首页 > 最新文献

Photonics and Nanostructures-Fundamentals and Applications最新文献

英文 中文
Application of Cr2Si2Te6 saturable absorber in Er-doped fiber laser for generating dual-wavelength mode-locked pulse 在掺铒光纤激光器中应用 Cr2Si2Te6 可饱和吸收器生成双波长锁模脉冲
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-23 DOI: 10.1016/j.photonics.2024.101300
Rui Zhao , Xinyu Yang , Shuo Sun , Zhiqi Sui , Fuhao Yang , Zhiqi Huang , Linguang Guo , Hongling Hua , Huanian Zhang , Nannan Xu

As a typical two-dimensional (2D) ferromagnetic insulator (FI), the Cr2Si2Te6 (CST) has performance ferromagnetic properties. The previous investigation has shown that quantum mechanical simulation can get structure and electronic properties of CST, and the indirect gap value of CST is 0.6 eV by establishing its layered calculation. It implies that the CST is an excellent optical modulator due to larger infrared radiation absorption interval. Based on that, some groups conducted the research of fiber laser based on CST saturable absorber (SA). However, the exploration and application of 2D CST in optics is still in the early stage. In this investigation, the CST was utilized as a SA in an Er-doped fiber laser. The dual-wavelength mode-locked pulse could be observed when the pump power was adjusted from 25 to 140 mW. The CST was applied in Er-doped fiber as SA for generating dual-wavelength mode-locked pulse for the first time. It exhibits performance optical properties that provide a significant reference for exploring the application of 2D materials in ultrafast laser.

作为一种典型的二维(2D)铁磁绝缘体(FI),Cr2Si2Te6(CST)具有良好的铁磁特性。此前的研究表明,量子力学模拟可以获得 CST 的结构和电子特性,并通过建立 CST 的分层计算得到其间接间隙值为 0.6 eV。这意味着 CST 具有较大的红外辐射吸收间隔,是一种优秀的光调制器。在此基础上,一些研究小组开展了基于 CST 可饱和吸收体(SA)的光纤激光器研究。然而,二维 CST 在光学领域的探索和应用仍处于早期阶段。在这项研究中,CST 被用作掺铒光纤激光器中的可饱和吸收体。当泵浦功率从 25 mW 调整到 140 mW 时,可以观察到双波长锁模脉冲。CST 首次作为 SA 应用于掺铒光纤中,用于产生双波长锁模脉冲。它所表现出的高性能光学特性为探索二维材料在超快激光中的应用提供了重要参考。
{"title":"Application of Cr2Si2Te6 saturable absorber in Er-doped fiber laser for generating dual-wavelength mode-locked pulse","authors":"Rui Zhao ,&nbsp;Xinyu Yang ,&nbsp;Shuo Sun ,&nbsp;Zhiqi Sui ,&nbsp;Fuhao Yang ,&nbsp;Zhiqi Huang ,&nbsp;Linguang Guo ,&nbsp;Hongling Hua ,&nbsp;Huanian Zhang ,&nbsp;Nannan Xu","doi":"10.1016/j.photonics.2024.101300","DOIUrl":"10.1016/j.photonics.2024.101300","url":null,"abstract":"<div><p>As a typical two-dimensional (2D) ferromagnetic insulator (FI), the Cr<sub>2</sub>Si<sub>2</sub>Te<sub>6</sub> (CST) has performance ferromagnetic properties. The previous investigation has shown that quantum mechanical simulation can get structure and electronic properties of CST, and the indirect gap value of CST is 0.6 eV by establishing its layered calculation. It implies that the CST is an excellent optical modulator due to larger infrared radiation absorption interval. Based on that, some groups conducted the research of fiber laser based on CST saturable absorber (SA). However, the exploration and application of 2D CST in optics is still in the early stage. In this investigation, the CST was utilized as a SA in an Er-doped fiber laser. The dual-wavelength mode-locked pulse could be observed when the pump power was adjusted from 25 to 140 mW. The CST was applied in Er-doped fiber as SA for generating dual-wavelength mode-locked pulse for the first time. It exhibits performance optical properties that provide a significant reference for exploring the application of 2D materials in ultrafast laser.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101300"},"PeriodicalIF":2.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of the photonic crystals-based cavities and usage in all-optical-amplification phenomenon 基于光子晶体的空腔及其在全光放大现象中的应用比较研究
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-23 DOI: 10.1016/j.photonics.2024.101298
Atiq ur Rehman , Yousuf Khan , Umair Ahmed , Muhammad Irfan , Muhammad Rizwan Amirzada , Muhammad Ali Butt

Optical technology has seen a revival from the previous decade, in terms of innovations and research, especially relating to optical integrated circuits. Similarly, Photonic Crystals (PCs) are one of the main contenders for the purpose. Therefore, this research work implicates different arrangements of the 3-Dimensional PC units based on the employment of a varying radius PC-cavity and its position i.e., at the beginning and within the middle of the PC-lattice. The effects of these PC-cavities are studied, investigating higher shifting in resonant wavelength, a narrower linewidth around 0.0061 µm and a quality factor of 99.59, comprising of a PC-cavity of radius 0.300 µm using input signal only i.e., coupled into the optical structure using the phenomenon of the Guided-mode-resonances (GMR). The structures are computed using an open-source FDTD platform, employing a stripe-model-based structure utilizing the Periodic Boundary Condition to save time and computational resources and later the PML for the realization of the Finite models. Moreover, the concluded structures based on the position of the PC-cavity, are demonstrated for the design of the all-optical-amplification device, executing a control signal reporting an 8 % of the amplification in the output of the input signal.

与前十年相比,光学技术在创新和研究方面出现了复苏,尤其是在光集成电路方面。同样,光子晶体(PC)也是这一目的的主要竞争者之一。因此,这项研究工作基于不同半径的 PC 腔及其位置(即 PC 晶格的起始位置和中间位置),对三维 PC 单元进行了不同的排列。我们研究了这些 PC 腔的影响,调查了共振波长的更高偏移、0.0061 微米左右的更窄线宽和 99.59 的品质因数,包括半径为 0.300 微米的 PC 腔,仅使用输入信号,即使用导模共振现象耦合到光学结构中。这些结构是利用开源 FDTD 平台计算得出的,采用了基于条纹模型的结构,利用周期边界条件来节省时间和计算资源,随后利用 PML 来实现有限模型。此外,根据 PC 腔的位置总结出的结构还用于全光放大设备的设计,执行一个控制信号,报告输入信号输出中 8% 的放大率。
{"title":"A comparative study of the photonic crystals-based cavities and usage in all-optical-amplification phenomenon","authors":"Atiq ur Rehman ,&nbsp;Yousuf Khan ,&nbsp;Umair Ahmed ,&nbsp;Muhammad Irfan ,&nbsp;Muhammad Rizwan Amirzada ,&nbsp;Muhammad Ali Butt","doi":"10.1016/j.photonics.2024.101298","DOIUrl":"10.1016/j.photonics.2024.101298","url":null,"abstract":"<div><p>Optical technology has seen a revival from the previous decade, in terms of innovations and research, especially relating to optical integrated circuits. Similarly, Photonic Crystals (PCs) are one of the main contenders for the purpose. Therefore, this research work implicates different arrangements of the 3-Dimensional PC units based on the employment of a varying radius PC-cavity and its position i.e., at the beginning and within the middle of the PC-lattice. The effects of these PC-cavities are studied, investigating higher shifting in resonant wavelength, a narrower linewidth around 0.0061 µm and a quality factor of 99.59, comprising of a PC-cavity of radius 0.300 µm using input signal only i.e., coupled into the optical structure using the phenomenon of the Guided-mode-resonances (GMR). The structures are computed using an open-source FDTD platform, employing a stripe-model-based structure utilizing the Periodic Boundary Condition to save time and computational resources and later the PML for the realization of the Finite models. Moreover, the concluded structures based on the position of the PC-cavity, are demonstrated for the design of the all-optical-amplification device, executing a control signal reporting an 8 % of the amplification in the output of the input signal.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101298"},"PeriodicalIF":2.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000737/pdfft?md5=782a7f7b90168d7b428f874e925401d4&pid=1-s2.0-S1569441024000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous emission, collective phenomena and the efficiency of plasmon-stimulated photoexcitation 自发辐射、集体现象和等离子体刺激的光激发效率
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-14 DOI: 10.1016/j.photonics.2024.101297
Igor E. Protsenko , Alexander V. Uskov , Nikolay V. Nikonorov

We find that the spontaneous and collective emissions have a strong influence on the excitation of two-level absorbers (atoms, molecules) interacting in resonance with the plasmonic mode near the metal nanoparticle. The spontaneous and collective emissions limit the absorption enhancement by the plasmonic mode and make the enhancement possible only with a fast, picosecond population relaxation of the upper absorbing states. Conditions for the maximum of plasmon-enhanced absorption in the presence of spontaneous and collective emissions are found. The nonlinearity in the nanoparticle-absorber interaction and in collective emission causes the bistability in the plasmon-enhanced absorption at high external field intensities and the plasmonic mode excitation.

我们发现,自发发射和集体发射对与金属纳米粒子附近的质子模式产生共振的两级吸收体(原子、分子)的激发有很大影响。自发发射和集体发射限制了质子模式对吸收的增强作用,只有在上层吸收态发生皮秒级的快速种群弛豫时才有可能增强吸收。在存在自发和集体发射的情况下,找到了等离子体增强吸收最大化的条件。纳米粒子-吸收体相互作用和集体发射中的非线性导致了高外场强度和质子模式激发下质子增强吸收的双稳态性。
{"title":"Spontaneous emission, collective phenomena and the efficiency of plasmon-stimulated photoexcitation","authors":"Igor E. Protsenko ,&nbsp;Alexander V. Uskov ,&nbsp;Nikolay V. Nikonorov","doi":"10.1016/j.photonics.2024.101297","DOIUrl":"10.1016/j.photonics.2024.101297","url":null,"abstract":"<div><p>We find that the spontaneous and collective emissions have a strong influence on the excitation of two-level absorbers (atoms, molecules) interacting in resonance with the plasmonic mode near the metal nanoparticle. The spontaneous and collective emissions limit the absorption enhancement by the plasmonic mode and make the enhancement possible only with a fast, picosecond population relaxation of the upper absorbing states. Conditions for the maximum of plasmon-enhanced absorption in the presence of spontaneous and collective emissions are found. The nonlinearity in the nanoparticle-absorber interaction and in collective emission causes the bistability in the plasmon-enhanced absorption at high external field intensities and the plasmonic mode excitation.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101297"},"PeriodicalIF":2.5,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of nanopores in porous GaN on LED emission based on FDTD simulations 基于 FDTD 模拟的多孔 GaN 中的纳米孔对 LED 发射的影响
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-09 DOI: 10.1016/j.photonics.2024.101296
Shijie Zhang, Shubhra S. Pasayat

We simulated the light extraction efficiency (LEE) of porous GaN-based InGaN/GaN micrometer-sized light-emitting diodes (μLEDs) emitting within the visible wavelength range using the finite-difference time-domain (FDTD) method. The simulations show that the embedding of a porous GaN layer with 40 % porosity reduces the bottom LEE, while the top side LEE of the μLEDs is increased. In addition, it also exhibits complex scattering properties that affect the microcavity structure of these devices. The LEE and the degree of microcavity structure disruption are related to nanopore size and location. This association weakens with increasing wavelength. Also, a decrease in nanopore size corresponds to a diminished impact on μLED optical properties. Since the porous GaN layer contributes to the deposition of high-quality InGaN, controlling pore size of the porous GaN layer will aid the development of GaN-based red μLEDs and full-color displays.

我们利用有限差分时域(FDTD)方法模拟了多孔氮化镓基 InGaN/GaN 微米级发光二极管(μLEDs)在可见光波长范围内的光萃取效率(LEE)。模拟结果表明,嵌入孔隙率为 40% 的多孔 GaN 层后,μLED 的底部 LEE 降低,而顶部 LEE 增加。此外,它还表现出复杂的散射特性,影响了这些器件的微腔结构。LEE和微腔结构的破坏程度与纳米孔的大小和位置有关。这种关联随着波长的增加而减弱。此外,纳米孔径的减小也会降低对 μLED 光学特性的影响。由于多孔 GaN 层有助于高质量 InGaN 的沉积,因此控制多孔 GaN 层的孔径将有助于开发基于 GaN 的红色 μLED 和全彩显示屏。
{"title":"Impact of nanopores in porous GaN on LED emission based on FDTD simulations","authors":"Shijie Zhang,&nbsp;Shubhra S. Pasayat","doi":"10.1016/j.photonics.2024.101296","DOIUrl":"10.1016/j.photonics.2024.101296","url":null,"abstract":"<div><p>We simulated the light extraction efficiency (LEE) of porous GaN-based InGaN/GaN micrometer-sized light-emitting diodes (μLEDs) emitting within the visible wavelength range using the finite-difference time-domain (FDTD) method. The simulations show that the embedding of a porous GaN layer with 40 % porosity reduces the bottom LEE, while the top side LEE of the μLEDs is increased. In addition, it also exhibits complex scattering properties that affect the microcavity structure of these devices. The LEE and the degree of microcavity structure disruption are related to nanopore size and location. This association weakens with increasing wavelength. Also, a decrease in nanopore size corresponds to a diminished impact on μLED optical properties. Since the porous GaN layer contributes to the deposition of high-quality InGaN, controlling pore size of the porous GaN layer will aid the development of GaN-based red μLEDs and full-color displays.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101296"},"PeriodicalIF":2.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141698476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency tunable mid-infrared split ring resonators on a phase change material 相变材料上的频率可调中红外分环谐振器
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-05 DOI: 10.1016/j.photonics.2024.101295
Laurent Boulley, Paul Goulain, Pierre Laffaille, Thomas Maroutian, Raffaele Colombelli, Adel Bousseksou

Meta-surfaces arrays are 2D meta-materials with a periodicity below the diffraction limit that permits to obtain homogeneous layers of resonant effective refractive index. In this work we present an analytical model that describes the electromagnetic behavior of meta-surfaces constituted by split-ring resonators (SRR). SRR resonance frequency can be adjusted by choosing their geometric parameters and the materials they are made of. Their deposition on a phase change material enables an optical modulation of resonance peak during the phase transition. We demonstrate a mid-infrared tunable SRR meta-surface using Vanadium dioxide (VO2) as phase change material deposited on III-V semiconductors by low temperature pulsed laser ablation technique. The presented measurements exhibit a maximum of 100 cm−1 resonance shift. This result is very promising for the conception of monolithic, robust, compact, frequency tunable III-V based devices in the mid-infrared.

元表面阵列是一种二维元材料,其周期性低于衍射极限,因此可以获得共振有效折射率的均质层。在这项工作中,我们提出了一个分析模型,用于描述由分裂环谐振器(SRR)构成的元表面的电磁行为。SRR 共振频率可通过选择其几何参数和材料进行调节。将它们沉积在相变材料上可以在相变过程中对共振峰进行光学调制。我们利用低温脉冲激光烧蚀技术,在 III-V 族半导体上沉积二氧化钒(VO2)作为相变材料,展示了一种中红外可调 SRR 元表面。测量结果表明,共振位移最大可达 100 cm-1。这一结果对于构思基于 III-V 族器件的单片、坚固、紧凑、频率可调的中红外器件非常有前途。
{"title":"Frequency tunable mid-infrared split ring resonators on a phase change material","authors":"Laurent Boulley,&nbsp;Paul Goulain,&nbsp;Pierre Laffaille,&nbsp;Thomas Maroutian,&nbsp;Raffaele Colombelli,&nbsp;Adel Bousseksou","doi":"10.1016/j.photonics.2024.101295","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101295","url":null,"abstract":"<div><p>Meta-surfaces arrays are 2D meta-materials with a periodicity below the diffraction limit that permits to obtain homogeneous layers of resonant effective refractive index. In this work we present an analytical model that describes the electromagnetic behavior of meta-surfaces constituted by split-ring resonators (SRR). SRR resonance frequency can be adjusted by choosing their geometric parameters and the materials they are made of. Their deposition on a phase change material enables an optical modulation of resonance peak during the phase transition. We demonstrate a mid-infrared tunable SRR meta-surface using Vanadium dioxide (VO<sub>2</sub>) as phase change material deposited on III-V semiconductors by low temperature pulsed laser ablation technique. The presented measurements exhibit a maximum of 100 cm<sup>−1</sup> resonance shift. This result is very promising for the conception of monolithic, robust, compact, frequency tunable III-V based devices in the mid-infrared.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101295"},"PeriodicalIF":2.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstration of THz waves propagation within a hollow-core THz waveguide based on an out-of-plane photonic bandgap crystal cladding 基于平面外光子带隙晶体包层的空芯太赫兹波导内的太赫兹波传播演示
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-02 DOI: 10.1016/j.photonics.2024.101293
Georges Humbert

The development of terahertz (THz) waveguides is limited by the high-conductivity losses of metals, the surface roughness, and the high-absorption of the dielectric materials. Consequently, dry air is certainly the most favorable medium to propagate THz radiations. A novel hollow-core THz waveguide enabling efficient THz wave propagation over 72 cm long length, is presented in this study. THz waves guiding in a hollow-core is achieved by an out-of-plane Photonic Band Gap (PBG) crystal cladding with a design inspired from the technology of hollow core PBG-crystal fibers. These fibers developed in the optical domains have demonstrated exceptional performances such as single mode propagation of light with low attenuation on kilometer length scales. The properties of the PBG guiding mechanism to forbid THz waves extension in the crystal cladding is exploited for enabling low-loss propagation in a waveguide fabricated with a highly absorptive material (ex. silica). PBG guidance into this new class of hollow-core THz waveguide were demonstrated theoretically and experimentally.

太赫兹(THz)波导的发展受限于金属的高传导损耗、表面粗糙度和介电材料的高吸收率。因此,干燥空气无疑是传播太赫兹辐射的最有利介质。本研究介绍了一种新型空心太赫兹波导,可在 72 厘米长的长度上高效传播太赫兹波。空芯太赫兹波导是通过平面外光子带隙(PBG)晶体包层实现的,其设计灵感来自空芯 PBG 晶体光纤技术。这些在光学领域开发的光纤已显示出卓越的性能,如在千米长度范围内以低衰减实现光的单模传播。利用 PBG 导向机制禁止太赫兹波在晶体包层中延伸的特性,可以在使用高吸收材料(如二氧化硅)制造的波导中实现低损耗传播。理论和实验都证明了 PBG 对这种新型空芯太赫兹波导的引导作用。
{"title":"Demonstration of THz waves propagation within a hollow-core THz waveguide based on an out-of-plane photonic bandgap crystal cladding","authors":"Georges Humbert","doi":"10.1016/j.photonics.2024.101293","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101293","url":null,"abstract":"<div><p>The development of terahertz (THz) waveguides is limited by the high-conductivity losses of metals, the surface roughness, and the high-absorption of the dielectric materials. Consequently, dry air is certainly the most favorable medium to propagate THz radiations. A novel hollow-core THz waveguide enabling efficient THz wave propagation over 72 cm long length, is presented in this study. THz waves guiding in a hollow-core is achieved by an out-of-plane Photonic Band Gap (PBG) crystal cladding with a design inspired from the technology of hollow core PBG-crystal fibers. These fibers developed in the optical domains have demonstrated exceptional performances such as single mode propagation of light with low attenuation on kilometer length scales. The properties of the PBG guiding mechanism to forbid THz waves extension in the crystal cladding is exploited for enabling low-loss propagation in a waveguide fabricated with a highly absorptive material (ex. silica). PBG guidance into this new class of hollow-core THz waveguide were demonstrated theoretically and experimentally.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101293"},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000683/pdfft?md5=b0272fae620ebfed818b9cde2cb77267&pid=1-s2.0-S1569441024000683-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple micro-cavity vibro-polaritons formation with different vibrational bands of the methylene group 亚甲基不同振带形成的多重微腔振动极化子
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-01 DOI: 10.1016/j.photonics.2024.101294
Mario Malerba , Mathieu Jeannin, Paul Goulain, Adel Bousseksou, Raffaele Colombelli, Jean-Michel Manceau

We present an experimental technique to accurately predict the formation of vibro-polaritons from a molecular polymeric film embedded in a resonant mid-infrared cavity. Using simple Fourier-transform reflectance measurement, we extract the complex dielectric function of a polyethylene film using Kramers-Kronig relations. The fitted dielectric function can be plugged into a numerical code to predict the strength and dispersion of the strong light-matter coupling regime between the quantized electromagnetic modes of a microcavity and the vibrational bands of the molecules. As a demonstration, we experimentally resolve the simultaneous formation of multiple vibro-polariton modes issued from the strong coupling of some vibrational bands of the methylene group (CH2) in a 2.5-μm-thick polyethylene film embedded in a microcavity. We measure a Rabi splitting of 6.3 THz for the stretching doublet around 87.5 THz and a Rabi splitting of 1.1 THz for the scissoring doublet around 43.7 THz, in excellent agreement with numerical predictions.

我们提出了一种实验技术,用于准确预测嵌入共振中红外腔的分子聚合物薄膜振动极化子的形成。通过简单的傅立叶变换反射率测量,我们利用克拉默-克罗尼格关系提取了聚乙烯薄膜的复介电常数。将拟合的介电函数输入数值代码,就能预测微腔的量化电磁模式与分子振动带之间的强光-物质耦合机制的强度和分散性。作为演示,我们通过实验解析了在嵌入微腔的 2.5 微米厚聚乙烯薄膜中,由亚甲基(CH2)的一些振动波段的强耦合同时形成的多个振动极化子模式。我们在 87.5 太赫兹附近测得拉伸双音的拉比分裂为 6.3 太赫兹,在 43.7 太赫兹附近测得剪切双音的拉比分裂为 1.1 太赫兹,这与数值预测非常吻合。
{"title":"Multiple micro-cavity vibro-polaritons formation with different vibrational bands of the methylene group","authors":"Mario Malerba ,&nbsp;Mathieu Jeannin,&nbsp;Paul Goulain,&nbsp;Adel Bousseksou,&nbsp;Raffaele Colombelli,&nbsp;Jean-Michel Manceau","doi":"10.1016/j.photonics.2024.101294","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101294","url":null,"abstract":"<div><p>We present an experimental technique to accurately predict the formation of vibro-polaritons from a molecular polymeric film embedded in a resonant mid-infrared cavity. Using simple Fourier-transform reflectance measurement, we extract the complex dielectric function of a polyethylene film using Kramers-Kronig relations. The fitted dielectric function can be plugged into a numerical code to predict the strength and dispersion of the strong light-matter coupling regime between the quantized electromagnetic modes of a microcavity and the vibrational bands of the molecules. As a demonstration, we experimentally resolve the simultaneous formation of multiple vibro-polariton modes issued from the strong coupling of some vibrational bands of the methylene group (CH<sub>2</sub>) in a 2.5-μm-thick polyethylene film embedded in a microcavity. We measure a Rabi splitting of 6.3 THz for the stretching doublet around 87.5 THz and a Rabi splitting of 1.1 THz for the scissoring doublet around 43.7 THz, in excellent agreement with numerical predictions.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101294"},"PeriodicalIF":2.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance perfect absorption infrared photodetectors with garphene-based SiC grating microstructures 采用基于石墨烯的碳化硅光栅微结构的高性能完美吸收红外光探测器
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-26 DOI: 10.1016/j.photonics.2024.101292
Yongjiang Liu , Zheng-Da Hu , Jingjing Wu , Jicheng Wang , Feng Zhang

Due to its diverse crystal configurations with varying bandgaps, Silicon Carbide (SiC) has been widely utilized by numerous researchers in the preparation of photodetectors. In this paper, we propose high performance tunable photodetector with graphene-based SiC grating structure. The photodetector can achieve perfect absorption and the responsivity of 10.61 A/W at 11.7 μm wavelength. The tunable broadband photodetection from 11.4 μm to 12 μm can be obtained by adjust graphene’s Fermi level. Compared with existing graphene-based photodetector with or without SiC structures, our structure has more flexible detection and higher performance. In addition, we explain the standing wave phenomenon observed during the tuning of the photodetector structure. This provides a new direction for the development of high-quality infrared photodetectors.

由于碳化硅(SiC)具有不同带隙的晶体结构,因此被众多研究人员广泛用于制备光电探测器。本文提出了基于石墨烯的碳化硅光栅结构的高性能可调谐光电探测器。该光电探测器可实现完美吸收,在 11.7 μm 波长下的响应率为 10.61 A/W。通过调节石墨烯的费米级,可以获得从 11.4 μm 到 12 μm 的可调宽带光电探测。与现有的带或不带碳化硅结构的石墨烯基光电探测器相比,我们的结构具有更灵活的探测能力和更高的性能。此外,我们还解释了在光电探测器结构调整过程中观察到的驻波现象。这为开发高质量的红外光探测器提供了新的方向。
{"title":"High-performance perfect absorption infrared photodetectors with garphene-based SiC grating microstructures","authors":"Yongjiang Liu ,&nbsp;Zheng-Da Hu ,&nbsp;Jingjing Wu ,&nbsp;Jicheng Wang ,&nbsp;Feng Zhang","doi":"10.1016/j.photonics.2024.101292","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101292","url":null,"abstract":"<div><p>Due to its diverse crystal configurations with varying bandgaps, Silicon Carbide (SiC) has been widely utilized by numerous researchers in the preparation of photodetectors. In this paper, we propose high performance tunable photodetector with graphene-based SiC grating structure. The photodetector can achieve perfect absorption and the responsivity of 10.61 A/W at 11.7 μm wavelength. The tunable broadband photodetection from 11.4 μm to 12 μm can be obtained by adjust graphene’s Fermi level. Compared with existing graphene-based photodetector with or without SiC structures, our structure has more flexible detection and higher performance. In addition, we explain the standing wave phenomenon observed during the tuning of the photodetector structure. This provides a new direction for the development of high-quality infrared photodetectors.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101292"},"PeriodicalIF":2.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive refractive index and temperature sensor based on D-shaped photonic crystal fiber by group birefringence response in a Sagnac interferometer 基于 D 型光子晶体光纤的超灵敏折射率和温度传感器,在萨格纳克干涉仪中实现群双折射响应
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-24 DOI: 10.1016/j.photonics.2024.101291
Zefeng Li , Jinhui Yuan , Lan Rao , Binbin Yan , Kuiru Wang , Xinzhu Sang , Qiang Wu , Chongxiu Yu

In this paper, a D-shaped photonic crystal fiber (PCF) sensor based on a Sagnac interferometer is proposed, and it can achieve ultrahigh refractive index (RI) and temperature sensitivity when operating around the turning point of group birefringence (Bg). We undertake a theoretical analysis on Bg and a simulation calculation to study the sensing characteristics and obtain the optimized structure parameters of the D-shaped PCF sensor. The simulation results show that the maximum average RI sensitivities can reach 3253.33 and 15500 nm/RIU in the RI range of 1.33 to 1.35 and 1.40 to 1.42, respectively. When the temperature changes from -50 to 0 °C and 0 to 50 °C, the maximum average temperature sensitivities are up to 10.11 and 10.67 nm/°C, respectively. The proposed D-shaped PCF sensor can achieve dual-parameter sensing and has great potential for practical applications in biochemical and environmental science.

本文提出了一种基于萨格纳克干涉仪的 D 型光子晶体光纤(PCF)传感器,它在群双折射转折点(Bg)附近工作时可实现超高折射率(RI)和温度灵敏度。我们对 Bg 进行了理论分析和仿真计算,研究了 D 型 PCF 传感器的传感特性并获得了优化的结构参数。仿真结果表明,在 1.33 至 1.35 和 1.40 至 1.42 的 RI 范围内,最大平均 RI 灵敏度分别可达 3253.33 和 15500 nm/RIU。当温度在 -50 至 0 °C 和 0 至 50 °C 之间变化时,最大平均温度灵敏度分别达到 10.11 和 10.67 nm/°C。所提出的 D 型 PCF 传感器可实现双参数传感,在生化和环境科学领域具有巨大的实际应用潜力。
{"title":"Ultrasensitive refractive index and temperature sensor based on D-shaped photonic crystal fiber by group birefringence response in a Sagnac interferometer","authors":"Zefeng Li ,&nbsp;Jinhui Yuan ,&nbsp;Lan Rao ,&nbsp;Binbin Yan ,&nbsp;Kuiru Wang ,&nbsp;Xinzhu Sang ,&nbsp;Qiang Wu ,&nbsp;Chongxiu Yu","doi":"10.1016/j.photonics.2024.101291","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101291","url":null,"abstract":"<div><p>In this paper, a D-shaped photonic crystal fiber (PCF) sensor based on a Sagnac interferometer is proposed, and it can achieve ultrahigh refractive index (RI) and temperature sensitivity when operating around the turning point of group birefringence (<em>B</em><sub>g</sub>). We undertake a theoretical analysis on <em>B</em><sub>g</sub> and a simulation calculation to study the sensing characteristics and obtain the optimized structure parameters of the D-shaped PCF sensor. The simulation results show that the maximum average RI sensitivities can reach 3253.33 and 15500 nm/RIU in the RI range of 1.33 to 1.35 and 1.40 to 1.42, respectively. When the temperature changes from -50 to 0 °C and 0 to 50 °C, the maximum average temperature sensitivities are up to 10.11 and 10.67 nm/°C, respectively. The proposed D-shaped PCF sensor can achieve dual-parameter sensing and has great potential for practical applications in biochemical and environmental science.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101291"},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz angle sensor based on the asymmetry coupling of the square and L-shaped structure 基于方形和 L 形结构不对称耦合的太赫兹角度传感器
IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-06-21 DOI: 10.1016/j.photonics.2024.101288
Zhen Zhang , Linji Yang , Junfeng Fan , Xinyi Chen , Xin Chen , Huan Zhou , Yong Ma , Renpu Li

This letter presents a terahertz angle sensor using a rectangular and double L-shaped structure. The structure unit of the sensor consists of a typical metal-medium structure, with the top metal pattern comprising a rectangle and a double L-shaped structure. At the same time, the bottom layer is made of polyimide, a dielectric material. By varying the position and number of L-shaped structures, a terahertz angle sensor based on a spring-shaped structure is created. The terahertz angle sensor achieves a Q value of 120.6 with a sensitivity of 3.45 GHz per degree. The terahertz angle sensor offers high-angle resolution and may find applications in terahertz communication, imaging, sensing, and other related fields.

这封信介绍了一种采用矩形和双 L 形结构的太赫兹角度传感器。传感器的结构单元由典型的金属-介质结构组成,顶层金属图案由矩形和双 L 形结构组成。同时,底层由介质材料聚酰亚胺制成。通过改变 L 形结构的位置和数量,就能制作出基于弹簧形结构的太赫兹角度传感器。太赫兹角度传感器的 Q 值达到 120.6,灵敏度为每度 3.45 千兆赫。该太赫兹角度传感器具有高角度分辨率,可应用于太赫兹通信、成像、传感和其他相关领域。
{"title":"Terahertz angle sensor based on the asymmetry coupling of the square and L-shaped structure","authors":"Zhen Zhang ,&nbsp;Linji Yang ,&nbsp;Junfeng Fan ,&nbsp;Xinyi Chen ,&nbsp;Xin Chen ,&nbsp;Huan Zhou ,&nbsp;Yong Ma ,&nbsp;Renpu Li","doi":"10.1016/j.photonics.2024.101288","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101288","url":null,"abstract":"<div><p>This letter presents a terahertz angle sensor using a rectangular and double L-shaped structure. The structure unit of the sensor consists of a typical metal-medium structure, with the top metal pattern comprising a rectangle and a double L-shaped structure. At the same time, the bottom layer is made of polyimide, a dielectric material. By varying the position and number of L-shaped structures, a terahertz angle sensor based on a spring-shaped structure is created. The terahertz angle sensor achieves a Q value of 120.6 with a sensitivity of 3.45 GHz per degree. The terahertz angle sensor offers high-angle resolution and may find applications in terahertz communication, imaging, sensing, and other related fields.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101288"},"PeriodicalIF":2.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photonics and Nanostructures-Fundamentals and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1