Crystalline and morphological defects in the perovskite film affect the operation of light-emitting devices. Thus, advanced and scalable fabrication techniques can improve device properties. In this work, we use slot-die coating at ambient conditions, followed by hot air drying, to produce CsPbBr3 light-emitting electrochemical cells. We compare this method to spin-coating and analyze film morphology and optical properties. We reveal that annealing the film on a hot plate increases PLQY and Shockley-Read-Hole lifetime, but worsens film morphology. In contrast, hot air drying during deposition improves morphology but reduces photoluminescence. The slot-die coating shows better results for device fabrication. With InGa and Al top electrodes, we achieve luminance 8100 cd m−2 and 2900 cd m−2 at a 5 V bias, respectively.
过氧化物薄膜中的晶体和形态缺陷会影响发光器件的运行。因此,先进的、可扩展的制造技术可以改善器件性能。在这项工作中,我们使用槽模镀膜技术在环境条件下制作 CsPbBr3 发光电化学电池,然后进行热空气干燥。我们将这种方法与旋涂法进行了比较,并分析了薄膜的形态和光学特性。我们发现,将薄膜放在热板上退火可提高 PLQY 和 Shockley-Read-Hole 寿命,但会恶化薄膜形态。相反,沉积过程中的热空气干燥会改善薄膜的形态,但会降低光致发光。槽模镀膜在器件制造方面显示出更好的效果。使用 InGa 和 Al 顶部电极,我们在 5 V 偏置下分别获得了 8100 cd m-2 和 2900 cd m-2 的亮度。
{"title":"Morphological and structural defect optimization in CsPbBr3 nanoparticle films for light-emitting electrochemical cells","authors":"A.S. Polushkin , E.Y. Danilovskiy , E.V. Sapozhnikova , N.K. Kuzmenko , A.P. Pushkarev , S.V. Makarov","doi":"10.1016/j.photonics.2024.101232","DOIUrl":"10.1016/j.photonics.2024.101232","url":null,"abstract":"<div><p>Crystalline and morphological defects in the perovskite film affect the operation of light-emitting devices. Thus, advanced and scalable fabrication techniques can improve device properties. In this work, we use slot-die coating at ambient conditions, followed by hot air drying, to produce CsPbBr<sub>3</sub> light-emitting electrochemical cells. We compare this method to spin-coating and analyze film morphology and optical properties. We reveal that annealing the film on a hot plate increases PLQY and Shockley-Read-Hole lifetime, but worsens film morphology. In contrast, hot air drying during deposition improves morphology but reduces photoluminescence. The slot-die coating shows better results for device fabrication. With InGa and Al top electrodes, we achieve luminance 8100 cd m<sup>−2</sup> and 2900 cd m<sup>−2</sup> at a 5 V bias, respectively.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.photonics.2024.101236
Hukam Singh , Saurabh Mani Tripathi
In this paper, we analyse a novel photonic sensor utilising mode-transition in hexagonal photonic crystal fiber (HPCF) to monitor the ethanol content in an ethanol-gasoline blend. Using the finite-element method, the mode-transition from LP02 cladding-mode to LP01 core-mode is accomplished by raising the refractive index (RI) of the analyte layer, which removes the necessity of an additional high RI layer deposition at the fiber surface. We have rigorously optimized the air-filling fraction of the HPCF cladding such that the analyte RI range for the mode-transition would correspond to 0–25% v/v of ethanol in the blend, which is within its commercial range of ethanol-gasoline blend. With increasing analyte RI, we have observed the occurrence of a minimum in the total modal power carried by the sensor. We determine the sensitivity through this modal power variation by dividing it (about the power minimum) into two RI dynamic ranges of 1.400–1.410 (i.e., 25–11% ethanol) and 1.410–1.418 (i.e., 11–0% ethanol), respectively. The maximum calculated sensitivity of the sensor within the linear regime of the modal power variation is 0.46 dBm/% v/v and 0.40 dBm/% v/v, respectively, which are twice as high as the sensitivity offered by the FBG and LPG based sensors over the same dynamical range. In addition to the high sensitivity, the proposed sensor does not require any high-RI layer coating, making its design simpler and easier to implement.
本文分析了一种利用六方光子晶体光纤(HPCF)中的模式转换来监测乙醇汽油混合物中乙醇含量的新型光子传感器。利用有限元方法,通过提高分析物层的折射率(RI)实现了从 LP02 包层模式到 LP01 芯模式的模式转换,从而消除了在光纤表面额外沉积高 RI 层的必要性。我们对 HPCF 包层的充气分数进行了严格的优化,使模式转换的分析物 RI 范围对应于混合物中乙醇的 0-25% v/v,这属于乙醇-汽油混合物的商业范围。随着分析物 RI 的增加,我们观察到传感器传输的总模态功率出现了最小值。我们通过这种模态功率变化来确定灵敏度,方法是将其(关于功率最小值)划分为两个 RI 动态范围,分别为 1.400-1.410(即 25-11%乙醇)和 1.410-1.418(即 11-0%乙醇)。在模态功率变化的线性范围内,传感器的最大灵敏度分别为 0.46 dBm/% v/v 和 0.40 dBm/% v/v,是基于 FBG 和 LPG 的传感器在相同动态范围内灵敏度的两倍。除了灵敏度高之外,拟议的传感器还不需要任何高灵敏度层涂层,使其设计更简单、更易于实现。
{"title":"Cost-effective ethanol sensor utilising inherent mode-transition in photonic crystal fiber","authors":"Hukam Singh , Saurabh Mani Tripathi","doi":"10.1016/j.photonics.2024.101236","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101236","url":null,"abstract":"<div><p>In this paper, we analyse a novel photonic sensor utilising mode-transition in hexagonal photonic crystal fiber (HPCF) to monitor the ethanol content in an ethanol-gasoline blend. Using the finite-element method, the mode-transition from LP<sub>02</sub> cladding-mode to LP<sub>01</sub> core-mode is accomplished by raising the refractive index (RI) of the analyte layer, which removes the necessity of an additional high RI layer deposition at the fiber surface. We have rigorously optimized the air-filling fraction of the HPCF cladding such that the analyte RI range for the mode-transition would correspond to 0–25% v/v of ethanol in the blend, which is within its commercial range of ethanol-gasoline blend. With increasing analyte RI, we have observed the occurrence of a minimum in the total modal power carried by the sensor. We determine the sensitivity through this modal power variation by dividing it (about the power minimum) into two RI dynamic ranges of 1.400–1.410 (i.e., 25–11% ethanol) and 1.410–1.418 (i.e., 11–0% ethanol), respectively. The maximum calculated sensitivity of the sensor within the linear regime of the modal power variation is 0.46 dBm/% v/v and 0.40 dBm/% v/v, respectively, which are twice as high as the sensitivity offered by the FBG and LPG based sensors over the same dynamical range. In addition to the high sensitivity, the proposed sensor does not require any high-RI layer coating, making its design simpler and easier to implement.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.photonics.2024.101241
Haoyue Hao, Liang Li
Tamm plasmon modes are used to realize the modulation of multi-photon processes. Through effectively combining the rear-earth doped layer and a monolayer graphene in a Tamm structure, the emission of multi-photon processes can be tuned by the applied voltage. Results show that the proposed structure has a narrow absorption peak near 1550 nm, which is corresponding to the excitation source wavelength of the multi-photon processes. Importantly, the emission intensity of multi-photon processes can be tuned from 1 fold to ∼10.1 fold when we changed the applied voltage. Meanwhile, the emission color of the multi-photon processes can be tuned from yellow to green via adjusting the applied voltage. The proposed voltage tuning approach may be promoted to all kinds of nonlinear optical phenomenons, like Stimulated Raman Scattering, optical mixing and photorefractive effect.
塔姆等离子体模式用于实现多光子过程的调制。通过在 Tamm 结构中有效结合后土掺杂层和单层石墨烯,多光子过程的发射可以通过外加电压进行调节。结果表明,所提出的结构在 1550nm 附近有一个窄吸收峰,这与多光子过程的激发源波长相对应。重要的是,当我们改变外加电压时,多光子过程的发射强度可从 1 倍调谐到 ~10.1 倍。同时,通过调节外加电压,多光子过程的发射颜色可从黄色调至绿色。所提出的电压调节方法可推广到各种非线性光学现象,如受激拉曼散射、光混合和光折射效应。
{"title":"Voltage tuning multi-photon processes with a graphene-based Tamm structure","authors":"Haoyue Hao, Liang Li","doi":"10.1016/j.photonics.2024.101241","DOIUrl":"10.1016/j.photonics.2024.101241","url":null,"abstract":"<div><p>Tamm plasmon modes are used to realize the modulation of multi-photon processes. Through effectively combining the rear-earth doped layer and a monolayer graphene in a Tamm structure, the emission of multi-photon processes can be tuned by the applied voltage. Results show that the proposed structure has a narrow absorption peak near 1550 nm, which is corresponding to the excitation source wavelength of the multi-photon processes. Importantly, the emission intensity of multi-photon processes can be tuned from 1 fold to ∼10.1 fold when we changed the applied voltage. Meanwhile, the emission color of the multi-photon processes can be tuned from yellow to green via adjusting the applied voltage. The proposed voltage tuning approach may be promoted to all kinds of nonlinear optical phenomenons, like Stimulated Raman Scattering, optical mixing and photorefractive effect.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plasmonics is gaining prominence in the area of optical sensing due to the unique way that noble metals and light interact to produce subwavelength confinement. A Metal Insulator Metal waveguide based plasmonic nanosensor exhibiting multi Fano resonance is proposed. The characteristics of transmittance of the proposed sensor are investigated using the Finite Difference Time Domain methodology. Three Fano resonances can be seen in the transmission characteristic with different sensitivities of 992.4 nm/RIU, 1294.8 nm/RIU and 2065.5 nm/RIU at 1.0257 μm, 1.3239 μm and 2.0798 μm respectively. Furthermore, the sensor performance is investigated for potential fabrication issues arising out of variation in structural parameters such as the coupling distance and the radius (both inner and outer) of the semi-ring arc resonator. The performance of the sensor is also assessed for performance metrics like the Figure of Merit (FOM), Q factor, and Detection Limit, which are obtained as 39.7 RIU−1, 39.9 and 0.025 respectively. The characteristics of the Fano resonances obtained through simulation is also validated by matching it with the theoretical Fano line shape function. The proposed sensor can find its use in biosensing applications.
{"title":"High sensitivity plasmonic refractive index sensor for early anaemia detection","authors":"Gaurav Kumar Yadav , Sanjeev Kumar Metya , Rukhsar Zafar , Amit Kumar Garg","doi":"10.1016/j.photonics.2024.101235","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101235","url":null,"abstract":"<div><p>Plasmonics is gaining prominence in the area of optical sensing due to the unique way that noble metals and light interact to produce subwavelength confinement. A Metal Insulator Metal waveguide based plasmonic nanosensor exhibiting multi Fano resonance is proposed. The characteristics of transmittance of the proposed sensor are investigated using the Finite Difference Time Domain methodology. Three Fano resonances can be seen in the transmission characteristic with different sensitivities of 992.4 nm/RIU, 1294.8 nm/RIU and 2065.5 nm/RIU at 1.0257 <em>μ</em>m, 1.3239 <em>μ</em>m and 2.0798 <em>μ</em>m respectively. Furthermore, the sensor performance is investigated for potential fabrication issues arising out of variation in structural parameters such as the coupling distance and the radius (both inner and outer) of the semi-ring arc resonator. The performance of the sensor is also assessed for performance metrics like the Figure of Merit (FOM), Q factor, and Detection Limit, which are obtained as 39.7 RIU<sup>−1</sup>, 39.9 and 0.025 respectively. The characteristics of the Fano resonances obtained through simulation is also validated by matching it with the theoretical Fano line shape function. The proposed sensor can find its use in biosensing applications.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-20DOI: 10.1016/j.photonics.2024.101227
Fabien Simon , Coralie Elmaleh , Jean Decker , Marc Fourmentin , Arnaud Cuisset , Guillaume Ducournau , Jean-François Lampin , Gaël Mouret , Francis Hindle
The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.
{"title":"Cavity assisted high-resolution THz spectrometer","authors":"Fabien Simon , Coralie Elmaleh , Jean Decker , Marc Fourmentin , Arnaud Cuisset , Guillaume Ducournau , Jean-François Lampin , Gaël Mouret , Francis Hindle","doi":"10.1016/j.photonics.2024.101227","DOIUrl":"10.1016/j.photonics.2024.101227","url":null,"abstract":"<div><p>The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000026/pdfft?md5=ddb5546a2b76eb0306763b2a33341d5d&pid=1-s2.0-S1569441024000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.1016/j.photonics.2024.101229
Mohammad Eskandari, Amir Habibzadeh-Sharif
In this study, we developed a novel method based on uniform and graded gratings on the front surface of ultra-thin film Si solar cells to enhance light absorption. The proposed gratings were designed in two configurations comprising penetration into the active layer and placement on it. These structures enhance absorption by scattering and diffracting light, and enlarging the optical path for photons. Simulations based on the finite element method and finite difference time domain technique showed that the graded gratings could significantly enhance absorption in the visible and infrared regions. The maximum current density and efficiency achieved for graded gratings placed on the top surface of the active layer were 21.7 mA/cm2 and 23.9%, respectively (47.6% and 48.4% higher compared with the reference cell).
{"title":"Enhancement of light absorption by ultra-thin film solar cells using graded gratings","authors":"Mohammad Eskandari, Amir Habibzadeh-Sharif","doi":"10.1016/j.photonics.2024.101229","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101229","url":null,"abstract":"<div><p><span>In this study, we developed a novel method based on uniform and graded gratings on the front surface of ultra-thin film Si solar cells to enhance light absorption<span><span>. The proposed gratings were designed in two configurations comprising penetration into the active layer and placement on it. These structures enhance absorption by scattering and diffracting light, and enlarging the optical path for photons. Simulations based on the </span>finite element method and finite difference time domain technique showed that the graded gratings could significantly enhance absorption in the visible and infrared regions. The maximum current density and efficiency achieved for graded gratings placed on the top surface of the active layer were 21.7 mA/cm</span></span><sup>2</sup> and 23.9%, respectively (47.6% and 48.4% higher compared with the reference cell).</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1016/j.photonics.2024.101226
Anil Kumar, Sarvesh K. Dubey, Awadhesh Kumar, S.K. Srivastava
In this study, we introduce a metamaterial absorber operating in the near infrared region. The current metamaterial absorber (MMA) comprising Silver-SiC-Gold demonstrates an absorptivity exceeding 80% within the wavelength range of 770 nm to 1150 nm. The current metamaterials absorber exhibits independence from both polarization and incident angle. Additionally, we made comparison between the proposed Metal-Insulator-Metal (MIM) based MMA with other previously reported MMA using Silicon Carbide (SiC) and another dielectric spacer layer.
{"title":"A near infrared MIM metamaterial absorber using SiC","authors":"Anil Kumar, Sarvesh K. Dubey, Awadhesh Kumar, S.K. Srivastava","doi":"10.1016/j.photonics.2024.101226","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101226","url":null,"abstract":"<div><p><span>In this study, we introduce a metamaterial absorber operating in the </span>near infrared<span><span> region. The current metamaterial absorber (MMA) comprising Silver-SiC-Gold demonstrates an absorptivity exceeding 80% within the wavelength range of 770 nm to 1150 nm. The current metamaterials absorber exhibits independence from both polarization and incident angle. Additionally, we made comparison between the proposed Metal-Insulator-Metal (MIM) based MMA with other previously reported MMA using Silicon Carbide (SiC) and another </span>dielectric spacer layer.</span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-02DOI: 10.1016/j.photonics.2023.101225
Ekaterina V. Gunina, Pavel V. Alekseevskiy, Yuliya Kenzhebaeva, Yuri A. Mezenov, Valentin A. Milichko
Detection of extreme temperatures plays a key role in metallurgy, aerospace, nuclear industries, and even astronomy. Herein, materials and optical technologies capable of detecting the temperatures above 3000 K are still in their infancy. Here, we report on a detection of 3800 to 4500 K through the emission of a blackbody, for which the metal-organic frameworks (MOFs) are used. The rapid heating of MOFs by laser radiation leads to the threshold blackbody emission (centered from 650 to 750 nm), the corresponding temperature of which is directly related to the structure of MOF. The results on such structure-related temperatures of the blackbody emission of MOFs, thereby, expand their use in photonics and sensing in general.
{"title":"Detection of extreme temperatures via emission from MOFs of a varied structure","authors":"Ekaterina V. Gunina, Pavel V. Alekseevskiy, Yuliya Kenzhebaeva, Yuri A. Mezenov, Valentin A. Milichko","doi":"10.1016/j.photonics.2023.101225","DOIUrl":"10.1016/j.photonics.2023.101225","url":null,"abstract":"<div><p><span>Detection of extreme temperatures plays a key role in metallurgy, aerospace, nuclear industries, and even astronomy. Herein, materials and optical technologies capable of detecting the temperatures above 3000 K are still in their infancy. Here, we report on a detection of 3800 to 4500 K through the emission of a blackbody, for which the metal-organic frameworks (MOFs) are used. The rapid heating of MOFs by </span>laser radiation<span> leads to the threshold blackbody emission (centered from 650 to 750 nm), the corresponding temperature of which is directly related to the structure of MOF. The results on such structure-related temperatures of the blackbody emission of MOFs, thereby, expand their use in photonics and sensing in general.</span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1016/j.photonics.2023.101224
Araz Siabi-Garjan
Using the previously introduced modified discrete dipole approximation (DDA) method by applying the full details of the nanoparticle and its surrounding environment, the detection sensitivity of molecules by plasmonic Rod-based nanosensors, including U-shaped and Rod-shaped structures, was investigated. In the calculations, the two factors of the magnitude of the wavelength shift and the ability to distinguish molecules with similar properties were of significant interest. The results indicated that the sensitivity of Rod-based nanostructures is significantly higher than that of spherical nanoparticles. Among the plasmonic Rod-based nanosensors, the silver U-shaped structure performs better than others. The wavelength shift of the absorption spectrum of different nanosensors for a given molecule was very different, making it possible to detect very similar molecules from each other by testing different sensors.
利用先前引入的修正离散偶极近似(DDA)方法,通过应用纳米粒子及其周围环境的全部细节,研究了基于等离子棒的纳米传感器(包括 U 型和棒型结构)对分子的检测灵敏度。在计算过程中,波长偏移的幅度和区分性质相似的分子的能力这两个因素受到了极大关注。结果表明,Rod 型纳米结构的灵敏度明显高于球形纳米粒子。在基于杆的质子纳米传感器中,银 U 形结构的性能优于其他结构。不同的纳米传感器对特定分子的吸收光谱的波长偏移大不相同,因此可以通过测试不同的传感器来检测彼此非常相似的分子。
{"title":"A comprehensive study on the Rod-based plasmonic structures sensing using the modified discrete dipole approximation method","authors":"Araz Siabi-Garjan","doi":"10.1016/j.photonics.2023.101224","DOIUrl":"10.1016/j.photonics.2023.101224","url":null,"abstract":"<div><p><span>Using the previously introduced modified discrete dipole approximation (DDA) method by applying the full details of the </span>nanoparticle<span><span> and its surrounding environment, the detection sensitivity of molecules by plasmonic Rod-based nanosensors, including U-shaped and Rod-shaped structures, was investigated. In the calculations, the two factors of the magnitude of the wavelength shift and the ability to distinguish molecules with similar properties were of significant interest. The results indicated that the sensitivity of Rod-based </span>nanostructures<span> is significantly higher than that of spherical nanoparticles. Among the plasmonic Rod-based nanosensors, the silver U-shaped structure performs better than others. The wavelength shift of the absorption spectrum of different nanosensors for a given molecule was very different, making it possible to detect very similar molecules from each other by testing different sensors.</span></span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.1016/j.photonics.2023.101223
Callum J. Stirling , Milos Nedeljkovic , Colin Mitchell , David J. Rowe , Goran Z. Mashanovich
Mid-infrared spectroscopy enabled by silicon photonics has received great interest in recent years as a pathway for a scalable sensing technology. The development of such devices would realise inexpensive and accessible instrumentation for a wide variety of uses over numerous fields. However, not every sensing application is the same; to produce sensors for real-world scenarios, engineers need flexibility in device design but also need to maintain compatibility with scalable fabrication processes. Sub-wavelength gratings can offer a solution to this problem, as they enable the engineering of optical properties using standard fabrication techniques and without requiring new materials. By using sub-wavelength gratings, specific design approaches can be tailored to different applications, such as increasing the interaction of a sensor with an analyte or broadening the bandwidth of an integrated photonic device. Here, we review the development of sub-wavelength grating-based devices for mid-infrared silicon photonics and discuss how they can be exploited for spectroscopic and sensing devices.
{"title":"Sub-wavelength gratings in silicon photonic devices for mid-infrared spectroscopy and sensing","authors":"Callum J. Stirling , Milos Nedeljkovic , Colin Mitchell , David J. Rowe , Goran Z. Mashanovich","doi":"10.1016/j.photonics.2023.101223","DOIUrl":"10.1016/j.photonics.2023.101223","url":null,"abstract":"<div><p>Mid-infrared spectroscopy enabled by silicon photonics has received great interest in recent years as a pathway for a scalable sensing technology. The development of such devices would realise inexpensive and accessible instrumentation for a wide variety of uses over numerous fields. However, not every sensing application is the same; to produce sensors for real-world scenarios, engineers need flexibility in device design but also need to maintain compatibility with scalable fabrication processes. Sub-wavelength gratings can offer a solution to this problem, as they enable the engineering of optical properties using standard fabrication techniques and without requiring new materials. By using sub-wavelength gratings, specific design approaches can be tailored to different applications, such as increasing the interaction of a sensor with an analyte or broadening the bandwidth of an integrated photonic device. Here, we review the development of sub-wavelength grating-based devices for mid-infrared silicon photonics and discuss how they can be exploited for spectroscopic and sensing devices.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441023001177/pdfft?md5=ffe7d777c94b1082db7487e7510a45a3&pid=1-s2.0-S1569441023001177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}