首页 > 最新文献

Photonics and Nanostructures-Fundamentals and Applications最新文献

英文 中文
Chip-scale mid-infrared digitalized computational spectrometer powered by silicon photonics MEMS technology 采用硅光子 MEMS 技术的芯片级中红外数字化计算光谱仪
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101231
Haoyang Sun , Qifeng Qiao , Chengkuo Lee , Guangya Zhou

Miniaturized spectrometers are attracting widespread interest due to the rising demand for portable spectroscopic applications. While the chip-scale spectrometers are widely investigated using silicon photonics technology, few research have addressed the need for a mid-infrared (MIR) integrated chip-scale spectrometer due to the lack of an effective reconfigurable photonics approach. In this paper, we present a novel solution using silicon photonics MEMS technology in the MIR region (3.6–5 µm wavelength range). We adopt a computational spectrometry scheme using the digitalized control of cascaded MEMS-tunable waveguide couplers. The MEMS waveguide couplers are operated in digital on/off mode, thus making the device immune to driving voltage fluctuations and robust for on-chip field sensing applications. Moreover, a comprehensive numerical analysis method is discussed to systematically evaluate the performance of the computational spectrometer, including its resolution and operational bandwidth. As a proof-of-concept, a chip-scale spectrometer realized by seven cascaded MEMS-actuated waveguide coupler is demonstrated. The sparse spectral reconstruction is demonstrated in the wavelength range from 3.65 to 4.1 µm and the dual-peaks reconstruction results indicate a resolution of 8 nm. Besides, response time and power consumption of the proposed device are experimentally characterized. Benefitting from good scalability, the spectral resolution can be further improved by increasing the number of waveguide coupler stages. The proposed work has the potential to realize lab-on-a-chip applications with advances in MIR silicon photonics. © 2001 Elsevier Science. All rights reserved.

由于对便携式光谱应用的需求日益增长,微型光谱仪正引起广泛关注。虽然利用硅光子学技术对芯片级光谱仪进行了广泛研究,但由于缺乏有效的可重构光子学方法,很少有研究涉及中红外(MIR)集成芯片级光谱仪的需求。在本文中,我们利用硅光子 MEMS 技术在中红外区域(3.6~5 μm 波长范围)提出了一种新颖的解决方案。我们采用了一种计算光谱测量方案,利用级联 MEMS 可调波导耦合器的数字化控制。MEMS 波导耦合器在数字开/关模式下工作,从而使该器件不受驱动电压波动的影响,并可用于片上场感应用。此外,还讨论了一种全面的数值分析方法,以系统地评估计算光谱仪的性能,包括其分辨率和工作带宽。作为概念验证,演示了由七个级联 MEMS 驱动波导耦合器实现的芯片级光谱仪。在 3.65 至 4.1 μm 波长范围内演示了稀疏光谱重建,双峰重建结果表明分辨率为 8 nm。此外,实验还表征了所提设备的响应时间和功耗。得益于良好的可扩展性,光谱分辨率可以通过增加波导耦合器级数得到进一步提高。随着中红外硅光子学的发展,所提出的工作有可能实现实验室芯片上的应用。© 2001 爱思唯尔科学。保留所有权利。
{"title":"Chip-scale mid-infrared digitalized computational spectrometer powered by silicon photonics MEMS technology","authors":"Haoyang Sun ,&nbsp;Qifeng Qiao ,&nbsp;Chengkuo Lee ,&nbsp;Guangya Zhou","doi":"10.1016/j.photonics.2024.101231","DOIUrl":"10.1016/j.photonics.2024.101231","url":null,"abstract":"<div><p>Miniaturized spectrometers are attracting widespread interest due to the rising demand for portable spectroscopic applications. While the chip-scale spectrometers are widely investigated using silicon photonics technology, few research have addressed the need for a mid-infrared (MIR) integrated chip-scale spectrometer due to the lack of an effective reconfigurable photonics approach. In this paper, we present a novel solution using silicon photonics MEMS technology in the MIR region (3.6–5 µm wavelength range). We adopt a computational spectrometry scheme using the digitalized control of cascaded MEMS-tunable waveguide couplers. The MEMS waveguide couplers are operated in digital on/off mode, thus making the device immune to driving voltage fluctuations and robust for on-chip field sensing applications. Moreover, a comprehensive numerical analysis method is discussed to systematically evaluate the performance of the computational spectrometer, including its resolution and operational bandwidth. As a proof-of-concept, a chip-scale spectrometer realized by seven cascaded MEMS-actuated waveguide coupler is demonstrated. The sparse spectral reconstruction is demonstrated in the wavelength range from 3.65 to 4.1 µm and the dual-peaks reconstruction results indicate a resolution of 8 nm. Besides, response time and power consumption of the proposed device are experimentally characterized. Benefitting from good scalability, the spectral resolution can be further improved by increasing the number of waveguide coupler stages. The proposed work has the potential to realize lab-on-a-chip applications with advances in MIR silicon photonics. © 2001 Elsevier Science. All rights reserved.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101231"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000063/pdfft?md5=bed374d080af912058f5628b8b071dfd&pid=1-s2.0-S1569441024000063-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation effect on optical properties of integrated waveguides based on porous silicon layers at mid-infrared wavelength 氧化对中红外波长基于多孔硅层的集成波导光学特性的影响
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101244
A. Jaafar, S. Meziani, A. Hammouti, P. Pirasteh, N. Lorrain, L. Bodiou, M. Guendouz, J. Charrier

Integrated sensors based on guided optical devices can efficiently and selectively detect molecules in the mid-infrared (mid-IR) spectral range, exploiting the vibrational and rotational modes of these molecules at these wavelengths. In this work, a ridge waveguide based on porous silicon (PSi) layers was developed by electrochemical etching followed by a photolithographic process. The ridge waveguide is capable of propagating light in the mid-IR range (3.90–4.35 µm) with optical losses of approximately 10 dB/cm. An oxidation study was performed to stabilize the porous structure and identify the optimal oxidation degree, that allow mid-IR light to propagate in a ridge waveguide based on PSi material for sensing application. The results showed that the ridge waveguide remains capable of propagating light after undergoing partial oxidation at 300 °C and 600 °C (15% and 36% of the oxidation degree respectively) with optical losses of around 30 dB/cm and 60 dB/cm at the wavelength of 4.1 µm, respectively.

基于导引光学器件的集成传感器可以利用中红外(mid-IR)光谱范围内分子的振动和旋转模式,高效、选择性地探测这些分子。在这项工作中,通过电化学蚀刻和光刻工艺开发了一种基于多孔硅(PSi)层的脊波导。这种脊波导能够传播中红外波段(3.90-4.35 微米)的光,光损耗约为 10 dB/cm。为了稳定多孔结构并确定最佳氧化度,对基于 PSi 材料的脊波导进行了氧化研究,以使中红外光能够在脊波导中传播,从而实现传感应用。结果表明,脊波导在 300 ℃ 和 600 ℃(氧化度分别为 15%和 36%)下部分氧化后仍能传播光,在 4.1 µm 波长处的光损耗分别约为 30 dB/cm 和 60 dB/cm。
{"title":"Oxidation effect on optical properties of integrated waveguides based on porous silicon layers at mid-infrared wavelength","authors":"A. Jaafar,&nbsp;S. Meziani,&nbsp;A. Hammouti,&nbsp;P. Pirasteh,&nbsp;N. Lorrain,&nbsp;L. Bodiou,&nbsp;M. Guendouz,&nbsp;J. Charrier","doi":"10.1016/j.photonics.2024.101244","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101244","url":null,"abstract":"<div><p>Integrated sensors based on guided optical devices can efficiently and selectively detect molecules in the mid-infrared (mid-IR) spectral range, exploiting the vibrational and rotational modes of these molecules at these wavelengths. In this work, a ridge waveguide based on porous silicon (PSi) layers was developed by electrochemical etching followed by a photolithographic process. The ridge waveguide is capable of propagating light in the mid-IR range (3.90–4.35 µm) with optical losses of approximately 10 dB/cm. An oxidation study was performed to stabilize the porous structure and identify the optimal oxidation degree, that allow mid-IR light to propagate in a ridge waveguide based on PSi material for sensing application. The results showed that the ridge waveguide remains capable of propagating light after undergoing partial oxidation at 300 °C and 600 °C (15% and 36% of the oxidation degree respectively) with optical losses of around 30 dB/cm and 60 dB/cm at the wavelength of 4.1 µm, respectively.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101244"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139942499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reverse design of multifunctional demultiplexing devices 多功能解复用装置的逆向设计
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101246
Zhibin Wang, Zhengyang Li, Xuwei Hou, Jiutian Zhang

A novel direct binary search algorithm based on rotation (RDBS) is proposed in this paper. A 1*2 ultra-compact 2.4*3.6µm2 multimode wavelength demultiplexer (DEMUX) is designed in reverse, which is roughly two orders of magnitude smaller than the size of a conventional waveguide device. It can simultaneously perform wavelength demultiplexing and mode conversion. This DEMUX separates the 1310 and 1550 nm wavelengths while converting the input light from the fundamental transverse electric mode (TE0) to the first-order transverse electric mode (TE1). The simulation results using RDBS show that the insertion loss(IL) of the upper channel (wavelength 1310 nm) is −0.9644 dB, the IL of the lower channel (wavelength 1550 nm) is −0.9752 dB, and the crosstalk values(CT) are −10.079 dB and −9.261 dB, respectively.

本文提出了一种新颖的基于旋转的直接二进制搜索算法(RDBS)。反向设计了一个 1*2 超紧凑型 2.4*3.6µm2 多模波长解复用器(DEMUX),其尺寸比传统波导器件小大约两个数量级。它可以同时进行波长解复用和模式转换。该 DEMUX 分离了 1310 和 1550 nm 波长,同时将输入光从基本横向电模式(TE0)转换为一阶横向电模式(TE1)。使用 RDBS 的仿真结果显示,上通道(波长 1310 nm)的插入损耗(IL)为 -0.9644 dB,下通道(波长 1550 nm)的插入损耗(IL)为 -0.9752 dB,串扰值(CT)分别为 -10.079 dB 和 -9.261 dB。
{"title":"Reverse design of multifunctional demultiplexing devices","authors":"Zhibin Wang,&nbsp;Zhengyang Li,&nbsp;Xuwei Hou,&nbsp;Jiutian Zhang","doi":"10.1016/j.photonics.2024.101246","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101246","url":null,"abstract":"<div><p>A novel direct binary search algorithm based on rotation (RDBS) is proposed in this paper. A 1*2 ultra-compact 2.4*3.6µm<sup>2</sup> multimode wavelength demultiplexer (DEMUX) is designed in reverse, which is roughly two orders of magnitude smaller than the size of a conventional waveguide device. It can simultaneously perform wavelength demultiplexing and mode conversion. This DEMUX separates the 1310 and 1550 nm wavelengths while converting the input light from the fundamental transverse electric mode (TE0) to the first-order transverse electric mode (TE1). The simulation results using RDBS show that the insertion loss(<span><math><mrow><mi>I</mi><mi>L</mi></mrow></math></span>) of the upper channel (wavelength 1310 nm) is −0.9644 dB, the <span><math><mrow><mi>I</mi><mi>L</mi></mrow></math></span> of the lower channel (wavelength 1550 nm) is −0.9752 dB, and the crosstalk values(CT) are −10.079 dB and −9.261 dB, respectively.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101246"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of ZnO and Si semiconductor-based ultraviolet photodetectors enhanced by laser-ablated silver nanoparticles 通过激光喷射银纳米粒子增强氧化锌和硅半导体紫外线光电探测器的开发
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101228
Abdullah Marzouq Alharbi , Naser M. Ahmed , Azhar Abdul Rahman , Nurul Zahirah Noor Azman , Sameer Algburi , Ismael.A. Wadi , Ayed M. Binzowaimil , Osamah Aldaghri , Khalid Hassan Ibnaouf

The present study employs a cost-effective laser ablation technique in combination with the RF sputtering method to successfully synthesize silver nanoparticles encapsulated by zinc oxide on a silicon (Si) substrate. This synthesis approach aims to enhance the efficiency of photodetector devices while concurrently reducing material expenses, thereby promoting advancements in photodetector applications. The incorporation of various plasmonic nanoparticles (NPs) into the photodetector's architecture is demonstrated as a means to substantially improve the photoresponse of UV photodetectors. Three distinct samples, denoted as AgNPs/Si, AgNPs/ZnO/Si, and ZnO/AgNPs/Si, underwent comprehensive analysis and characterization of their morphological attributes, crystal structures, elemental composition, and optical properties. The UV photodetection efficacy of these samples was evaluated by subjecting them to 385 nm UV light at different bias voltages. The current-voltage (I-V) characteristics of the ZnO/AgNPs/Si photodetector revealed significantly enhanced conductivity in comparison to the AgNPs/Si and AgNPs/ZnO/Si counterparts. Remarkably, the ZnO/AgNPs/Si photodetector exhibited the highest responsivity value of 132 A/W, accompanied by quantum efficiency of 429.88, sensitivity of 31,400%, gain of 315, detectivity of 18 × 1010 Jones, and a noise equivalent power (NEP) of 0.556 × 10–13 W. These findings underscore the efficacy of our innovative broadband photodetector, highlighting its potential for practical implementation. This research offers valuable insights into the enhancement of photodetector performance and its applicability in real-world scenarios.

本研究采用经济高效的激光烧蚀技术,结合射频溅射方法,在硅(Si)基底上成功合成了氧化锌包裹的银纳米粒子。这种合成方法旨在提高光电探测器设备的效率,同时降低材料成本,从而推动光电探测器应用的发展。在光电探测器的结构中加入各种等离子纳米粒子(NPs)被证明是大幅改善紫外光电探测器光响应的一种方法。对三种不同的样品(分别为 AgNPs/Si、AgNPs/ZnO/Si 和 ZnO/AgNPs/Si)的形态属性、晶体结构、元素组成和光学特性进行了全面的分析和表征。在不同的偏置电压下,将这些样品置于 385 纳米紫外光下,对其紫外光检测功效进行了评估。与 AgNPs/Si 和 AgNPs/ZnO/Si 样品相比,ZnO/AgNPs/Si 光电探测器的电流-电压(I-V)特性显示出显著增强的导电性。值得注意的是,ZnO/AgNPs/Si 光电探测器的响应率最高,达到 132 A/W ,量子效率为 429.88,灵敏度为 31400%,增益为 315,探测率为 18 × 1010 Jones,噪声等效功率 (NEP) 为 0.556 × 10-13 W。这项研究为提高光电探测器的性能及其在现实世界中的应用提供了宝贵的见解。
{"title":"Development of ZnO and Si semiconductor-based ultraviolet photodetectors enhanced by laser-ablated silver nanoparticles","authors":"Abdullah Marzouq Alharbi ,&nbsp;Naser M. Ahmed ,&nbsp;Azhar Abdul Rahman ,&nbsp;Nurul Zahirah Noor Azman ,&nbsp;Sameer Algburi ,&nbsp;Ismael.A. Wadi ,&nbsp;Ayed M. Binzowaimil ,&nbsp;Osamah Aldaghri ,&nbsp;Khalid Hassan Ibnaouf","doi":"10.1016/j.photonics.2024.101228","DOIUrl":"10.1016/j.photonics.2024.101228","url":null,"abstract":"<div><p><span><span><span>The present study employs a cost-effective laser ablation technique in combination with the RF sputtering method to successfully synthesize silver </span>nanoparticles encapsulated by zinc oxide on a </span>silicon<span> (Si) substrate. This synthesis approach aims to enhance the efficiency of photodetector<span> devices while concurrently reducing material expenses, thereby promoting advancements in photodetector applications. The incorporation of various plasmonic nanoparticles (NPs) into the photodetector's architecture is demonstrated as a means to substantially improve the photoresponse of UV photodetectors. Three distinct samples, denoted as AgNPs/Si, AgNPs/ZnO/Si, and ZnO/AgNPs/Si, underwent comprehensive analysis and characterization of their morphological attributes, crystal structures, elemental composition, and optical properties. The UV photodetection efficacy of these samples was evaluated by subjecting them to 385 nm UV light at different bias voltages. The current-voltage (I-V) characteristics of the ZnO/AgNPs/Si photodetector revealed significantly enhanced conductivity in comparison to the AgNPs/Si and AgNPs/ZnO/Si counterparts. Remarkably, the ZnO/AgNPs/Si photodetector exhibited the highest responsivity value of 132 A/W, accompanied by quantum efficiency of 429.88, sensitivity of 31,400%, gain of 315, detectivity of 18 × 10</span></span></span><sup>10</sup> Jones, and a noise equivalent power (NEP) of 0.556 × 10<sup>–13</sup> W. These findings underscore the efficacy of our innovative broadband photodetector, highlighting its potential for practical implementation. This research offers valuable insights into the enhancement of photodetector performance and its applicability in real-world scenarios.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101228"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-wideband solar absorber based on double-polygonal metamaterial structures 基于双多边形超材料结构的超宽带太阳能吸收器
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101234
Pengfei Sun , Lijing Su , Sihan Nie , Xin Li , Yaxin Zhou , Yang Gao

In this work, a novel solar absorber with wide angle tolerance and insensitivity to polarization is proposed. The upper layer of the absorber comprises two polygonal structures, which can achieve an absorption rate of 94.2% across a broad wavelength range of 2218 nm (584 nm - 2802 nm). The performance of the absorber is simulated and verified using the finite difference time domain (FDTD) method combined with impedance matching theory. Through examining the electromagnetic field distribution at absorption peaks, the physical mechanism is elucidated. Moreover, incorporating refractory metals and nonmetallic materials in its design enhances the stability of the absorber, making it suitable for various extreme environments. This indicates its potential applications in solar energy storage and solar thermal photovoltaic systems.

这项研究提出了一种新型太阳能吸收器,它具有广角容限和对偏振不敏感的特性。吸收器的上层由两个多边形结构组成,在 2218 nm(584 nm - 2802 nm)的宽波长范围内吸收率可达 94.2%。利用有限差分时域 (FDTD) 方法结合阻抗匹配理论对吸收器的性能进行了模拟和验证。通过研究吸收峰的电磁场分布,阐明了物理机制。此外,在设计中加入难熔金属和非金属材料增强了吸收器的稳定性,使其适用于各种极端环境。这表明它在太阳能储存和太阳能光热系统中具有潜在的应用价值。
{"title":"Ultra-wideband solar absorber based on double-polygonal metamaterial structures","authors":"Pengfei Sun ,&nbsp;Lijing Su ,&nbsp;Sihan Nie ,&nbsp;Xin Li ,&nbsp;Yaxin Zhou ,&nbsp;Yang Gao","doi":"10.1016/j.photonics.2024.101234","DOIUrl":"10.1016/j.photonics.2024.101234","url":null,"abstract":"<div><p>In this work, a novel solar absorber with wide angle tolerance and insensitivity to polarization is proposed. The upper layer of the absorber comprises two polygonal structures, which can achieve an absorption rate of 94.2% across a broad wavelength range of 2218 nm (584 nm - 2802 nm). The performance of the absorber is simulated and verified using the finite difference time domain (FDTD) method combined with impedance matching theory. Through examining the electromagnetic field distribution at absorption peaks, the physical mechanism is elucidated. Moreover, incorporating refractory metals and nonmetallic materials in its design enhances the stability of the absorber, making it suitable for various extreme environments. This indicates its potential applications in solar energy storage and solar thermal photovoltaic systems.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101234"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mid-infrared assisted transport at the nano-junction between graphene and a doped-diamond scanning probe 石墨烯与掺杂金刚石扫描探针纳米接合处的中红外辅助传输
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101243
Tommaso Venanzi , Maria Eleonora Temperini , Leonetta Baldassarre , Michele Ortolani , Valeria Giliberti

We report mid-infrared photoconductive atomic-force microscopy (AFM) of a graphene sheet with doped-diamond AFM probes illuminated with a quantum cascade laser. The diamond probe ensures high mechanical and electrical stability. We observe a prominent photoconduction at finite biases that we interpret as the overcoming of a potential barrier formed at the graphene-diamond junction by free carriers excited by mid-infrared photons (220 meV photon energy). Moreover, we observe a small photo-thermoelectric effect of graphene under zero applied bias. We demonstrate that the use of diamond AFM probes for mid-infrared photoconductive AFM has great potential to investigate the nanometric inhomogeneities of the Fermi level and of the work function across integrated semiconductor devices.

我们报告了利用量子级联激光照射的掺杂金刚石原子力显微镜探针对石墨烯薄片进行中红外光电导原子力显微镜(AFM)观察的结果。金刚石探针确保了高度的机械和电气稳定性。我们观察到在有限偏压下的显著光电导现象,并将其解释为中红外光子(光子能量为 220 meV)激发的自由载流子克服了石墨烯-金刚石交界处形成的势垒。此外,我们还观察到石墨烯在零外加偏压下的微弱光热电效应。我们证明,使用金刚石原子力显微镜探针进行中红外光电导原子力显微镜研究,在研究费米级的纳米不均匀性和集成半导体器件的功函数方面具有巨大潜力。
{"title":"Mid-infrared assisted transport at the nano-junction between graphene and a doped-diamond scanning probe","authors":"Tommaso Venanzi ,&nbsp;Maria Eleonora Temperini ,&nbsp;Leonetta Baldassarre ,&nbsp;Michele Ortolani ,&nbsp;Valeria Giliberti","doi":"10.1016/j.photonics.2024.101243","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101243","url":null,"abstract":"<div><p>We report mid-infrared photoconductive atomic-force microscopy (AFM) of a graphene sheet with doped-diamond AFM probes illuminated with a quantum cascade laser. The diamond probe ensures high mechanical and electrical stability. We observe a prominent photoconduction at finite biases that we interpret as the overcoming of a potential barrier formed at the graphene-diamond junction by free carriers excited by mid-infrared photons (220 meV photon energy). Moreover, we observe a small photo-thermoelectric effect of graphene under zero applied bias. We demonstrate that the use of diamond AFM probes for mid-infrared photoconductive AFM has great potential to investigate the nanometric inhomogeneities of the Fermi level and of the work function across integrated semiconductor devices.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101243"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156944102400018X/pdfft?md5=6fed236b94fb15d32d69ca003bce04bb&pid=1-s2.0-S156944102400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly luminescent polyfluorene-based composite with CsPbX3 perovskite nanocrystals for light-emitting devices 基于聚芴与 CsPbX3 包晶石纳米晶体的高发光复合材料用于发光器件
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101239
M.A. Sandzhieva , L.E. Zelenkov , L.A. Otpushchennikov , S. Miltsov , E.V. Zhukova , L.S. Litvinova , S.A. Cherevkov , I.M. Sevastianova , D. Shestakov , A.V. Yakimansky , S.V. Makarov

The rapid development of thin-film light emitting devices (LED) technologies has recently been associated with the superior optoelectronic properties of luminescent materials based on lead halide perovskite nanocrystals (NCs) due to their narrow emission line with high color purity. However, the large surface area of NCs leads to the need to use solvating ligands to prevent their agglomeration, which limits their use in optoelectronics. Here we develop a class of modular polyfluorene (PF) copolymer with 4-hydroxyphenyl-, diethylamino- and diethoxyphosphoryl- groups designed to stabilize perovskite NCs. We show that as-synthesized CsPbBr3 NCs can easily be mixed with custom-designed PFs resulting in polymer/NCs composite that shows efficient Förster energy transfer (FRET) from PF to NC with green photoluminescence (PL). We also found that the NCs composite studied here can be used as an effective emissive layer in LED due to the strong interaction between polymer host and perovskite NCs providing an efficient charge transfer from the PF matrice to the NC emitter. The fabricated LED show excellent performance with a highest current efficiency of ∼25.2 cd A–1. Our approach provides a low-cost and efficient way for light-emitting optoelectronic applications based on perovskite NCs.

最近,薄膜发光器件(LED)技术的快速发展与基于卤化铅过氧化物纳米晶体(NCs)的发光材料的卓越光电特性有关,因为它们的发射线窄、色纯度高。然而,由于 NCs 的表面积较大,因此需要使用溶解配体来防止其团聚,这就限制了其在光电子学中的应用。在此,我们开发了一类带有 4-羟基苯基、二乙胺和二乙氧基磷酰基团的模块化聚芴 (PF) 共聚物,旨在稳定包光体 NC。我们的研究表明,合成的 CsPbBr3 NCs 可以很容易地与定制设计的 PFs 混合,从而形成聚合物/NCs 复合材料,并显示出从 PF 到 NC 的高效佛斯特能量转移(FRET)和绿色光致发光(PL)。我们还发现,这里研究的 NCs 复合材料可用作 LED 的有效发射层,这是因为聚合物宿主与包晶 NCs 之间的强相互作用提供了从 PF 母体到 NC 发射器的高效电荷转移。制造出的发光二极管性能卓越,最高电流效率可达 25.2 cd A-1。我们的方法为基于包晶NC的发光光电应用提供了一种低成本、高效率的途径。
{"title":"Highly luminescent polyfluorene-based composite with CsPbX3 perovskite nanocrystals for light-emitting devices","authors":"M.A. Sandzhieva ,&nbsp;L.E. Zelenkov ,&nbsp;L.A. Otpushchennikov ,&nbsp;S. Miltsov ,&nbsp;E.V. Zhukova ,&nbsp;L.S. Litvinova ,&nbsp;S.A. Cherevkov ,&nbsp;I.M. Sevastianova ,&nbsp;D. Shestakov ,&nbsp;A.V. Yakimansky ,&nbsp;S.V. Makarov","doi":"10.1016/j.photonics.2024.101239","DOIUrl":"10.1016/j.photonics.2024.101239","url":null,"abstract":"<div><p>The rapid development of thin-film light emitting devices (LED) technologies has recently been associated with the superior optoelectronic properties of luminescent materials based on lead halide perovskite nanocrystals (NCs) due to their narrow emission line with high color purity. However, the large surface area of NCs leads to the need to use solvating ligands to prevent their agglomeration, which limits their use in optoelectronics. Here we develop a class of modular polyfluorene (PF) copolymer with 4-hydroxyphenyl-, diethylamino- and diethoxyphosphoryl- groups designed to stabilize perovskite NCs. We show that as-synthesized CsPbBr<sub>3</sub> NCs can easily be mixed with custom-designed PFs resulting in polymer/NCs composite that shows efficient Förster energy transfer (FRET) from PF to NC with green photoluminescence (PL). We also found that the NCs composite studied here can be used as an effective emissive layer in LED due to the strong interaction between polymer host and perovskite NCs providing an efficient charge transfer from the PF matrice to the NC emitter. The fabricated LED show excellent performance with a highest current efficiency of ∼25.2 cd A<sup>–1</sup>. Our approach provides a low-cost and efficient way for light-emitting optoelectronic applications based on perovskite NCs.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101239"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139894129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene oxide-decorated hyrogel inverse opal photonic crystal improving colorimetric and fluorescent responses for rapid detection of lipocalin-1 氧化石墨烯装饰的透明凝胶反乳白光子晶体改善了快速检测脂钙蛋白-1 的比色和荧光反应
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101237
Pham Hong Phong , Han-Sheng Chuang , Dao Thi Thuong , Nguyen Ngoc Sang , Nghiem Thi Ha Lien , Nguyen Trong Nghia , Nguyen Duc Toan , Le Minh Thanh

In this paper, the colorimetric and fluorescent biosensors prepared from polyethylene glycol diacrylate (PEGDA)-based inverse opal photonic crystal (IOPC) decorated with graphene oxide (GO) (termed as GO-modified PEGDA-based IOPC) have been explored for simple and rapid semi-quantitative and quantitative detections of biomarker lipocaline-1 (LCN1) in tear at low level, respectively. We found that only after the concentration of GO (CGO) was sufficiently high to create a thin GO layer due to intermolecular interactions between neighboring GO molecules on the PEGDA surface, the red-shift of the reflection peak position (λstb) became effective. This widening of the shift in λstb became significant when GO-modified PEGDA-based IOPC was selectively attached with LCN1 via the immunoassay, because the attachment with LCN1 caused a reverse shift in λstb. Correspondingly, the visualizable photonic color could vary in wider range depending on the concentration of LCN1 (CLCN1), from orange color of blank solution to light blue color of solution containing LCN1 at CLCN1 of 0.06 mg/mL using CGO = 2.5 mg/mL. For quantification, CGO and enrichment time of LCN1 were optimized for getting the maximum fluorescence microscopy intensity. The diagram for the relationship between fluorescence intensity and CLCN1 showed various advantages of GO-modified PEGDA-based IOPC over non-GO-modified PEGDA-based IOPC. Those were higher fluorescence intensity, wider linear range and higher detection sensitivity. Thus, our results revealed potential applications of GO-modified PEGDA-based IOPC in screening patients with diabetic retinopathy (DR) in early stage.

本文探讨了用氧化石墨烯(GO)装饰的聚乙二醇二丙烯酸酯(PEGDA)基反向乳白光子晶体(IOPC)(称为 GO 修饰的 PEGDA 基 IOPC)制备的比色和荧光生物传感器,分别用于简单快速地半定量和低水平定量检测泪液中的生物标记物脂钙因-1(LCN1)。我们发现,只有当 GO(CGO)的浓度足够高时,由于 PEGDA 表面相邻 GO 分子之间的分子间相互作用形成了一层很薄的 GO 层,反射峰位置(λstb)的红移才会生效。当基于 GO 改性 PEGDA 的 IOPC 通过免疫测定选择性地附着 LCN1 时,λstb 的移动范围会显著扩大,因为附着 LCN1 会导致λstb 反向移动。相应地,根据 LCN1(CLCN1)的浓度,可视光子颜色可在更大范围内变化,从空白溶液的橙色到含有 LCN1 的溶液的淡蓝色(CLCN1 为 0.06 mg/mL,CGO = 2.5 mg/mL)。为了定量,对 LCN1 的 CGO 和富集时间进行了优化,以获得最大的荧光显微镜强度。荧光强度与 CLCN1 的关系图显示了 GO 改性 PEGDA 基 IOPC 相对于非 GO 改性 PEGDA 基 IOPC 的各种优势。这些优势包括更高的荧光强度、更宽的线性范围和更高的检测灵敏度。因此,我们的研究结果揭示了 GO 改性 PEGDA 基 IOPC 在早期糖尿病视网膜病变(DR)患者筛查中的潜在应用。
{"title":"Graphene oxide-decorated hyrogel inverse opal photonic crystal improving colorimetric and fluorescent responses for rapid detection of lipocalin-1","authors":"Pham Hong Phong ,&nbsp;Han-Sheng Chuang ,&nbsp;Dao Thi Thuong ,&nbsp;Nguyen Ngoc Sang ,&nbsp;Nghiem Thi Ha Lien ,&nbsp;Nguyen Trong Nghia ,&nbsp;Nguyen Duc Toan ,&nbsp;Le Minh Thanh","doi":"10.1016/j.photonics.2024.101237","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101237","url":null,"abstract":"<div><p>In this paper, the colorimetric and fluorescent biosensors prepared from polyethylene glycol diacrylate (PEGDA)-based inverse opal photonic crystal (IOPC) decorated with graphene oxide (GO) (termed as GO-modified PEGDA-based IOPC) have been explored for simple and rapid semi-quantitative and quantitative detections of biomarker lipocaline-1 (LCN1) in tear at low level, respectively. We found that only after the concentration of GO (<em>C</em><sub><em>GO</em></sub>) was sufficiently high to create a thin GO layer due to intermolecular interactions between neighboring GO molecules on the PEGDA surface, the red-shift of the reflection peak position (λ<sub>stb</sub>) became effective. This widening of the shift in λ<sub>stb</sub> became significant when GO-modified PEGDA-based IOPC was selectively attached with LCN1 via the immunoassay, because the attachment with LCN1 caused a reverse shift in λ<sub>stb</sub>. Correspondingly, the visualizable photonic color could vary in wider range depending on the concentration of LCN1 (<em>C</em><sub><em>LCN1</em></sub>), from orange color of blank solution to light blue color of solution containing LCN1 at <em>C</em><sub><em>LCN1</em></sub> of 0.06 mg/mL using <em>C</em><sub><em>GO</em></sub> = 2.5 mg/mL. For quantification, <em>C</em><sub><em>GO</em></sub> and enrichment time of LCN1 were optimized for getting the maximum fluorescence microscopy intensity. The diagram for the relationship between fluorescence intensity and <em>C</em><sub>LCN1</sub> showed various advantages of GO-modified PEGDA-based IOPC over non-GO-modified PEGDA-based IOPC. Those were higher fluorescence intensity, wider linear range and higher detection sensitivity. Thus, our results revealed potential applications of GO-modified PEGDA-based IOPC in screening patients with diabetic retinopathy (DR) in early stage.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101237"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual-purpose processor based on graphene hybrid plasmonic concentric resonators 基于石墨烯混合等离子体同心谐振器的两用处理器
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101245
Afshin Ahmadpour, Amir Habibzadeh-Sharif, Faezeh Bahrami-Chenaghlou

This paper presents systematic design and analysis of a dual-purpose integrated processor based on graphene hybrid plasmonic concentric add-drop microring resonators for fast differentiation and integration. The footprint of this processor is equal to 4 × 4.358 μm2, containing two concentric rings with small radii of 1679 and 1204 nm. Performance of the designed dual-purpose processor for the first and fractional-orders differentiation and integration has been analyzed by the three-dimensional finite-difference time-domain method in the frequency and time domains and the accuracy of the results has been confirmed using the formulas of the ideal math differentiator and integrator. From the point of view of the performance specifications, the designed dual-purpose temporal processor has excellent 3 dB bandwidth, insertion loss, energy efficiency, and accuracy in the first and fractional-orders differentiation and integration.

本文系统地设计和分析了一种基于石墨烯混合等离子体同心滴加微振谐振器的两用集成处理器,用于快速微分和集成。该处理器的尺寸为 4 × 4.358 μm2,包含两个半径分别为 1679 nm 和 1204 nm 的同心圆。利用三维有限差分时域法在频域和时域分析了所设计的两用处理器在一阶和分数阶微分和积分方面的性能,并利用理想数学微分器和积分器的公式确认了结果的准确性。从性能指标的角度来看,所设计的两用时域处理器具有出色的 3 dB 带宽、插入损耗、能效以及一阶和分数阶微分和积分的精度。
{"title":"A dual-purpose processor based on graphene hybrid plasmonic concentric resonators","authors":"Afshin Ahmadpour,&nbsp;Amir Habibzadeh-Sharif,&nbsp;Faezeh Bahrami-Chenaghlou","doi":"10.1016/j.photonics.2024.101245","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101245","url":null,"abstract":"<div><p>This paper presents systematic design and analysis of a dual-purpose integrated processor based on graphene hybrid plasmonic concentric add-drop microring resonators for fast differentiation and integration. The footprint of this processor is equal to 4 × 4.358 <em>μ</em>m<sup>2</sup>, containing two concentric rings with small radii of 1679 and 1204 nm. Performance of the designed dual-purpose processor for the first and fractional-orders differentiation and integration has been analyzed by the three-dimensional finite-difference time-domain method in the frequency and time domains and the accuracy of the results has been confirmed using the formulas of the ideal math differentiator and integrator. From the point of view of the performance specifications, the designed dual-purpose temporal processor has excellent 3 dB bandwidth, insertion loss, energy efficiency, and accuracy in the first and fractional-orders differentiation and integration.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101245"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139986950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Bragg scattering in the presence of dipole-dipole interaction in plasmonic nanohybrids 等离子纳米混合体中存在偶极-偶极相互作用时的布拉格散射研究
IF 2.7 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101238
Mahi R. Singh , Xintong Jiang , Sergey Yastrebov

We have developed a theory of the Bragg scattering for metallic nanohybrid made of an ensemble of metallic nanorods doped in a substrate. The substrate can gas, liquid or solid. An external laser field is applied to study the Bragg scattered light. The photons from the incident laser interact with the surface plasmons od nanorods and produce surface plasmon polaritons (SPPs). The incident laser field also induced dipoles in the ensemble of nanorods and they interact with each other via the dipole-dipole interaction (DDI). We have developed a theory for Bragg scattering for metallic nanohybrids using the coupled-mode formulism based on Maxwell’s equation in the presence of SPP and DDI fields. It is found that the theory of Bragg scattered depends on the susceptibility induced by the SPP and DDI fields. We used the quantum mechanical density matrix method to calculate the susceptibility. An analytical expression of the Bragg scattered light intensity is obtained. These expressions can be useful for experimental scientists and engineers who can used them to compare their experiments and make new types of plasmonic devices. Next, we have compared our theory with the experiment data for a nanohybrid made of ensemble of Au-nanoris doped in water. We found a good agreement between theory and experiments. We have also performed the numerical simulations to study the effect of SPP and DDI fields on the Bragg intensity. We have predicted an enhancement the Brag intensity due to the SPP and DDI couplings. The enhancement is due to the two extra scattering mechanisms of the SPP and DDI polaritons with acoustic phonons. We have also found that the one peak in the Bragg intensity can be split int many peaks due the SPP coupling, DDI coupling and phase factor. The splitting is due the Bragg factor appearing in the theory, and it includes the coupling of the incident laser, SPP and DDI electric fields with of acoustic phonons. The enhancement effect can be used to fabricate new types of nanosensors. Similarity, splitting phenomenon can be used to fabricate new types nanoswitches where one peak can be considered as the OFF position and many peaks can be considered as the ON position.

我们提出了由掺杂在基底中的金属纳米棒组成的金属纳米混合体的布拉格散射理论。基底可以是气体、液体或固体。应用外部激光场研究布拉格散射光。入射激光的光子与纳米棒的表面等离子体相互作用,产生表面等离子体极化子(SPP)。入射激光场还会在纳米棒集合体中诱导偶极子,它们通过偶极子-偶极子相互作用(DDI)相互影响。我们以麦克斯韦方程为基础,利用耦合模式公式建立了存在 SPP 和 DDI 场时金属纳米混合物的布拉格散射理论。研究发现,布拉格散射理论取决于 SPP 和 DDI 场引起的感性。我们使用量子力学密度矩阵法计算了感生率。得到了布拉格散射光强度的解析表达式。这些表达式对实验科学家和工程师非常有用,他们可以用它们来比较实验结果,并制造出新型的等离子器件。接下来,我们将我们的理论与在水中掺杂金-硼的纳米混合体的实验数据进行了比较。我们发现理论与实验之间有很好的一致性。我们还进行了数值模拟,以研究 SPP 和 DDI 场对布拉格强度的影响。我们预测 SPP 和 DDI 耦合会增强布拉格强度。这种增强是由于 SPP 和 DDI 极化子与声子的两种额外散射机制造成的。我们还发现,由于 SPP 耦合、DDI 耦合和相位因子的作用,布拉格强度中的一个峰值可以分成多个峰值。这种分裂是由于理论中出现的布拉格因子,它包括入射激光、SPP 和 DDI 电场与声子的耦合。这种增强效应可用于制造新型纳米传感器。与此类似,分裂现象也可用于制造新型纳米开关,其中一个峰值可视为关断位置,多个峰值可视为接通位置。
{"title":"Study of Bragg scattering in the presence of dipole-dipole interaction in plasmonic nanohybrids","authors":"Mahi R. Singh ,&nbsp;Xintong Jiang ,&nbsp;Sergey Yastrebov","doi":"10.1016/j.photonics.2024.101238","DOIUrl":"10.1016/j.photonics.2024.101238","url":null,"abstract":"<div><p>We have developed a theory of the Bragg scattering for metallic nanohybrid made of an ensemble of metallic nanorods doped in a substrate. The substrate can gas, liquid or solid. An external laser field is applied to study the Bragg scattered light. The photons from the incident laser interact with the surface plasmons od nanorods and produce surface plasmon polaritons (SPPs). The incident laser field also induced dipoles in the ensemble of nanorods and they interact with each other via the dipole-dipole interaction (DDI). We have developed a theory for Bragg scattering for metallic nanohybrids using the coupled-mode formulism based on Maxwell’s equation in the presence of SPP and DDI fields. It is found that the theory of Bragg scattered depends on the susceptibility induced by the SPP and DDI fields. We used the quantum mechanical density matrix method to calculate the susceptibility. An analytical expression of the Bragg scattered light intensity is obtained. These expressions can be useful for experimental scientists and engineers who can used them to compare their experiments and make new types of plasmonic devices. Next, we have compared our theory with the experiment data for a nanohybrid made of ensemble of Au-nanoris doped in water. We found a good agreement between theory and experiments. We have also performed the numerical simulations to study the effect of SPP and DDI fields on the Bragg intensity. We have predicted an enhancement the Brag intensity due to the SPP and DDI couplings. The enhancement is due to the two extra scattering mechanisms of the SPP and DDI polaritons with acoustic phonons. We have also found that the one peak in the Bragg intensity can be split int many peaks due the SPP coupling, DDI coupling and phase factor. The splitting is due the Bragg factor appearing in the theory, and it includes the coupling of the incident laser, SPP and DDI electric fields with of acoustic phonons. The enhancement effect can be used to fabricate new types of nanosensors. Similarity, splitting phenomenon can be used to fabricate new types nanoswitches where one peak can be considered as the OFF position and many peaks can be considered as the ON position.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"58 ","pages":"Article 101238"},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139896889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photonics and Nanostructures-Fundamentals and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1