首页 > 最新文献

Nonlinear Analysis-Real World Applications最新文献

英文 中文
Local in time solution to an integro-differential system for motion with large deformations and defects 大变形和缺陷运动积分微分系统的局部时间解法
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-22 DOI: 10.1016/j.nonrwa.2024.104231
Abramo Agosti , Michel Frémond
In this paper we consider and generalize a model, recently proposed and analytically investigated in its quasi-stationary approximation by the authors and a co-author, for the motion of a medium with large deformations and conditional compatibility, with occurrence of defects when the magnitude of an internal force is above a given threshold. The model takes the form of a system of integro-differential coupled equations, expressed in terms of the stretch and the rotation tensors variables. Here, its derivation is generalized to consider mixed boundary conditions, which may represent a wider range of physical applications then the case with Dirichlet boundary conditions considered in our previous contribution. This also introduces nontrivial technical difficulties in the theoretical framework, related to the definition and the regularity of the solutions of elliptic operators with mixed boundary conditions. As a novel contribution, we develop the analysis of the fully non-stationary version of the system where we consider inertia. In this context, we prove the existence of a local in time weak solution in three space dimensions, employing techniques from PDEs and convex analysis.
在本文中,我们考虑并概括了作者和一位合著者最近提出并分析研究的准稳态近似模型,该模型适用于具有大变形和条件兼容性的介质运动,当内力的大小超过给定阈值时会出现缺陷。该模型采用积分微分耦合方程组的形式,用拉伸和旋转张量变量表示。在此,我们对其推导进行了概括,以考虑混合边界条件,这与我们之前的研究中考虑的迪里希特边界条件相比,可能代表了更广泛的物理应用。这也在理论框架中引入了与混合边界条件下椭圆算子解的定义和正则性有关的非难技术难题。作为一项新贡献,我们在考虑惯性的情况下,对系统的完全非稳态版本进行了分析。在此背景下,我们运用 PDEs 和凸分析技术,证明了在三维空间中存在局部时间弱解。
{"title":"Local in time solution to an integro-differential system for motion with large deformations and defects","authors":"Abramo Agosti ,&nbsp;Michel Frémond","doi":"10.1016/j.nonrwa.2024.104231","DOIUrl":"10.1016/j.nonrwa.2024.104231","url":null,"abstract":"<div><div>In this paper we consider and generalize a model, recently proposed and analytically investigated in its quasi-stationary approximation by the authors and a co-author, for the motion of a medium with large deformations and conditional compatibility, with occurrence of defects when the magnitude of an internal force is above a given threshold. The model takes the form of a system of integro-differential coupled equations, expressed in terms of the stretch and the rotation tensors variables. Here, its derivation is generalized to consider mixed boundary conditions, which may represent a wider range of physical applications then the case with Dirichlet boundary conditions considered in our previous contribution. This also introduces nontrivial technical difficulties in the theoretical framework, related to the definition and the regularity of the solutions of elliptic operators with mixed boundary conditions. As a novel contribution, we develop the analysis of the fully non-stationary version of the system where we consider inertia. In this context, we prove the existence of a local in time weak solution in three space dimensions, employing techniques from PDEs and convex analysis.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104231"},"PeriodicalIF":1.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistence and zero-Hopf equilibrium in the tritrophic food chain model with Holling functional response 具有霍林功能响应的三营养食物链模型中的持久性和零霍普夫平衡
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-19 DOI: 10.1016/j.nonrwa.2024.104232
Víctor Castellanos , Jaume Llibre
In this paper, we analyze the persistence of three species in a three-level food chain model. We characterize when such a model exhibits a zero-Hopf equilibrium point and show that it is possible only if the functional responses in the model are of type Holling III or IV.
本文分析了三级食物链模型中三个物种的持久性。我们描述了这种模型何时会出现零霍普夫平衡点,并证明只有当模型中的功能反应属于霍林 III 型或 IV 型时,才有可能出现零霍普夫平衡点。
{"title":"Persistence and zero-Hopf equilibrium in the tritrophic food chain model with Holling functional response","authors":"Víctor Castellanos ,&nbsp;Jaume Llibre","doi":"10.1016/j.nonrwa.2024.104232","DOIUrl":"10.1016/j.nonrwa.2024.104232","url":null,"abstract":"<div><div>In this paper, we analyze the persistence of three species in a three-level food chain model. We characterize when such a model exhibits a zero-Hopf equilibrium point and show that it is possible only if the functional responses in the model are of type Holling III or IV.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104232"},"PeriodicalIF":1.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of marine reserve creation in single species and prey–predator models 在单一物种和猎物-食肉动物模型中建立海洋保护区的影响
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-10 DOI: 10.1016/j.nonrwa.2024.104230
Aleksander Ćwiszewski , Sławomir Plaskacz
Implementations of marine protected areas (MPA’s) for over-exploited single species fisheries and prey–predator models with environment capacity are studied. The situations when fishing effort reaches the extinction threshold that fits over-exploited open-access fisheries are considered. The discrepancy for single-species and prey–predator models in the context of food security is obtained. Due quantitative indicators for biodiversity and food security are introduced and analyzed.
研究了针对过度开发的单一物种渔业和具有环境容量的猎物-食肉动物模型的海洋保护区(MPA)的实施情况。考虑了捕捞强度达到灭绝阈值的情况,该阈值适合过度开发的开放式渔业。得出了单一物种模型和捕食-掠食者模型在粮食安全方面的差异。引入并分析了生物多样性和粮食安全的适当量化指标。
{"title":"Effects of marine reserve creation in single species and prey–predator models","authors":"Aleksander Ćwiszewski ,&nbsp;Sławomir Plaskacz","doi":"10.1016/j.nonrwa.2024.104230","DOIUrl":"10.1016/j.nonrwa.2024.104230","url":null,"abstract":"<div><div>Implementations of marine protected areas (MPA’s) for over-exploited single species fisheries and prey–predator models with environment capacity are studied. The situations when fishing effort reaches the extinction threshold that fits over-exploited open-access fisheries are considered. The discrepancy for single-species and prey–predator models in the context of food security is obtained. Due quantitative indicators for biodiversity and food security are introduced and analyzed.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104230"},"PeriodicalIF":1.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple proof of uniqueness for the nonlocal positive solutions 非局部正解唯一性的简单证明
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-10 DOI: 10.1016/j.nonrwa.2024.104233
Ming-Ming Fan, Jian-Wen Sun
In this paper, we prove a general uniqueness result for the positive solution of nonlocal dispersal equations. Our simple and elementary proof simplifies previously known proofs based on eigenvalue theory and solution estimates.
在本文中,我们证明了非局部分散方程正解的一般唯一性结果。我们简单而基本的证明简化了之前已知的基于特征值理论和解估计的证明。
{"title":"A simple proof of uniqueness for the nonlocal positive solutions","authors":"Ming-Ming Fan,&nbsp;Jian-Wen Sun","doi":"10.1016/j.nonrwa.2024.104233","DOIUrl":"10.1016/j.nonrwa.2024.104233","url":null,"abstract":"<div><div>In this paper, we prove a general uniqueness result for the positive solution of nonlocal dispersal equations. Our simple and elementary proof simplifies previously known proofs based on eigenvalue theory and solution estimates.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104233"},"PeriodicalIF":1.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods 兰德斯曼-拉泽尔条件下非自治演化方程的动态分岔与同调方法
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-05 DOI: 10.1016/j.nonrwa.2024.104228
Chunqiu Li, Jintao Wang
In this article we study the dynamic bifurcation of nonautonomous evolution equations by using cohomology methods. First, we construct a homotopy equivalence relation between the nonautonomous system and a product flow. Then, we slightly extend some continuation theorems on bifurcations for autonomous equations, and prove some new cohomology consequences on the reduced singular groups. Based on this homotopy equivalence relation and these conclusions, we establish some typical results on the dynamic bifurcation from infinity of the abstract nonautonomous evolution equation. Finally, we consider the parabolic equation utΔu=λu+f(x,u)+g(x,t) associated with the Dirichlet boundary condition, where f(x,u) satisfies the appropriate Landesman–Lazer type condition. Some new results on the dynamical behaviors of this equation near resonance of the equation are derived.
本文利用同调方法研究了非自治演化方程的动态分岔。首先,我们构建了非自治系统与乘积流之间的同调等价关系。然后,我们略微扩展了一些关于自主方程分岔的延续定理,并证明了一些关于还原奇异群的新同调后果。基于这种同调等价关系和这些结论,我们建立了抽象非自治演化方程的无穷动态分岔的一些典型结果。最后,我们考虑了与迪里夏特边界条件相关的抛物方程 ut-Δu=λu+f(x,u)+g(x,t) ,其中 f(x,u) 满足适当的 Landesman-Lazer 类型条件。推导出了该方程在共振附近的动力学行为的一些新结果。
{"title":"Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods","authors":"Chunqiu Li,&nbsp;Jintao Wang","doi":"10.1016/j.nonrwa.2024.104228","DOIUrl":"10.1016/j.nonrwa.2024.104228","url":null,"abstract":"<div><div>In this article we study the dynamic bifurcation of nonautonomous evolution equations by using cohomology methods. First, we construct a homotopy equivalence relation between the nonautonomous system and a product flow. Then, we slightly extend some continuation theorems on bifurcations for autonomous equations, and prove some new cohomology consequences on the reduced singular groups. Based on this homotopy equivalence relation and these conclusions, we establish some typical results on the dynamic bifurcation from infinity of the abstract nonautonomous evolution equation. Finally, we consider the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> associated with the Dirichlet boundary condition, where <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> satisfies the appropriate Landesman–Lazer type condition. Some new results on the dynamical behaviors of this equation near resonance of the equation are derived.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104228"},"PeriodicalIF":1.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Lipschitz continuity for energy integrals with slow growth and lower order terms 具有缓慢增长和低阶项的能量积分的局部 Lipschitz 连续性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-03 DOI: 10.1016/j.nonrwa.2024.104224
Michela Eleuteri , Stefania Perrotta , Giulia Treu
We consider integral functionals with slow growth and explicit dependence on u of the Lagrangian; this includes many relevant examples as, for instance, in elastoplastic torsion problems or in image restoration problems. Our aim is to prove that the local minimizers are locally Lipschitz continuous. The proof makes use of recent results concerning the Bounded Slope Conditions.
我们考虑的是增长缓慢且明确依赖于拉格朗日 u 的积分函数;这包括许多相关的例子,例如弹塑性扭转问题或图像复原问题。我们的目的是证明局部最小值是局部 Lipschitz 连续的。该证明利用了有关有界斜率条件的最新成果。
{"title":"Local Lipschitz continuity for energy integrals with slow growth and lower order terms","authors":"Michela Eleuteri ,&nbsp;Stefania Perrotta ,&nbsp;Giulia Treu","doi":"10.1016/j.nonrwa.2024.104224","DOIUrl":"10.1016/j.nonrwa.2024.104224","url":null,"abstract":"<div><div>We consider integral functionals with slow growth and explicit dependence on <span><math><mi>u</mi></math></span> of the Lagrangian; this includes many relevant examples as, for instance, in elastoplastic torsion problems or in image restoration problems. Our aim is to prove that the local minimizers are locally Lipschitz continuous. The proof makes use of recent results concerning the Bounded Slope Conditions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104224"},"PeriodicalIF":1.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New generalization of non-autonomous Bernfeld–Haddock conjecture and its proof 非自治伯恩费尔德-哈道克猜想的新概括及其证明
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/j.nonrwa.2024.104226
Chuangxia Huang , Xiaodan Ding
In this paper, the famous Bernfeld–Haddock conjecture is generalized to a broader form combining with a class of non-autonomous delay differential equations. With the help of differential inequality technique and Dini derivative theory, it is proved that each solution of the addressed equations has boundedness and tends to a constant without requiring the delay feedback function to be strictly increasing, which greatly refines and extends the corresponding results in the existing literature. In particular, an explanatory example is performed to substantiate the obtained analytical findings.
本文将著名的伯恩费尔德-哈多克猜想推广到更广泛的形式,并与一类非自治延迟微分方程相结合。借助微分不等式技术和迪尼导数理论,证明了所涉及方程的每个解都有界且趋于常数,而不要求延迟反馈函数严格递增,这极大地完善和扩展了现有文献中的相应结果。特别是,通过一个解释性实例来证实所获得的分析结果。
{"title":"New generalization of non-autonomous Bernfeld–Haddock conjecture and its proof","authors":"Chuangxia Huang ,&nbsp;Xiaodan Ding","doi":"10.1016/j.nonrwa.2024.104226","DOIUrl":"10.1016/j.nonrwa.2024.104226","url":null,"abstract":"<div><div>In this paper, the famous Bernfeld–Haddock conjecture is generalized to a broader form combining with a class of non-autonomous delay differential equations. With the help of differential inequality technique and Dini derivative theory, it is proved that each solution of the addressed equations has boundedness and tends to a constant without requiring the delay feedback function to be strictly increasing, which greatly refines and extends the corresponding results in the existing literature. In particular, an explanatory example is performed to substantiate the obtained analytical findings.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104226"},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping 带挤压膜阻尼的微机电系统模型周期解的分岔与动力学
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-27 DOI: 10.1016/j.nonrwa.2024.104229
Shiping Lu , Xingchen Yu , Zhuomo An
<div><div>In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap <span><math><mi>d</mi></math></span>: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient <span><math><mrow><mi>k</mi><mo>></mo><mn>0</mn></mrow></math></span>. The oscillation, under the influence of AC–DC voltage <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>d</mi><mi>c</mi></mrow></msub><mo>+</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>a</mi><mi>c</mi></mrow></msub><mo>cos</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mi>T</mi></mrow></mfrac><mi>t</mi></mrow></math></span>, is ruled by the following singular differential equation <span><span><span><math><mrow><mi>m</mi><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>+</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>A</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></mfrac><mo>+</mo><mfrac><mrow><mi>A</mi></mrow><mrow><mi>d</mi><mo>−</mo><mi>y</mi></mrow></mfrac></mrow><mo>]</mo></mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>k</mi><mi>y</mi><mo>=</mo><mfrac><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>A</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>Here, <span><math><mi>y</mi></math></span> is the vertical displacement of the moving plate (<span><math><mi>y</mi></math></span> is always assumed to be less than <span><math><mi>d</mi></math></span>), <span><math><mrow><mi>m</mi><mo>></mo><mn>0</mn></mrow></math></span> is its mass, <span><math><mrow><mi>A</mi><mo>></mo><mn>0</mn></mrow></math></span> is the electrode area, and <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> is the absolute dielectric constant of vacuum. Taking <span><math><mi>d</mi></math></span> as the parameter, we show the existence of saddle–node bifurcation of <span><math><mi>T</mi></math></span>-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of <span><math><mi>T</mi></math></span>-periodic solutions: as <span><math><mi>d</mi></math></span> tends to <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, one of them uniformly tends t
本文研究了具有挤压膜阻尼的微机电系统(MEMS)理想化质量弹簧模型的振荡。该模型由两个平行电极组成,两电极之间有间隙 d:其中一个固定,另一个可移动,并连接到刚度系数为 k>0 的线性弹簧上。在交直流电压 V(t)=vdc+vaccos2πTt 的影响下,振荡受以下奇异微分方程 my′′+[A(d-y)3+Ad-y]y′+ky=θ0A2V2(t)(d-y)2 的支配。这里,y 是移动板的垂直位移(y 始终假定小于 d),m>0 是移动板的质量,A>0 是电极面积,θ0>0 是真空的绝对介电常数。以 d 为参数,我们证明了方程在参数空间中存在 T 周期解的鞍节点分岔。这从某种角度回答了托雷斯在其专著中提出的开放问题,见托雷斯(2015,开放问题 2.1,第 18 页)。此外,我们还证明了方程正好有两类 T 周期解:当 d 趋于 +∞ 时,其中一类以 d 的速率均匀地趋于 +∞,而第二类的最小值趋于或越过 0。
{"title":"Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping","authors":"Shiping Lu ,&nbsp;Xingchen Yu ,&nbsp;Zhuomo An","doi":"10.1016/j.nonrwa.2024.104229","DOIUrl":"10.1016/j.nonrwa.2024.104229","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The oscillation, under the influence of AC–DC voltage &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;cos&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is ruled by the following singular differential equation &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;Here, &lt;span&gt;&lt;math&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the vertical displacement of the moving plate (&lt;span&gt;&lt;math&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is always assumed to be less than &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;), &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is its mass, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the electrode area, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the absolute dielectric constant of vacuum. Taking &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; as the parameter, we show the existence of saddle–node bifurcation of &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-periodic solutions: as &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; tends to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, one of them uniformly tends t","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104229"},"PeriodicalIF":1.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a planar equation involving (2,q)-Laplacian with zero mass and Trudinger–Moser nonlinearity 关于涉及零质量和特鲁丁格-莫泽非线性的 (2,q)- 拉普拉斯平面方程
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-25 DOI: 10.1016/j.nonrwa.2024.104227
J.A. Cardoso , J.C. de Albuquerque , J. Carvalho , G.M. Figueiredo
In this work, we study existence of positive solutions to a class of (2,q)-equations in the zero mass case in R2. We establish a weighted Sobolev embedding and we introduce a new Trudinger–Moser type inequality. Moreover, since we work on a suitable radial Sobolev space, we prove an appropriate version of the well-known Symmetric Criticality Principle by Palais. Finally, we study regularity of solutions applying Moser iteration scheme.
在这项工作中,我们研究了 R2 中零质量情况下一类 (2,q) -方程正解的存在性。我们建立了一个加权索波列夫嵌入,并引入了一个新的特鲁丁格-莫泽式不等式。此外,由于我们在合适的径向索波列夫空间上工作,我们证明了帕莱斯著名的对称临界原理的适当版本。最后,我们研究了应用 Moser 迭代方案求解的正则性。
{"title":"On a planar equation involving (2,q)-Laplacian with zero mass and Trudinger–Moser nonlinearity","authors":"J.A. Cardoso ,&nbsp;J.C. de Albuquerque ,&nbsp;J. Carvalho ,&nbsp;G.M. Figueiredo","doi":"10.1016/j.nonrwa.2024.104227","DOIUrl":"10.1016/j.nonrwa.2024.104227","url":null,"abstract":"<div><div>In this work, we study existence of positive solutions to a class of <span><math><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equations in the zero mass case in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We establish a weighted Sobolev embedding and we introduce a new Trudinger–Moser type inequality. Moreover, since we work on a suitable radial Sobolev space, we prove an appropriate version of the well-known Symmetric Criticality Principle by Palais. Finally, we study regularity of solutions applying Moser iteration scheme.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104227"},"PeriodicalIF":1.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singular non-autonomous (p,q)-equations with competing nonlinearities 具有竞争非线性的奇异非自治 (p,q) -方程
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-23 DOI: 10.1016/j.nonrwa.2024.104225
Nikolaos S. Papageorgiou , Dongdong Qin , Vicenţiu D. Rădulescu
We consider a parametric non-autonomous (p,q)-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is (p1)-linear and where it is (p1)-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter λ>0 (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in C01(Ω̄) and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.
我们考虑的是一个参数非自治 (p,q) -方程,它包含一个奇异项和相互竞争的非线性、一个参数凹项和一个卡拉瑟奥多里扰动。我们考虑了扰动为 (p-1)- 线性和 (p-1)- 超线性(但不使用 Ambrosetti-Rabinowitz 条件)的情况。我们证明了参数 λ>0 全局性的存在性和多重性结果(分岔类型结果)。此外,我们还证明了一个最小正解的存在,并证明它作为参数的函数是严格递增的。最后,我们研究了作为参数函数的正解集(解的多重函数)。首先,我们证明解集在 C01(Ω̄) 中是紧凑的,然后我们证明解的多重函数是 Vietoris 连续的,并且作为参数的多重函数也是 Hausdorff 连续的。
{"title":"Singular non-autonomous (p,q)-equations with competing nonlinearities","authors":"Nikolaos S. Papageorgiou ,&nbsp;Dongdong Qin ,&nbsp;Vicenţiu D. Rădulescu","doi":"10.1016/j.nonrwa.2024.104225","DOIUrl":"10.1016/j.nonrwa.2024.104225","url":null,"abstract":"<div><div>We consider a parametric non-autonomous <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-linear and where it is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104225"},"PeriodicalIF":1.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Real World Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1