首页 > 最新文献

Nonlinear Analysis-Real World Applications最新文献

英文 中文
Two models for sandpile growth in weighted graphs 加权图中沙堆增长的两个模型
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-07 DOI: 10.1016/j.nonrwa.2024.104155
J.M. Mazón, J. Toledo

In this paper we study -Laplacian type diffusion equations in weighted graphs obtained as limit as p to two types of p-Laplacian evolution equations in such graphs. We propose these diffusion equations, that are governed by the subdifferential of a convex energy functionals associated to the indicator function of the set KGuL2(V,νG):|u(y)u(x)|1ifxy and the set KwuL2(V,νG):|u(y)u(x)|1wxyifxy as models for sandpile growth in weighted graphs. Moreover, we also analyse the collapse of the initial condition when it does not belong to the stable sets KG or Kw by means of an abstract result given in Bénilan (2003). We give an interpretation of the limit problems in terms of Monge–Kantorovich mass transport theory. Finally, we give some explicit solutions of simple examples that illustrate the dynamics of the sandpile growing or collapsing.

本文研究了加权图中的∞-拉普拉茨型扩散方程,该方程是加权图中两类 p-拉普拉茨演化方程的 p→∞ 的极限。我们提出的这些扩散方程受与集合 K∞G≔u∈L2(V,νG) 的指示函数相关的凸能函数的子差分支配:|u(y)-u(x)|≤1ifx∼y和集合K∞w≔u∈L2(V,νG):|u(y)-u(x)|≤1wxyifx∼y作为加权图中沙堆增长的模型。此外,我们还通过 Bénilan (2003) 所给出的抽象结果,分析了当初始条件不属于稳定集 K∞G 或 K∞w 时的崩溃问题。我们从 Monge-Kantorovich 质量输运理论的角度解释了极限问题。最后,我们给出了一些简单例子的显式解,以说明沙堆增长或坍塌的动态。
{"title":"Two models for sandpile growth in weighted graphs","authors":"J.M. Mazón,&nbsp;J. Toledo","doi":"10.1016/j.nonrwa.2024.104155","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104155","url":null,"abstract":"<div><p>In this paper we study <span><math><mi>∞</mi></math></span>-Laplacian type diffusion equations in weighted graphs obtained as limit as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span> to two types of <span><math><mi>p</mi></math></span>-Laplacian evolution equations in such graphs. We propose these diffusion equations, that are governed by the subdifferential of a convex energy functionals associated to the indicator function of the set <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>≔</mo><mfenced><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>:</mo><mspace></mspace><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>≤</mo><mn>1</mn><mspace></mspace><mspace></mspace><mi>i</mi><mi>f</mi><mspace></mspace><mspace></mspace><mi>x</mi><mo>∼</mo><mi>y</mi></mrow></mfenced></mrow></math></span> and the set <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>≔</mo><mfenced><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>:</mo><mspace></mspace><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></mrow></msqrt></mrow></mfrac><mspace></mspace><mspace></mspace><mi>i</mi><mi>f</mi><mspace></mspace><mspace></mspace><mi>x</mi><mo>∼</mo><mi>y</mi></mrow></mfenced></mrow></math></span> as models for sandpile growth in weighted graphs. Moreover, we also analyse the collapse of the initial condition when it does not belong to the stable sets <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>G</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> by means of an abstract result given in Bénilan (2003). We give an interpretation of the limit problems in terms of Monge–Kantorovich mass transport theory. Finally, we give some explicit solutions of simple examples that illustrate the dynamics of the sandpile growing or collapsing.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104155"},"PeriodicalIF":2.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000956/pdfft?md5=20687dd0e01f3c2727a6b21b5f35cead&pid=1-s2.0-S1468121824000956-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global well-posedness to the 1D compressible quantum Navier–Stokes–Poisson equations with large initial data 具有大初始数据的一维可压缩量子纳维-斯托克斯-泊松方程的全局好求解性
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-05 DOI: 10.1016/j.nonrwa.2024.104148
Zeyuan Liu , Lan Zhang

This paper is concerned with the global existence and large time behavior of classical solutions away from vacuum to the Cauchy problem of the 1D compressible quantum Navier–Stokes–Poisson equations with large initial perturbation. Moreover, we obtain the global strong/classical solution of Navier–Stokes–Poisson equations through the vanishing dispersion limit with certain convergence rates. We focus on the case that the viscosity depends on density linearly which extends the former results of constant viscosity in Zhang et al. (2022) by the second author. Some useful estimates are developed to deduce the uniform-in-time lower and upper bounds on the specific volume and the electric potential.

本文主要研究具有大初始扰动的一维可压缩量子纳维-斯托克斯-泊松方程的考奇问题的经典解在远离真空时的全局存在性和大时间行为。此外,我们还以一定的收敛率通过消失弥散极限得到了 Navier-Stokes-Poisson 方程的全局强解/经典解。我们重点研究了粘度与密度线性相关的情况,这扩展了第二作者在 Zhang 等人(2022 年)中关于恒定粘度的研究成果。我们提出了一些有用的估计,以推导出比容和电动势的均匀时间下限和上限。
{"title":"Global well-posedness to the 1D compressible quantum Navier–Stokes–Poisson equations with large initial data","authors":"Zeyuan Liu ,&nbsp;Lan Zhang","doi":"10.1016/j.nonrwa.2024.104148","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104148","url":null,"abstract":"<div><p>This paper is concerned with the global existence and large time behavior of classical solutions away from vacuum to the Cauchy problem of the 1D compressible quantum Navier–Stokes–Poisson equations with large initial perturbation. Moreover, we obtain the global strong/classical solution of Navier–Stokes–Poisson equations through the vanishing dispersion limit with certain convergence rates. We focus on the case that the viscosity depends on density linearly which extends the former results of constant viscosity in Zhang et al. (2022) by the second author. Some useful estimates are developed to deduce the uniform-in-time lower and upper bounds on the specific volume and the electric potential.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104148"},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence of solutions for the drift–diffusion system with large initial data in Ḃ−2∞,∞ (Rd) Ḃ-2∞,∞(Rd)中大初始数据漂移扩散系统解的全局存在性
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-04 DOI: 10.1016/j.nonrwa.2024.104145
Jihong Zhao, Rong Jin, Hao Chen

In this paper, we study the Cauchy problem of the drift–diffusion system arising from semiconductor model. We prove that if a certain nonlinear function of the initial data is small enough, in a Besov type space, then there is a global solution to this drift–diffusion system. We also provide an example of initial data satisfying that nonlinear smallness condition, but whose norm be chosen arbitrarily large in Ḃ,2(Rd).

本文研究了半导体模型中产生的漂移-扩散系统的 Cauchy 问题。我们证明,如果初始数据的某个非线性函数足够小,那么在贝索夫类型的空间中,该漂移扩散系统存在全局解。我们还举例说明了满足该非线性小条件的初始数据,但其规范可在Ḃ∞,∞-2(Rd)中任意选择。
{"title":"Global existence of solutions for the drift–diffusion system with large initial data in Ḃ−2∞,∞ (Rd)","authors":"Jihong Zhao,&nbsp;Rong Jin,&nbsp;Hao Chen","doi":"10.1016/j.nonrwa.2024.104145","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104145","url":null,"abstract":"<div><p>In this paper, we study the Cauchy problem of the drift–diffusion system arising from semiconductor model. We prove that if a certain nonlinear function of the initial data is small enough, in a Besov type space, then there is a global solution to this drift–diffusion system. We also provide an example of initial data satisfying that nonlinear smallness condition, but whose norm be chosen arbitrarily large in <span><math><mrow><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>∞</mi><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104145"},"PeriodicalIF":2.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemotactic cell aggregation viewed as instability and phase separation 化合细胞聚集被视为不稳定性和相分离
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-04 DOI: 10.1016/j.nonrwa.2024.104147
Kyunghan Choi, Yong-Jung Kim

The paper focuses on the pattern formation of a chemotactic cell aggregation model with a mechanism that density suppresses motility. The model exhibits four types of cell aggregation patterns: single-point peaks, hot spots, cold spots, and stripes, depending on the parameters and mean density. The analysis is performed in two ways. First, traditional instability analysis reveals the existence of two critical densities. This local analysis shows patterns emerge if the initial mean density lies between the two values. Second, a phase separation method using van der Waals’ double well potential reveals that pattern formation is possible in a bigger parameter regime that includes the one identified by the local analysis. This non-local analysis shows that pattern formation occurs beyond the parameter regimes of the classical local instability analysis.

论文重点研究了一个具有密度抑制运动机制的趋化细胞聚集模型的模式形成。根据参数和平均密度的不同,该模型呈现出四种细胞聚集模式:单点峰、热点、冷点和条纹。分析方法有两种。首先,传统的不稳定性分析显示存在两个临界密度。这种局部分析表明,如果初始平均密度位于两个值之间,就会出现模式。其次,使用范德瓦尔斯双井电位的相分离方法揭示了在一个更大的参数体系中可能形成模式,该体系包括局部分析所确定的参数体系。这种非局部分析表明,模式的形成超出了经典局部不稳定性分析的参数范围。
{"title":"Chemotactic cell aggregation viewed as instability and phase separation","authors":"Kyunghan Choi,&nbsp;Yong-Jung Kim","doi":"10.1016/j.nonrwa.2024.104147","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104147","url":null,"abstract":"<div><p>The paper focuses on the pattern formation of a chemotactic cell aggregation model with a mechanism that density suppresses motility. The model exhibits four types of cell aggregation patterns: single-point peaks, hot spots, cold spots, and stripes, depending on the parameters and mean density. The analysis is performed in two ways. First, traditional instability analysis reveals the existence of two critical densities. This local analysis shows patterns emerge if the initial mean density lies between the two values. Second, a phase separation method using van der Waals’ double well potential reveals that pattern formation is possible in a bigger parameter regime that includes the one identified by the local analysis. This non-local analysis shows that pattern formation occurs beyond the parameter regimes of the classical local instability analysis.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104147"},"PeriodicalIF":2.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semigroup well-posedness and exponential stability for the von Kármán beam equation under the combined boundary control of nonlinear delays and non-delays 非线性延迟和非延迟联合边界控制下 von Kármán 梁方程的半群好求和指数稳定性
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-31 DOI: 10.1016/j.nonrwa.2024.104143
Yi Cheng , Xin Wang , Baowei Feng , Donal O’ Regan

This paper considers the stabilization problem of the von Kármán beam equation with a combined boundary control of nonlinear delays and nonlinear non-delays. The combined boundary controls are applied at the transverse and longitudinal boundaries of the von Kármán beam, respectively. In this paper the nonlinear semigroup method is adopted in the investigation for the establishment of the well-posedness of the resulting closed-loop system. Constructing an appropriate energy-like function, the exponential decay rate of energy of the closed-loop system is demonstrated by a generalized Gronwall-type integral inequality and the integral multiplier technique.

本文研究了具有非线性延迟和非线性非延迟组合边界控制的 von Kármán 梁方程的稳定问题。组合边界控制分别应用于 von Kármán 梁的横向和纵向边界。本文在研究中采用了非线性半群法,以建立闭环系统的良好拟合。通过构造一个适当的类能量函数,利用广义格伦沃尔积分不等式和积分乘法器技术证明了闭环系统能量的指数衰减率。
{"title":"Semigroup well-posedness and exponential stability for the von Kármán beam equation under the combined boundary control of nonlinear delays and non-delays","authors":"Yi Cheng ,&nbsp;Xin Wang ,&nbsp;Baowei Feng ,&nbsp;Donal O’ Regan","doi":"10.1016/j.nonrwa.2024.104143","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104143","url":null,"abstract":"<div><p>This paper considers the stabilization problem of the von Kármán beam equation with a combined boundary control of nonlinear delays and nonlinear non-delays. The combined boundary controls are applied at the transverse and longitudinal boundaries of the von Kármán beam, respectively. In this paper the nonlinear semigroup method is adopted in the investigation for the establishment of the well-posedness of the resulting closed-loop system. Constructing an appropriate energy-like function, the exponential decay rate of energy of the closed-loop system is demonstrated by a generalized Gronwall-type integral inequality and the integral multiplier technique.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104143"},"PeriodicalIF":2.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spreading dynamics for an epidemic model of West-Nile virus with shifting environment 环境变化的西尼罗河病毒流行模型的传播动力学
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-31 DOI: 10.1016/j.nonrwa.2024.104144
Inkyung Ahn , Wonhyung Choi , Jong-Shenq Guo

We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.

我们研究了西尼罗河病毒(WNv)流行模型在不断变化的气候条件下的疾病传播动态。我们建立了一个西尼罗河病毒流行模型,其中包含一个变化的净增长项来描述不断变化的蚊子栖息地。首先,与蚊子固有的传播速度相比,我们全面描述了任何给定气候变化速度下蚊子的传播动态。利用蚊子动力学的结果,我们确定了受感染鸟类和蚊子的传播动力学,并考虑了变化速度与蚊子和 WNv 传播速度之间的关系。最终,我们发现受感染的蚊子和鸟类会传播,其种群密度会趋于稳定的正流行状态。本文为气候变化对 WNv 等病媒传播疾病的影响提供了重要见解。
{"title":"Spreading dynamics for an epidemic model of West-Nile virus with shifting environment","authors":"Inkyung Ahn ,&nbsp;Wonhyung Choi ,&nbsp;Jong-Shenq Guo","doi":"10.1016/j.nonrwa.2024.104144","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104144","url":null,"abstract":"<div><p>We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104144"},"PeriodicalIF":2.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifluid model with chemically reacting components — Construction of weak solutions 具有化学反应成分的多流体模型 - 弱解法的构建
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-25 DOI: 10.1016/j.nonrwa.2024.104139
Piotr B. Mucha , Šárka Nečasová , Maja Szlenk

We investigate the existence of weak solutions to a multi-component system, consisting of compressible chemically reacting components, coupled with the compressible Stokes equation for the velocity. Specifically, we consider the case of irreversible chemical reactions and assume a nonlinear relation between the pressure and the particular densities. These assumptions cause the additional difficulties in the mathematical analysis, due to the possible presence of vacuum.

It is shown that there exists a global weak solution, satisfying the L bounds for all the components. We obtain strong compactness of the sequence of densities in Lp spaces, under the assumption that all components are strictly positive. The applied method captures the properties of models of high generality, which admit an arbitrary number of components. Furthermore, the framework that we develop can handle models that contain both diffusing and non-diffusing elements.

我们研究了由可压缩化学反应成分组成的多成分系统的弱解存在性,以及速度的可压缩斯托克斯方程。具体来说,我们考虑了不可逆化学反应的情况,并假设压力与特定密度之间存在非线性关系。由于可能存在真空,这些假设给数学分析带来了额外的困难。研究表明,存在一个全局弱解,满足所有成分的 L∞ 约束。在所有成分都严格为正的假设下,我们得到了 Lp 空间中密度序列的强紧凑性。所应用的方法捕捉到了包含任意数量成分的高通用性模型的特性。此外,我们开发的框架可以处理包含扩散和非扩散元素的模型。
{"title":"A multifluid model with chemically reacting components — Construction of weak solutions","authors":"Piotr B. Mucha ,&nbsp;Šárka Nečasová ,&nbsp;Maja Szlenk","doi":"10.1016/j.nonrwa.2024.104139","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104139","url":null,"abstract":"<div><p>We investigate the existence of weak solutions to a multi-component system, consisting of compressible chemically reacting components, coupled with the compressible Stokes equation for the velocity. Specifically, we consider the case of irreversible chemical reactions and assume a nonlinear relation between the pressure and the particular densities. These assumptions cause the additional difficulties in the mathematical analysis, due to the possible presence of vacuum.</p><p>It is shown that there exists a global weak solution, satisfying the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> bounds for all the components. We obtain strong compactness of the sequence of densities in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spaces, under the assumption that all components are strictly positive. The applied method captures the properties of models of high generality, which admit an arbitrary number of components. Furthermore, the framework that we develop can handle models that contain both diffusing and non-diffusing elements.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104139"},"PeriodicalIF":2.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large relaxation oscillation in slow–fast excitable Brusselator oscillator 慢-快可激布鲁塞尔振荡器中的大弛豫振荡
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-21 DOI: 10.1016/j.nonrwa.2024.104138
Liyan Zhong , Jianhe Shen

In general, critical manifold loses normal hyperbolicity at folded, transcritical and pitchfork singularities. There is another situation where normal hyperbolicity of critical manifold fails, namely, the alignment of the tangent and normal bundles at the unbounded part of critical manifold. In this case, how to reveal the attracting or repelling natures of unbounded critical manifold is essential to detect the birth of relaxation oscillations. In this article, after the compactification of the unbounded critical curve and then blowing-up the resulting degenerate line, we find that return mechanism exists at the O(1/ɛ)-region of the critical curve in a slow–fast excitable Brusselator oscillator. By so doing the birth of relaxation oscillation near the unbounded critical curve in this model is demonstrated. In addition, we reveal the continuation process from Hopf small-amplitude cycle to large relaxation oscillation of size O(1/ɛ) in the blown-up space. This may be the counterpart of canard explosion in unbounded situation. All the theoretical predictions are verified by numerical simulations.

一般来说,临界流形在折叠奇点、跨临界奇点和叉形奇点处会失去正双曲性。临界流形的正双曲性失效还有另一种情况,即在临界流形的无界部分切线束和法线束对齐。在这种情况下,如何揭示无界临界流形的吸引或排斥性质对于探测弛豫振荡的产生至关重要。在本文中,我们将无界临界曲线紧凑化,然后炸毁得到的退化线,发现在慢-快可激布鲁塞尔振荡器中,临界曲线的 O(1/ɛ) 区域存在返回机制。通过这一发现,我们证明了在该模型的无界临界曲线附近会产生弛豫振荡。此外,我们还揭示了在吹胀空间中从霍普夫小振幅周期到大小为 O(1/ɛ)的大弛豫振荡的延续过程。这可能是无界情况下卡纳爆炸的对应现象。所有理论预测都得到了数值模拟的验证。
{"title":"Large relaxation oscillation in slow–fast excitable Brusselator oscillator","authors":"Liyan Zhong ,&nbsp;Jianhe Shen","doi":"10.1016/j.nonrwa.2024.104138","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104138","url":null,"abstract":"<div><p>In general, critical manifold loses normal hyperbolicity at folded, transcritical and pitchfork singularities. There is another situation where normal hyperbolicity of critical manifold fails, namely, the alignment of the tangent and normal bundles at the unbounded part of critical manifold. In this case, how to reveal the attracting or repelling natures of unbounded critical manifold is essential to detect the birth of relaxation oscillations. In this article, after the compactification of the unbounded critical curve and then blowing-up the resulting degenerate line, we find that return mechanism exists at the <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span>-region of the critical curve in a slow–fast excitable Brusselator oscillator. By so doing the birth of relaxation oscillation near the unbounded critical curve in this model is demonstrated. In addition, we reveal the continuation process from Hopf small-amplitude cycle to large relaxation oscillation of size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> in the blown-up space. This may be the counterpart of canard explosion in unbounded situation. All the theoretical predictions are verified by numerical simulations.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"79 ","pages":"Article 104138"},"PeriodicalIF":2.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a fourth order equation describing single-component film models 关于描述单组分薄膜模型的四阶方程
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-16 DOI: 10.1016/j.nonrwa.2024.104137
Martina Magliocca

We study existence results for a fourth order problem describing single-component film models assuming initial data in Wiener spaces.

我们研究了描述单组分薄膜模型的四阶问题的存在性结果,假设初始数据在维纳空间中。
{"title":"On a fourth order equation describing single-component film models","authors":"Martina Magliocca","doi":"10.1016/j.nonrwa.2024.104137","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104137","url":null,"abstract":"<div><p>We study existence results for a fourth order problem describing single-component film models assuming initial data in Wiener spaces.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"79 ","pages":"Article 104137"},"PeriodicalIF":2.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000774/pdfft?md5=fa090be4457e4225e16eb90fa56fba0e&pid=1-s2.0-S1468121824000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics 一类有物流的局部和非局部非线性吸引-排斥趋化模型中的时间均匀有界性
IF 2 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-15 DOI: 10.1016/j.nonrwa.2024.104135
Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu
<div><p>The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: <span><span><span>(<span><math><mo>♢</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>−</mo><mi>χ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>v</mi></mrow></mfenced><mspace></mspace></mtd></mtr><mtr><mtd><mfenced><mrow><mspace></mspace><mo>+</mo><mi>ξ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Herein, <span><math><mi>Ω</mi></math></span> is a bounded and smooth domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>r</mi></mrow></math></span> proper positive numbers, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></
研究了以下全非线性吸引-排斥和零流量趋化模型:(♢)ut=∇⋅(u+1)m1-1∇u-χu(u+1)m2-1∇v+ξu(u+1)m3-1∇w+λu-μurinΩ×(0,Tmax),τvt=Δv-ϕ(t,v)+f(u)inΩ×(0,Tmax),τwt=Δw-ψ(t,w)+g(u)inΩ×(0,Tmax).这里,Ω是Rn的一个有界光滑域,对于n∈N,χ,ξ,λ,μ,r为适当的正数,m1,m2,m3∈R,f(u)和g(u)为正则函数,它们概括了原型f(u)≃uk和g(u)≃ul,对于某些k,l>0和所有u≥0。此外,τ∈{0,1}和Tmax∈(0,∞]是模型解存在的最大区间。一旦合适的初始数据 u0(x)、τv0(x)、τw0(x) 固定下来,我们就有兴趣推导出意味着全局性的充分条件(即Tmax=∞)和有界性(即对于所有 t∈(0,∞),‖u(⋅,t)‖L∞(Ω)+‖v(⋅,t)‖L∞(Ω)+‖w(⋅,t)‖L∞(Ω)≤C)。这可以在以下情况下实现:⊳ 对于与 v 成比例的 ϕ(t,v)和与 w 成比例的 ψ(t,w),只要 τ=0 且满足以下条件之一(I)m2+k<m3+l, (II)m2+k<r, (III)m2+k<m1+2n 即可,或 τ=1 且满足以下限制之一(i)max[m2+k,m3+l]<;r,(ii) max[m2+k,m3+l]<m1+2n ,(iii) m2+k<r 和 m3+l<m1+2n ,(iv) m2+k<m1+2n 和 m3+l<r ;⊳ 对于ϕ(t,v)=1|Ω|∫Ωf(u)和ψ(t,w)=1|Ω|∫Ωg(u),如果同时满足(I)、(II)、(III)中的一个条件,则τ=0。我们的研究部分改进并扩展了 Jiao 等 (2024); Ren 和 Liu (2020); Chiyo 和 Yokota (2022); Columbu 等 (2023) 中的一些结果。
{"title":"Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics","authors":"Alessandro Columbu,&nbsp;Rafael Díaz Fuentes,&nbsp;Silvia Frassu","doi":"10.1016/j.nonrwa.2024.104135","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104135","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: &lt;span&gt;&lt;span&gt;&lt;span&gt;(&lt;span&gt;&lt;math&gt;&lt;mo&gt;♢&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;)&lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;ϕ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;Herein, &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a bounded and smooth domain of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; proper positive numbers, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"79 ","pages":"Article 104135"},"PeriodicalIF":2.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000750/pdfft?md5=7ea2ce86ba1b3e1921a481bb478cddb6&pid=1-s2.0-S1468121824000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Real World Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1