首页 > 最新文献

Photonics and Nanostructures-Fundamentals and Applications最新文献

英文 中文
Morphological and structural defect optimization in CsPbBr3 nanoparticle films for light-emitting electrochemical cells 用于发光电化学电池的 CsPbBr3 纳米粒子薄膜的形态和结构缺陷优化
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101232
A.S. Polushkin , E.Y. Danilovskiy , E.V. Sapozhnikova , N.K. Kuzmenko , A.P. Pushkarev , S.V. Makarov

Crystalline and morphological defects in the perovskite film affect the operation of light-emitting devices. Thus, advanced and scalable fabrication techniques can improve device properties. In this work, we use slot-die coating at ambient conditions, followed by hot air drying, to produce CsPbBr3 light-emitting electrochemical cells. We compare this method to spin-coating and analyze film morphology and optical properties. We reveal that annealing the film on a hot plate increases PLQY and Shockley-Read-Hole lifetime, but worsens film morphology. In contrast, hot air drying during deposition improves morphology but reduces photoluminescence. The slot-die coating shows better results for device fabrication. With InGa and Al top electrodes, we achieve luminance 8100 cd m−2 and 2900 cd m−2 at a 5 V bias, respectively.

过氧化物薄膜中的晶体和形态缺陷会影响发光器件的运行。因此,先进的、可扩展的制造技术可以改善器件性能。在这项工作中,我们使用槽模镀膜技术在环境条件下制作 CsPbBr3 发光电化学电池,然后进行热空气干燥。我们将这种方法与旋涂法进行了比较,并分析了薄膜的形态和光学特性。我们发现,将薄膜放在热板上退火可提高 PLQY 和 Shockley-Read-Hole 寿命,但会恶化薄膜形态。相反,沉积过程中的热空气干燥会改善薄膜的形态,但会降低光致发光。槽模镀膜在器件制造方面显示出更好的效果。使用 InGa 和 Al 顶部电极,我们在 5 V 偏置下分别获得了 8100 cd m-2 和 2900 cd m-2 的亮度。
{"title":"Morphological and structural defect optimization in CsPbBr3 nanoparticle films for light-emitting electrochemical cells","authors":"A.S. Polushkin ,&nbsp;E.Y. Danilovskiy ,&nbsp;E.V. Sapozhnikova ,&nbsp;N.K. Kuzmenko ,&nbsp;A.P. Pushkarev ,&nbsp;S.V. Makarov","doi":"10.1016/j.photonics.2024.101232","DOIUrl":"10.1016/j.photonics.2024.101232","url":null,"abstract":"<div><p>Crystalline and morphological defects in the perovskite film affect the operation of light-emitting devices. Thus, advanced and scalable fabrication techniques can improve device properties. In this work, we use slot-die coating at ambient conditions, followed by hot air drying, to produce CsPbBr<sub>3</sub> light-emitting electrochemical cells. We compare this method to spin-coating and analyze film morphology and optical properties. We reveal that annealing the film on a hot plate increases PLQY and Shockley-Read-Hole lifetime, but worsens film morphology. In contrast, hot air drying during deposition improves morphology but reduces photoluminescence. The slot-die coating shows better results for device fabrication. With InGa and Al top electrodes, we achieve luminance 8100 cd m<sup>−2</sup> and 2900 cd m<sup>−2</sup> at a 5 V bias, respectively.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost-effective ethanol sensor utilising inherent mode-transition in photonic crystal fiber 利用光子晶体光纤固有的模式转换技术制造经济高效的乙醇传感器
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101236
Hukam Singh , Saurabh Mani Tripathi

In this paper, we analyse a novel photonic sensor utilising mode-transition in hexagonal photonic crystal fiber (HPCF) to monitor the ethanol content in an ethanol-gasoline blend. Using the finite-element method, the mode-transition from LP02 cladding-mode to LP01 core-mode is accomplished by raising the refractive index (RI) of the analyte layer, which removes the necessity of an additional high RI layer deposition at the fiber surface. We have rigorously optimized the air-filling fraction of the HPCF cladding such that the analyte RI range for the mode-transition would correspond to 0–25% v/v of ethanol in the blend, which is within its commercial range of ethanol-gasoline blend. With increasing analyte RI, we have observed the occurrence of a minimum in the total modal power carried by the sensor. We determine the sensitivity through this modal power variation by dividing it (about the power minimum) into two RI dynamic ranges of 1.400–1.410 (i.e., 25–11% ethanol) and 1.410–1.418 (i.e., 11–0% ethanol), respectively. The maximum calculated sensitivity of the sensor within the linear regime of the modal power variation is 0.46 dBm/% v/v and 0.40 dBm/% v/v, respectively, which are twice as high as the sensitivity offered by the FBG and LPG based sensors over the same dynamical range. In addition to the high sensitivity, the proposed sensor does not require any high-RI layer coating, making its design simpler and easier to implement.

本文分析了一种利用六方光子晶体光纤(HPCF)中的模式转换来监测乙醇汽油混合物中乙醇含量的新型光子传感器。利用有限元方法,通过提高分析物层的折射率(RI)实现了从 LP02 包层模式到 LP01 芯模式的模式转换,从而消除了在光纤表面额外沉积高 RI 层的必要性。我们对 HPCF 包层的充气分数进行了严格的优化,使模式转换的分析物 RI 范围对应于混合物中乙醇的 0-25% v/v,这属于乙醇-汽油混合物的商业范围。随着分析物 RI 的增加,我们观察到传感器传输的总模态功率出现了最小值。我们通过这种模态功率变化来确定灵敏度,方法是将其(关于功率最小值)划分为两个 RI 动态范围,分别为 1.400-1.410(即 25-11%乙醇)和 1.410-1.418(即 11-0%乙醇)。在模态功率变化的线性范围内,传感器的最大灵敏度分别为 0.46 dBm/% v/v 和 0.40 dBm/% v/v,是基于 FBG 和 LPG 的传感器在相同动态范围内灵敏度的两倍。除了灵敏度高之外,拟议的传感器还不需要任何高灵敏度层涂层,使其设计更简单、更易于实现。
{"title":"Cost-effective ethanol sensor utilising inherent mode-transition in photonic crystal fiber","authors":"Hukam Singh ,&nbsp;Saurabh Mani Tripathi","doi":"10.1016/j.photonics.2024.101236","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101236","url":null,"abstract":"<div><p>In this paper, we analyse a novel photonic sensor utilising mode-transition in hexagonal photonic crystal fiber (HPCF) to monitor the ethanol content in an ethanol-gasoline blend. Using the finite-element method, the mode-transition from LP<sub>02</sub> cladding-mode to LP<sub>01</sub> core-mode is accomplished by raising the refractive index (RI) of the analyte layer, which removes the necessity of an additional high RI layer deposition at the fiber surface. We have rigorously optimized the air-filling fraction of the HPCF cladding such that the analyte RI range for the mode-transition would correspond to 0–25% v/v of ethanol in the blend, which is within its commercial range of ethanol-gasoline blend. With increasing analyte RI, we have observed the occurrence of a minimum in the total modal power carried by the sensor. We determine the sensitivity through this modal power variation by dividing it (about the power minimum) into two RI dynamic ranges of 1.400–1.410 (i.e., 25–11% ethanol) and 1.410–1.418 (i.e., 11–0% ethanol), respectively. The maximum calculated sensitivity of the sensor within the linear regime of the modal power variation is 0.46 dBm/% v/v and 0.40 dBm/% v/v, respectively, which are twice as high as the sensitivity offered by the FBG and LPG based sensors over the same dynamical range. In addition to the high sensitivity, the proposed sensor does not require any high-RI layer coating, making its design simpler and easier to implement.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voltage tuning multi-photon processes with a graphene-based Tamm structure 利用基于石墨烯的塔姆结构实现电压调谐多光子过程
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101241
Haoyue Hao, Liang Li

Tamm plasmon modes are used to realize the modulation of multi-photon processes. Through effectively combining the rear-earth doped layer and a monolayer graphene in a Tamm structure, the emission of multi-photon processes can be tuned by the applied voltage. Results show that the proposed structure has a narrow absorption peak near 1550 nm, which is corresponding to the excitation source wavelength of the multi-photon processes. Importantly, the emission intensity of multi-photon processes can be tuned from 1 fold to ∼10.1 fold when we changed the applied voltage. Meanwhile, the emission color of the multi-photon processes can be tuned from yellow to green via adjusting the applied voltage. The proposed voltage tuning approach may be promoted to all kinds of nonlinear optical phenomenons, like Stimulated Raman Scattering, optical mixing and photorefractive effect.

塔姆等离子体模式用于实现多光子过程的调制。通过在 Tamm 结构中有效结合后土掺杂层和单层石墨烯,多光子过程的发射可以通过外加电压进行调节。结果表明,所提出的结构在 1550nm 附近有一个窄吸收峰,这与多光子过程的激发源波长相对应。重要的是,当我们改变外加电压时,多光子过程的发射强度可从 1 倍调谐到 ~10.1 倍。同时,通过调节外加电压,多光子过程的发射颜色可从黄色调至绿色。所提出的电压调节方法可推广到各种非线性光学现象,如受激拉曼散射、光混合和光折射效应。
{"title":"Voltage tuning multi-photon processes with a graphene-based Tamm structure","authors":"Haoyue Hao,&nbsp;Liang Li","doi":"10.1016/j.photonics.2024.101241","DOIUrl":"10.1016/j.photonics.2024.101241","url":null,"abstract":"<div><p>Tamm plasmon modes are used to realize the modulation of multi-photon processes. Through effectively combining the rear-earth doped layer and a monolayer graphene in a Tamm structure, the emission of multi-photon processes can be tuned by the applied voltage. Results show that the proposed structure has a narrow absorption peak near 1550 nm, which is corresponding to the excitation source wavelength of the multi-photon processes. Importantly, the emission intensity of multi-photon processes can be tuned from 1 fold to ∼10.1 fold when we changed the applied voltage. Meanwhile, the emission color of the multi-photon processes can be tuned from yellow to green via adjusting the applied voltage. The proposed voltage tuning approach may be promoted to all kinds of nonlinear optical phenomenons, like Stimulated Raman Scattering, optical mixing and photorefractive effect.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High sensitivity plasmonic refractive index sensor for early anaemia detection 用于早期贫血症检测的高灵敏度等离子折射率传感器
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-02-01 DOI: 10.1016/j.photonics.2024.101235
Gaurav Kumar Yadav , Sanjeev Kumar Metya , Rukhsar Zafar , Amit Kumar Garg

Plasmonics is gaining prominence in the area of optical sensing due to the unique way that noble metals and light interact to produce subwavelength confinement. A Metal Insulator Metal waveguide based plasmonic nanosensor exhibiting multi Fano resonance is proposed. The characteristics of transmittance of the proposed sensor are investigated using the Finite Difference Time Domain methodology. Three Fano resonances can be seen in the transmission characteristic with different sensitivities of 992.4 nm/RIU, 1294.8 nm/RIU and 2065.5 nm/RIU at 1.0257 μm, 1.3239 μm and 2.0798 μm respectively. Furthermore, the sensor performance is investigated for potential fabrication issues arising out of variation in structural parameters such as the coupling distance and the radius (both inner and outer) of the semi-ring arc resonator. The performance of the sensor is also assessed for performance metrics like the Figure of Merit (FOM), Q factor, and Detection Limit, which are obtained as 39.7 RIU−1, 39.9 and 0.025 respectively. The characteristics of the Fano resonances obtained through simulation is also validated by matching it with the theoretical Fano line shape function. The proposed sensor can find its use in biosensing applications.

由于贵金属与光相互作用产生亚波长约束的独特方式,等离子体学在光学传感领域的地位日益突出。本研究提出了一种基于金属绝缘体金属波导的等离子纳米传感器,该传感器表现出多重法诺共振。利用有限差分时域方法研究了所提传感器的透射特性。在 1.0257 μm、1.3239 μm 和 2.0798 μm 处的传输特性中可以看到三个法诺共振,灵敏度分别为 992.4 nm/RIU、1294.8 nm/RIU 和 2065.5 nm/RIU。此外,还研究了因耦合距离和半环形弧形谐振器(内部和外部)半径等结构参数变化而产生的潜在制造问题。此外,还对传感器的性能指标进行了评估,如功勋值 (FOM)、Q 系数和探测极限,结果分别为 39.7 RIU-1、39.9 和 0.025。通过仿真获得的法诺共振特征还与理论法诺线形状函数进行了比对验证。所提出的传感器可用于生物传感应用。
{"title":"High sensitivity plasmonic refractive index sensor for early anaemia detection","authors":"Gaurav Kumar Yadav ,&nbsp;Sanjeev Kumar Metya ,&nbsp;Rukhsar Zafar ,&nbsp;Amit Kumar Garg","doi":"10.1016/j.photonics.2024.101235","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101235","url":null,"abstract":"<div><p>Plasmonics is gaining prominence in the area of optical sensing due to the unique way that noble metals and light interact to produce subwavelength confinement. A Metal Insulator Metal waveguide based plasmonic nanosensor exhibiting multi Fano resonance is proposed. The characteristics of transmittance of the proposed sensor are investigated using the Finite Difference Time Domain methodology. Three Fano resonances can be seen in the transmission characteristic with different sensitivities of 992.4 nm/RIU, 1294.8 nm/RIU and 2065.5 nm/RIU at 1.0257 <em>μ</em>m, 1.3239 <em>μ</em>m and 2.0798 <em>μ</em>m respectively. Furthermore, the sensor performance is investigated for potential fabrication issues arising out of variation in structural parameters such as the coupling distance and the radius (both inner and outer) of the semi-ring arc resonator. The performance of the sensor is also assessed for performance metrics like the Figure of Merit (FOM), Q factor, and Detection Limit, which are obtained as 39.7 RIU<sup>−1</sup>, 39.9 and 0.025 respectively. The characteristics of the Fano resonances obtained through simulation is also validated by matching it with the theoretical Fano line shape function. The proposed sensor can find its use in biosensing applications.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139749724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavity assisted high-resolution THz spectrometer 腔体辅助高分辨率太赫兹光谱仪
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-01-20 DOI: 10.1016/j.photonics.2024.101227
Fabien Simon , Coralie Elmaleh , Jean Decker , Marc Fourmentin , Arnaud Cuisset , Guillaume Ducournau , Jean-François Lampin , Gaël Mouret , Francis Hindle

The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.

利用太赫兹辐射分析气体具有很高的辨别能力,因为在低压下可以观察到很窄的线宽。现有高分辨率仪器的灵敏度受到关键系统组件的可用性和性能的限制。本研究利用两个具有波长尺度物理结构的关键部件来实现高精细太赫兹腔体。对该腔体进行了表征,并将其集成到光谱仪中。实验证明了仪器对痕量和纯气体的灵敏度极限。空腔增强吸收光谱(CEAS)和空腔环降光谱(CRDS)配置均可达到亚ppm检测水平。空腔还被用于测量大气损耗。
{"title":"Cavity assisted high-resolution THz spectrometer","authors":"Fabien Simon ,&nbsp;Coralie Elmaleh ,&nbsp;Jean Decker ,&nbsp;Marc Fourmentin ,&nbsp;Arnaud Cuisset ,&nbsp;Guillaume Ducournau ,&nbsp;Jean-François Lampin ,&nbsp;Gaël Mouret ,&nbsp;Francis Hindle","doi":"10.1016/j.photonics.2024.101227","DOIUrl":"10.1016/j.photonics.2024.101227","url":null,"abstract":"<div><p>The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000026/pdfft?md5=ddb5546a2b76eb0306763b2a33341d5d&pid=1-s2.0-S1569441024000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139515353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of light absorption by ultra-thin film solar cells using graded gratings 利用渐变光栅增强超薄膜太阳能电池的光吸收能力
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-01-19 DOI: 10.1016/j.photonics.2024.101229
Mohammad Eskandari, Amir Habibzadeh-Sharif

In this study, we developed a novel method based on uniform and graded gratings on the front surface of ultra-thin film Si solar cells to enhance light absorption. The proposed gratings were designed in two configurations comprising penetration into the active layer and placement on it. These structures enhance absorption by scattering and diffracting light, and enlarging the optical path for photons. Simulations based on the finite element method and finite difference time domain technique showed that the graded gratings could significantly enhance absorption in the visible and infrared regions. The maximum current density and efficiency achieved for graded gratings placed on the top surface of the active layer were 21.7 mA/cm2 and 23.9%, respectively (47.6% and 48.4% higher compared with the reference cell).

在这项研究中,我们开发了一种基于超薄膜硅太阳能电池前表面均匀和梯度光栅的新方法,以增强光的吸收。所提出的光栅设计有两种配置,包括渗入活性层和置于活性层上。这些结构通过散射和衍射光以及扩大光子的光路来增强吸收。基于有限元法和有限差分时域技术的模拟结果表明,分级光栅可显著增强可见光和红外区域的吸收。置于有源层顶面的分级光栅的最大电流密度和效率分别为 21.7 mA/cm2 和 23.9%(与参照电池相比,分别提高了 47.6% 和 48.4%)。
{"title":"Enhancement of light absorption by ultra-thin film solar cells using graded gratings","authors":"Mohammad Eskandari,&nbsp;Amir Habibzadeh-Sharif","doi":"10.1016/j.photonics.2024.101229","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101229","url":null,"abstract":"<div><p><span>In this study, we developed a novel method based on uniform and graded gratings on the front surface of ultra-thin film Si solar cells to enhance light absorption<span><span>. The proposed gratings were designed in two configurations comprising penetration into the active layer and placement on it. These structures enhance absorption by scattering and diffracting light, and enlarging the optical path for photons. Simulations based on the </span>finite element method and finite difference time domain technique showed that the graded gratings could significantly enhance absorption in the visible and infrared regions. The maximum current density and efficiency achieved for graded gratings placed on the top surface of the active layer were 21.7 mA/cm</span></span><sup>2</sup> and 23.9%, respectively (47.6% and 48.4% higher compared with the reference cell).</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139548380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A near infrared MIM metamaterial absorber using SiC 使用碳化硅的近红外 MIM 超材料吸收器
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-01-10 DOI: 10.1016/j.photonics.2024.101226
Anil Kumar, Sarvesh K. Dubey, Awadhesh Kumar, S.K. Srivastava

In this study, we introduce a metamaterial absorber operating in the near infrared region. The current metamaterial absorber (MMA) comprising Silver-SiC-Gold demonstrates an absorptivity exceeding 80% within the wavelength range of 770 nm to 1150 nm. The current metamaterials absorber exhibits independence from both polarization and incident angle. Additionally, we made comparison between the proposed Metal-Insulator-Metal (MIM) based MMA with other previously reported MMA using Silicon Carbide (SiC) and another dielectric spacer layer.

在这项研究中,我们介绍了一种可在近红外区域工作的超材料吸收器。目前由银-碳化硅-金组成的超材料吸收器(MMA)在 770 纳米到 1150 纳米波长范围内的吸收率超过 80%。目前的超材料吸收器不受偏振和入射角度的影响。此外,我们还将所提出的基于金属-绝缘体-金属(MIM)的超材料吸收器与之前报道的使用碳化硅(SiC)和另一种介电间隔层的超材料吸收器进行了比较。
{"title":"A near infrared MIM metamaterial absorber using SiC","authors":"Anil Kumar,&nbsp;Sarvesh K. Dubey,&nbsp;Awadhesh Kumar,&nbsp;S.K. Srivastava","doi":"10.1016/j.photonics.2024.101226","DOIUrl":"https://doi.org/10.1016/j.photonics.2024.101226","url":null,"abstract":"<div><p><span>In this study, we introduce a metamaterial absorber operating in the </span>near infrared<span><span> region. The current metamaterial absorber (MMA) comprising Silver-SiC-Gold demonstrates an absorptivity exceeding 80% within the wavelength range of 770 nm to 1150 nm. The current metamaterials absorber exhibits independence from both polarization and incident angle. Additionally, we made comparison between the proposed Metal-Insulator-Metal (MIM) based MMA with other previously reported MMA using Silicon Carbide (SiC) and another </span>dielectric spacer layer.</span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of extreme temperatures via emission from MOFs of a varied structure 通过不同结构的 MOF 的发射探测极端温度
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2024-01-02 DOI: 10.1016/j.photonics.2023.101225
Ekaterina V. Gunina, Pavel V. Alekseevskiy, Yuliya Kenzhebaeva, Yuri A. Mezenov, Valentin A. Milichko

Detection of extreme temperatures plays a key role in metallurgy, aerospace, nuclear industries, and even astronomy. Herein, materials and optical technologies capable of detecting the temperatures above 3000 K are still in their infancy. Here, we report on a detection of 3800 to 4500 K through the emission of a blackbody, for which the metal-organic frameworks (MOFs) are used. The rapid heating of MOFs by laser radiation leads to the threshold blackbody emission (centered from 650 to 750 nm), the corresponding temperature of which is directly related to the structure of MOF. The results on such structure-related temperatures of the blackbody emission of MOFs, thereby, expand their use in photonics and sensing in general.

探测极端温度在冶金、航空航天、核工业甚至天文学领域都发挥着关键作用。在这方面,能够探测 3000 K 以上温度的材料和光学技术仍处于起步阶段。在此,我们报告了通过黑体发射对 3800 至 4500 K 温度的探测,为此我们使用了金属有机框架(MOFs)。激光辐射对 MOFs 的快速加热会导致阈值黑体发射(中心波长为 650 至 750 nm),其相应的温度与 MOF 的结构直接相关。有关 MOFs 黑体发射温度与结构相关的研究结果,拓展了 MOFs 在光子学和传感领域的应用。
{"title":"Detection of extreme temperatures via emission from MOFs of a varied structure","authors":"Ekaterina V. Gunina,&nbsp;Pavel V. Alekseevskiy,&nbsp;Yuliya Kenzhebaeva,&nbsp;Yuri A. Mezenov,&nbsp;Valentin A. Milichko","doi":"10.1016/j.photonics.2023.101225","DOIUrl":"10.1016/j.photonics.2023.101225","url":null,"abstract":"<div><p><span>Detection of extreme temperatures plays a key role in metallurgy, aerospace, nuclear industries, and even astronomy. Herein, materials and optical technologies capable of detecting the temperatures above 3000 K are still in their infancy. Here, we report on a detection of 3800 to 4500 K through the emission of a blackbody, for which the metal-organic frameworks (MOFs) are used. The rapid heating of MOFs by </span>laser radiation<span> leads to the threshold blackbody emission (centered from 650 to 750 nm), the corresponding temperature of which is directly related to the structure of MOF. The results on such structure-related temperatures of the blackbody emission of MOFs, thereby, expand their use in photonics and sensing in general.</span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive study on the Rod-based plasmonic structures sensing using the modified discrete dipole approximation method 使用修正离散偶极近似法对棒基等离子结构传感的综合研究
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2023-12-15 DOI: 10.1016/j.photonics.2023.101224
Araz Siabi-Garjan

Using the previously introduced modified discrete dipole approximation (DDA) method by applying the full details of the nanoparticle and its surrounding environment, the detection sensitivity of molecules by plasmonic Rod-based nanosensors, including U-shaped and Rod-shaped structures, was investigated. In the calculations, the two factors of the magnitude of the wavelength shift and the ability to distinguish molecules with similar properties were of significant interest. The results indicated that the sensitivity of Rod-based nanostructures is significantly higher than that of spherical nanoparticles. Among the plasmonic Rod-based nanosensors, the silver U-shaped structure performs better than others. The wavelength shift of the absorption spectrum of different nanosensors for a given molecule was very different, making it possible to detect very similar molecules from each other by testing different sensors.

利用先前引入的修正离散偶极近似(DDA)方法,通过应用纳米粒子及其周围环境的全部细节,研究了基于等离子棒的纳米传感器(包括 U 型和棒型结构)对分子的检测灵敏度。在计算过程中,波长偏移的幅度和区分性质相似的分子的能力这两个因素受到了极大关注。结果表明,Rod 型纳米结构的灵敏度明显高于球形纳米粒子。在基于杆的质子纳米传感器中,银 U 形结构的性能优于其他结构。不同的纳米传感器对特定分子的吸收光谱的波长偏移大不相同,因此可以通过测试不同的传感器来检测彼此非常相似的分子。
{"title":"A comprehensive study on the Rod-based plasmonic structures sensing using the modified discrete dipole approximation method","authors":"Araz Siabi-Garjan","doi":"10.1016/j.photonics.2023.101224","DOIUrl":"10.1016/j.photonics.2023.101224","url":null,"abstract":"<div><p><span>Using the previously introduced modified discrete dipole approximation (DDA) method by applying the full details of the </span>nanoparticle<span><span> and its surrounding environment, the detection sensitivity of molecules by plasmonic Rod-based nanosensors, including U-shaped and Rod-shaped structures, was investigated. In the calculations, the two factors of the magnitude of the wavelength shift and the ability to distinguish molecules with similar properties were of significant interest. The results indicated that the sensitivity of Rod-based </span>nanostructures<span> is significantly higher than that of spherical nanoparticles. Among the plasmonic Rod-based nanosensors, the silver U-shaped structure performs better than others. The wavelength shift of the absorption spectrum of different nanosensors for a given molecule was very different, making it possible to detect very similar molecules from each other by testing different sensors.</span></span></p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sub-wavelength gratings in silicon photonic devices for mid-infrared spectroscopy and sensing 用于中红外光谱和传感的硅光子器件中的亚波长光栅
IF 2.7 3区 物理与天体物理 Q2 Engineering Pub Date : 2023-12-14 DOI: 10.1016/j.photonics.2023.101223
Callum J. Stirling , Milos Nedeljkovic , Colin Mitchell , David J. Rowe , Goran Z. Mashanovich

Mid-infrared spectroscopy enabled by silicon photonics has received great interest in recent years as a pathway for a scalable sensing technology. The development of such devices would realise inexpensive and accessible instrumentation for a wide variety of uses over numerous fields. However, not every sensing application is the same; to produce sensors for real-world scenarios, engineers need flexibility in device design but also need to maintain compatibility with scalable fabrication processes. Sub-wavelength gratings can offer a solution to this problem, as they enable the engineering of optical properties using standard fabrication techniques and without requiring new materials. By using sub-wavelength gratings, specific design approaches can be tailored to different applications, such as increasing the interaction of a sensor with an analyte or broadening the bandwidth of an integrated photonic device. Here, we review the development of sub-wavelength grating-based devices for mid-infrared silicon photonics and discuss how they can be exploited for spectroscopic and sensing devices.

近年来,硅光子学所支持的中红外光谱仪作为一种可扩展的传感技术受到了极大的关注。这种设备的开发将为众多领域的广泛应用提供廉价、便捷的仪器。然而,并非每种传感应用都是相同的;要生产出适用于真实世界场景的传感器,工程师需要灵活的设备设计,同时还需要保持与可扩展制造工艺的兼容性。亚波长光栅可为这一问题提供解决方案,因为亚波长光栅可利用标准制造技术对光学特性进行工程设计,而无需使用新材料。通过使用亚波长光栅,可以根据不同的应用定制特定的设计方法,例如增强传感器与分析物的相互作用或拓宽集成光子设备的带宽。在此,我们回顾了基于亚波长光栅的中红外硅光子器件的发展,并讨论了如何将其用于光谱和传感器件。
{"title":"Sub-wavelength gratings in silicon photonic devices for mid-infrared spectroscopy and sensing","authors":"Callum J. Stirling ,&nbsp;Milos Nedeljkovic ,&nbsp;Colin Mitchell ,&nbsp;David J. Rowe ,&nbsp;Goran Z. Mashanovich","doi":"10.1016/j.photonics.2023.101223","DOIUrl":"10.1016/j.photonics.2023.101223","url":null,"abstract":"<div><p>Mid-infrared spectroscopy enabled by silicon photonics has received great interest in recent years as a pathway for a scalable sensing technology. The development of such devices would realise inexpensive and accessible instrumentation for a wide variety of uses over numerous fields. However, not every sensing application is the same; to produce sensors for real-world scenarios, engineers need flexibility in device design but also need to maintain compatibility with scalable fabrication processes. Sub-wavelength gratings can offer a solution to this problem, as they enable the engineering of optical properties using standard fabrication techniques and without requiring new materials. By using sub-wavelength gratings, specific design approaches can be tailored to different applications, such as increasing the interaction of a sensor with an analyte or broadening the bandwidth of an integrated photonic device. Here, we review the development of sub-wavelength grating-based devices for mid-infrared silicon photonics and discuss how they can be exploited for spectroscopic and sensing devices.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441023001177/pdfft?md5=ffe7d777c94b1082db7487e7510a45a3&pid=1-s2.0-S1569441023001177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photonics and Nanostructures-Fundamentals and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1