact on AED users.
{"title":"AED: a novel visual representation based on AR and empathy computing in manual assembly","authors":"Z. Wang, Y. Wang, S. Zhang, Z. Xiong","doi":"10.23967/J.RIMNI.2021.01.005","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.01.005","url":null,"abstract":"Adding personal perceptions to manufacturing engineering can be very challenging, especially when engineering-based methods are used to make artisans understand the designer's ideas. Unfortunately, the two-dimensional engineering definition can be extremely time-consuming for individuals who lack creativity or imagination, and model-based definition would be incapable of breaking the separation between the virtual space and the real world, which makes the interaction between natural persons exist spatial perception error. The emergence of Augmented Reality (AR), which allows individuals to perceive the intentions and strategies of the designer with visual cues that are attached to actual objects, fills this gap. In this paper, augmented engineering definition (AED) is proposed to enhance the information exchange between natural persons in a succinct, accurate and acceptable form of visual impression. Motivated by visual representation in remote collaboration, the specific empathy scenario bases on the AED design, which leads to the establishment of a mapping relationship between the visual cues and the augmented information. An inquiry had been conducted by involving participants who were paired up for the parts’ inspection, interacting via 2D visualization data only, interaction with 3D projection data, interaction with 3D visualization data, AED-based communication. The experimental results showed that participants with AED exhibited higher situational appeal and information understanding than using three other interactions. Besides, we discussed the feasibility of using AED in a collaborative manufacturing environment and the impact on AED users.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"8 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89793814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-19DOI: 10.23967/J.RIMNI.2021.01.006
D. Pulgarin, J. Plaza, J. Ruge, J. P. Rojas
This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.
{"title":"Hydraulic modeling of combined sewers overflow integrating the results of the SWMM and CFX models.","authors":"D. Pulgarin, J. Plaza, J. Ruge, J. P. Rojas","doi":"10.23967/J.RIMNI.2021.01.006","DOIUrl":"https://doi.org/10.23967/J.RIMNI.2021.01.006","url":null,"abstract":"This study proposes a methodology for the calibration of combined sewer overflow (CSO), incorporating the results of the three-dimensional ANSYS CFX model in the SWMM one-dimensional model. The procedure consists of constructing calibration curves in ANSYS CFX that relate the input flow to the CSO with the overflow, to then incorporate them into the SWMM model. The results obtained show that the behavior of the flow over the crest of the overflow weir varies in space and time. Therefore, the flow of entry to the CSO and the flow of excesses maintain a non-linear relationship, contrary to the results obtained in the one-dimensional model. However, the uncertainty associated with the idealization of flow methodologies in one dimension is reduced under the SWMM model with kinematic wave conditions and simulating CSO from curves obtained in ANSYS CFX. The result obtained facilitates the calibration of combined sewer networks for permanent or non-permanent flow conditions, by means of the construction of curves in a three-dimensional model, especially when the information collected in situ is limited.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"86 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89036008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-12DOI: 10.23967/j.rimni.2020.12.002
E. Arrieta, N. Romero, Melissa Torregroza, Isaías Fuly
In this paper, a mathematical model using finite element software is developed. An electromagnetic analysis is performed to determine the behavior of quantities such as magnetic flux density and output voltage when short-circuit failures occur in the winding of the rotor poles of a synchronous small size machine when it works as a generator. The voltage values obtained from the simulations were compared with data from actual tests performed in the laboratory.
{"title":"Analysis of short-circuit failures in synchronous machinery rotor using finite elements","authors":"E. Arrieta, N. Romero, Melissa Torregroza, Isaías Fuly","doi":"10.23967/j.rimni.2020.12.002","DOIUrl":"https://doi.org/10.23967/j.rimni.2020.12.002","url":null,"abstract":"In this paper, a mathematical model using finite element software is developed. An electromagnetic analysis is performed to determine the behavior of quantities such as magnetic flux density and output voltage when short-circuit failures occur in the winding of the rotor poles of a synchronous small size machine when it works as a generator. The voltage values obtained from the simulations were compared with data from actual tests performed in the laboratory.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"216 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76969005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-12DOI: 10.23967/j.rimni.2020.10.005
Y. Ni, W. Zhang, Y. Lv
The investigation of modeling the time evolution of a folding wing during the morphing process and the dynamic characteristics analysis is carried out. The governing equations with uniform form are developed from the integration of floating frame method in multi-body dynamics and component mode synthesis in structural dynamics. The time-dependent aerodynamic force is taken into the governing equations. The equation achieves the time-dependent coupling between structure and aerodynamics and avoids the data transmission and low efficiency, which holds true for the multi-segmented folding wing. The relative parameters in constraint equations are easily modified to be applied to both slow and fast-varying processes for a folding wing. Also, the influence of the velocity and attack angle on transient responses can be investigated. Transient response analysis shows that slower morphing means more stable transient responses. The flexibility of the folding wing has the significant influence on transient responses. To some extent, the aerodynamic force can be beneficial to the morphing process.
{"title":"Multi-body dynamics modeling and transient characteristics analysis for a folding wing","authors":"Y. Ni, W. Zhang, Y. Lv","doi":"10.23967/j.rimni.2020.10.005","DOIUrl":"https://doi.org/10.23967/j.rimni.2020.10.005","url":null,"abstract":"The investigation of modeling the time evolution of a folding wing during the morphing process and the dynamic characteristics analysis is carried out. The governing equations with uniform form are developed from the integration of floating frame method in multi-body dynamics and component mode synthesis in structural dynamics. The time-dependent aerodynamic force is taken into the governing equations. The equation achieves the time-dependent coupling between structure and aerodynamics and avoids the data transmission and low efficiency, which holds true for the multi-segmented folding wing. The relative parameters in constraint equations are easily modified to be applied to both slow and fast-varying processes for a folding wing. Also, the influence of the velocity and attack angle on transient responses can be investigated. Transient response analysis shows that slower morphing means more stable transient responses. The flexibility of the folding wing has the significant influence on transient responses. To some extent, the aerodynamic force can be beneficial to the morphing process.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"37 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86893325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.23967/j.rimni.2021.10.005
H. Deng, Q. Shi, Y. Wang
In the modern industry, in order to reduce the inventory pressure, a variety of parts began to use unified kind spare parts for maintenance. However, highly integrated equipment is more difficult to use traditional RCM models, and researchers begin to steering based on state monitoring methods. Deepen a prediction of equipment failure. This paper mainly discussed the data-driven analysis method based on the Wiener process to predict the fault law of the same type. The joint model innovatively adopts the (s-1, s) policy considering the industrial characteristic and multi-period resupply. In the end, we analyze (s-1, s) policy in joint optimization by comparison to draw the optimal policy combination.
{"title":"Joint Optimization of Condition-based Maintenance and Inventory Ordering Based on Status Monitoring for Multi-unit system","authors":"H. Deng, Q. Shi, Y. Wang","doi":"10.23967/j.rimni.2021.10.005","DOIUrl":"https://doi.org/10.23967/j.rimni.2021.10.005","url":null,"abstract":"In the modern industry, in order to reduce the inventory pressure, a variety of parts began to use unified kind spare parts for maintenance. However, highly integrated equipment is more difficult to use traditional RCM models, and researchers begin to steering based on state monitoring methods. Deepen a prediction of equipment failure. This paper mainly discussed the data-driven analysis method based on the Wiener process to predict the fault law of the same type. The joint model innovatively adopts the (s-1, s) policy considering the industrial characteristic and multi-period resupply. In the end, we analyze (s-1, s) policy in joint optimization by comparison to draw the optimal policy combination.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68781034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}