首页 > 最新文献

Nonlinear Analysis-Real World Applications最新文献

英文 中文
Boundary optimal control problem of semi-linear Kirchhoff plate equation 半线性基尔霍夫板方程的边界优化控制问题
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-07-08 DOI: 10.1016/j.nonrwa.2024.104146
Abdelhak Bouhamed , Abella Elkabouss , Pitágoras P. de Carvalho , Hassane Bouzahir

This paper examines a nonlinear Kirchhoff plate equation, where the control acts in bilinear form within the boundary of the mentioned equation. The objective is to construct a distributed control to guide such a system from the initial state to the desired state in the final time, while minimizing a quadratic functional cost defined as the sum of the norm difference between the aforementioned state and a desired equation with an energy term. We show how to approximate the solution of the nonlinear Kirchhoff plate equation to a desired objective, indicating the existence of optimal control in specific cases. and deriving the optimally conditions for a closed convex set. Moreover, it is shown that sufficient conditions ensures the uniqueness of control optimal. Furthermore, we provide a concise numerical methodology that involves the integration of finite element and finite difference discretization methods. The approach incorporates Newton’s linearization method to assess the computational performance of the controlled problem, using the Freefem++ software.

本文研究了非线性基尔霍夫平板方程,其中控制以双线性形式作用于上述方程的边界内。我们的目标是构建一种分布式控制,引导该系统在最后时间内从初始状态到达期望状态,同时最小化二次函数成本,该成本定义为上述状态与带有能量项的期望方程之间的常模差之和。我们展示了如何将非线性基尔霍夫平板方程的解近似为期望目标,指出了特定情况下最优控制的存在。此外,我们还证明了确保最优控制唯一性的充分条件。此外,我们还提供了一种简明的数值方法,涉及有限元和有限差分离散化方法的整合。该方法结合牛顿线性化方法,使用 Freefem++ 软件评估受控问题的计算性能。
{"title":"Boundary optimal control problem of semi-linear Kirchhoff plate equation","authors":"Abdelhak Bouhamed ,&nbsp;Abella Elkabouss ,&nbsp;Pitágoras P. de Carvalho ,&nbsp;Hassane Bouzahir","doi":"10.1016/j.nonrwa.2024.104146","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104146","url":null,"abstract":"<div><p>This paper examines a nonlinear Kirchhoff plate equation, where the control acts in bilinear form within the boundary of the mentioned equation. The objective is to construct a distributed control to guide such a system from the initial state to the desired state in the final time, while minimizing a quadratic functional cost defined as the sum of the norm difference between the aforementioned state and a desired equation with an energy term. We show how to approximate the solution of the nonlinear Kirchhoff plate equation to a desired objective, indicating the existence of optimal control in specific cases. and deriving the optimally conditions for a closed convex set. Moreover, it is shown that sufficient conditions ensures the uniqueness of control optimal. Furthermore, we provide a concise numerical methodology that involves the integration of finite element and finite difference discretization methods. The approach incorporates Newton’s linearization method to assess the computational performance of the controlled problem, using the Freefem++ software.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104146"},"PeriodicalIF":1.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global classical solutions to a chemotaxis consumption model involving singularly signal-dependent motility and logistic source 涉及奇异信号依赖性运动和逻辑源的趋化消耗模型的全局经典解法
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-07-07 DOI: 10.1016/j.nonrwa.2024.104174
Liangchen Wang, Rui Huang
<div><p>This work considers the Keller–Segel consumption system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>u</mi><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>b</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>u</mi><mi>v</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, where the parameters <span><math><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mn>0</mn><mrow><mo>(</mo><mo>⁄</mo><mo>≡</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> in <span><math><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> with <span><span><span><math><mrow><msub><mrow><mo>‖</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo><</mo><mo>exp</mo><mfenced><mrow><mfrac><mrow><mo>ln</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mrow><mi>α</mi></mrow></mfrac><mi>⋅</mi><mfrac><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></mfrac></mrow></mfenced><mo>.</mo></mrow></
本研究考虑了在光滑有界域Ω⊂Rn,n≥2中的同质诺伊曼边界条件下的凯勒-西格尔消耗系统ut=Δ(uv-α)+au-buγ,x∈Ω,t>0,vt=Δv-uv,x∈Ω,t>0,其中参数a>;0,b>0,γ≥2 和 α∈(0,1),初始数据 u0∈C0(Ω̄),v0∈W1,∞(Ω),u0≥0(≡0)和 v0>0 在 Ω̄中为 ‖v0‖L∞(Ω)<expn(1-αα⋅8n)α。研究表明,如果下列情况之一成立:(i) γ>2;(ii) γ=2 且 b>(n-2)αn,则相应的初界值问题具有全局经典解。
{"title":"Global classical solutions to a chemotaxis consumption model involving singularly signal-dependent motility and logistic source","authors":"Liangchen Wang,&nbsp;Rui Huang","doi":"10.1016/j.nonrwa.2024.104174","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104174","url":null,"abstract":"&lt;div&gt;&lt;p&gt;This work considers the Keller–Segel consumption system &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;under homogeneous Neumann boundary conditions in a smooth bounded domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where the parameters &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the initial data &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;⁄&lt;/mo&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mo&gt;exp&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;ln&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104174"},"PeriodicalIF":1.8,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation of limit cycles from a periodic annulus formed by a center and two saddles in piecewise linear differential system with three zones 在具有三个区的片断线性微分系统中,由一个中心和两个鞍形成的周期环的极限循环分岔
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-27 DOI: 10.1016/j.nonrwa.2024.104171
Claudio Pessoa , Ronisio Ribeiro

In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines, such that the linear differential systems that define the piecewise one have a center and two saddles. That is, the linear differential system in the region between the two parallel lines (called of central subsystem) has a center and the others subsystems have saddles. We prove that if the central subsystem has a real or a boundary center, then at least six limit cycles can bifurcate from the periodic annulus by linear perturbations. Four passing through the three zones and two passing through two zones. Now, if the central subsystem has a virtual center, then at leas four limit cycles can bifurcate from the periodic annulus by linear perturbations, three passing through the three zones and one passing through two zones. For this, we obtain a normal form for these piecewise Hamiltonian systems and study the number of zeros of its Melnikov functions defined in two and three zones.

在本文中,我们研究了不连续平面分片线性哈密顿微分方程系统中周期性环面分岔的极限循环次数,该系统有三个区域,被两条平行直线分隔,这样定义分片系统的线性微分方程系统有一个中心和两个鞍。也就是说,两条平行线之间区域的线性微分系统(称为中心子系统)有一个中心,其他子系统有鞍。我们证明,如果中心子系统有一个实心或边界中心,那么至少有六个极限循环可以通过线性扰动从周期环上分叉出来。其中四个经过三个区域,两个经过两个区域。现在,如果中心子系统有一个虚拟中心,那么至少有四个极限循环可以通过线性扰动从周期性环面分叉出来,其中三个通过三个区域,一个通过两个区域。为此,我们得到了这些片断哈密顿系统的正则表达式,并研究了定义在两区和三区的梅利尼科夫函数的零点个数。
{"title":"Bifurcation of limit cycles from a periodic annulus formed by a center and two saddles in piecewise linear differential system with three zones","authors":"Claudio Pessoa ,&nbsp;Ronisio Ribeiro","doi":"10.1016/j.nonrwa.2024.104171","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104171","url":null,"abstract":"<div><p>In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines, such that the linear differential systems that define the piecewise one have a center and two saddles. That is, the linear differential system in the region between the two parallel lines (called of central subsystem) has a center and the others subsystems have saddles. We prove that if the central subsystem has a real or a boundary center, then at least six limit cycles can bifurcate from the periodic annulus by linear perturbations. Four passing through the three zones and two passing through two zones. Now, if the central subsystem has a virtual center, then at leas four limit cycles can bifurcate from the periodic annulus by linear perturbations, three passing through the three zones and one passing through two zones. For this, we obtain a normal form for these piecewise Hamiltonian systems and study the number of zeros of its Melnikov functions defined in two and three zones.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104171"},"PeriodicalIF":1.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence rate toward shock wave under periodic perturbation for generalized Korteweg–de Vries–Burgers equation 广义 Korteweg-de Vries-Burgers 方程周期性扰动下冲击波的收敛率
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-26 DOI: 10.1016/j.nonrwa.2024.104170
Lin Chang

In this paper, a viscous shock wave under space-periodic perturbation of generalized Korteweg–de Vries–Burgers equation is investigated. It is shown that if the initial periodic perturbation around the viscous shock wave is small, then the solution time asymptotically tends to a viscous shock wave with a shift partially determined by the periodic oscillations. Moreover the exponential time decay rate toward the viscous shock wave is also obtained for some certain perturbations.

本文研究了广义 Korteweg-de Vries-Burgers 方程空间周期扰动下的粘性冲击波。研究表明,如果粘性冲击波周围的初始周期性扰动很小,那么求解时间会渐近地趋向于粘性冲击波,其偏移部分由周期性振荡决定。此外,在某些特定的扰动下,还得到了向粘性冲击波的指数时间衰减率。
{"title":"Convergence rate toward shock wave under periodic perturbation for generalized Korteweg–de Vries–Burgers equation","authors":"Lin Chang","doi":"10.1016/j.nonrwa.2024.104170","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104170","url":null,"abstract":"<div><p>In this paper, a viscous shock wave under space-periodic perturbation of generalized Korteweg–de Vries–Burgers equation is investigated. It is shown that if the initial periodic perturbation around the viscous shock wave is small, then the solution time asymptotically tends to a viscous shock wave with a shift partially determined by the periodic oscillations. Moreover the exponential time decay rate toward the viscous shock wave is also obtained for some certain perturbations.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104170"},"PeriodicalIF":1.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence of solutions to some degenerate chemotaxis systems with superlinear growth in cross-diffusion rates and logistic sources 交叉扩散率和对数源超线性增长的某些退化趋化系统的全局存在解
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-26 DOI: 10.1016/j.nonrwa.2024.104168
Minh Le

The objective is to investigate the global existence of solutions for degenerate chemotaxis systems with logistic sources in a two-dimensional domain. It is demonstrated that the inclusion of logistic sources can exclude the occurrence of blow-up solutions, even in the presence of superlinear growth in the cross-diffusion rate. Our proof relies on the application of elliptic and parabolic regularity in Orlicz spaces and variational approach.

目的是研究在二维域中具有逻辑源的退化趋化系统的全局存在解。结果表明,即使在交叉扩散率出现超线性增长的情况下,加入对数源也能排除爆炸解的出现。我们的证明依赖于奥立兹空间和变分法中椭圆和抛物正则性的应用。
{"title":"Global existence of solutions to some degenerate chemotaxis systems with superlinear growth in cross-diffusion rates and logistic sources","authors":"Minh Le","doi":"10.1016/j.nonrwa.2024.104168","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104168","url":null,"abstract":"<div><p>The objective is to investigate the global existence of solutions for degenerate chemotaxis systems with logistic sources in a two-dimensional domain. It is demonstrated that the inclusion of logistic sources can exclude the occurrence of blow-up solutions, even in the presence of superlinear growth in the cross-diffusion rate. Our proof relies on the application of elliptic and parabolic regularity in Orlicz spaces and variational approach.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104168"},"PeriodicalIF":1.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The local well-posedness of the coupled Ostrovsky system with low regularity 具有低正则性的耦合奥斯特洛夫斯基系统的局部好拟性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-25 DOI: 10.1016/j.nonrwa.2024.104166
Ting Luo, Weifeng Zhang

In this paper, the Cauchy problem for the coupled Ostrovsky equations with an initial value in the Sobolev spaces Hs(R)×Hs(R) of lower order s is considered. With the bilinear estimate, it is proved that the initial value problem is locally well-posed in Hs(R)×Hs(R) for s>34 by using Bourgain spaces. Moreover, if s<34, it is demonstrated that one of the nonlinear iteration from the initial data to the putative solutions is discontinuous with an argument on the high-to-low frequency. In this sense, it is then concluded that the coupled Ostrovsky equations is ill-posed in Hs(R)×Hs(R) for s<34.

本文考虑了在低阶 s 的 Sobolev 空间 Hs(R)×Hs(R) 中具有初始值的耦合 Ostrovsky 方程的 Cauchy 问题。通过双线性估计,利用布尔干(Bourgain)空间证明了在 Hs(R)×Hs(R) 中 s>-34 的初值问题是局部良好求解的。此外,如果 s<-34,则证明从初始数据到推定解的非线性迭代之一是不连续的,其参数在高频到低频之间。从这个意义上说,在 s<-34 的情况下,耦合奥斯特洛夫斯基方程在 Hs(R)×Hs(R) 中存在问题。
{"title":"The local well-posedness of the coupled Ostrovsky system with low regularity","authors":"Ting Luo,&nbsp;Weifeng Zhang","doi":"10.1016/j.nonrwa.2024.104166","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104166","url":null,"abstract":"<div><p>In this paper, the Cauchy problem for the coupled Ostrovsky equations with an initial value in the Sobolev spaces <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> of lower order <span><math><mi>s</mi></math></span> is considered. With the bilinear estimate, it is proved that the initial value problem is locally well-posed in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>&gt;</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span> by using Bourgain spaces. Moreover, if <span><math><mrow><mi>s</mi><mo>&lt;</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span>, it is demonstrated that one of the nonlinear iteration from the initial data to the putative solutions is discontinuous with an argument on the high-to-low frequency. In this sense, it is then concluded that the coupled Ostrovsky equations is ill-posed in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>&lt;</mo><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104166"},"PeriodicalIF":1.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer 具有无穷小初始层的脉冲 p(x,t)- 抛物方程的解
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-25 DOI: 10.1016/j.nonrwa.2024.104162
Stanislav Antontsev , Ivan Kuznetsov , Sergey Sazhenkov , Sergey Shmarev

We study the multi-dimensional Cauchy–Dirichlet problem for the p(x,t)-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the q(x,t)-growth. The minor term depends on a positive integer parameter n and, as n+, converges weakly to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as n+, and that the family of regular weak solutions of the original problem converges to the so-called ‘strong-weak’ solution of a two-scale microscopic–macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the p(x,t)-parabolic equation provided with the corrected initial data.

我们研究了带有规则非线性次项的 p(x,t)-parabolic 方程的多维 Cauchy-Dirichlet 问题,它模拟了非瞬时但非常快速的吸收与 q(x,t)-growth 的关系。次项取决于正整数参数 n,当 n→+∞ 时,次项弱收敛于包含狄拉克三角函数的表达式⋆,而狄拉克三角函数又模拟了初始时刻的瞬时吸收。我们证明,与狄拉克三角函数相关的无穷小初始层在 n→+∞ 时形成,原始问题的正则弱解族收敛到双尺度微观-宏观模型的所谓 "强弱 "解。此外,微观结构方程可以显式积分,这在许多情况下导致了具有修正初始数据的 p(x,t)- 抛物线方程的纯宏观公式。
{"title":"Solutions of impulsive p(x,t)-parabolic equations with an infinitesimal initial layer","authors":"Stanislav Antontsev ,&nbsp;Ivan Kuznetsov ,&nbsp;Sergey Sazhenkov ,&nbsp;Sergey Shmarev","doi":"10.1016/j.nonrwa.2024.104162","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104162","url":null,"abstract":"<div><p>We study the multi-dimensional Cauchy–Dirichlet problem for the <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the <span><math><mrow><mi>q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-growth. The minor term depends on a positive integer parameter <span><math><mi>n</mi></math></span> and, as <span><math><mrow><mi>n</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, converges weakly<span><math><msup><mrow></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as <span><math><mrow><mi>n</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, and that the family of regular weak solutions of the original problem converges to the so-called ‘strong-weak’ solution of a two-scale microscopic–macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>-parabolic equation provided with the corrected initial data.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104162"},"PeriodicalIF":1.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global-in-time error estimates of non-relativistic limits for Euler–Maxwell system near non-constant equilibrium 欧拉-麦克斯韦系统在非恒定平衡附近的非相对论极限的全局时间误差估计
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104163
Yachun Li , Peng Lu , Liang Zhao

It was proved that Euler–Maxwell systems converge globally-in-time to Euler–Poisson systems near non-constant equilibrium states when the speed of light c. In this paper, we establish the global-in-time error estimates between smooth solutions of Euler–Maxwell systems and those of Euler–Poisson systems near non-constant equilibrium states. The main difficulty lies in the singularity of the error variable for the electric field E, so that more careful estimates for the time derivatives of error variables should be established. The proof takes good advantage of the anti-symmetric structure of the error system and an induction argument on the order of the derivatives.

有研究证明,当光速为c→∞时,Euler-Maxwell系统在非恒定平衡态附近与Euler-Poisson系统在时间上全局收敛。本文建立了欧拉-麦克斯韦系统光滑解与欧拉-泊松系统在非恒定平衡态附近的全局时间误差估计。主要难点在于电场 E 的误差变量的奇异性,因此需要对误差变量的时间导数进行更仔细的估计。证明很好地利用了误差系统的反对称结构和导数阶次的归纳论证。
{"title":"Global-in-time error estimates of non-relativistic limits for Euler–Maxwell system near non-constant equilibrium","authors":"Yachun Li ,&nbsp;Peng Lu ,&nbsp;Liang Zhao","doi":"10.1016/j.nonrwa.2024.104163","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104163","url":null,"abstract":"<div><p>It was proved that Euler–Maxwell systems converge globally-in-time to Euler–Poisson systems near non-constant equilibrium states when the speed of light <span><math><mrow><mi>c</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. In this paper, we establish the global-in-time error estimates between smooth solutions of Euler–Maxwell systems and those of Euler–Poisson systems near non-constant equilibrium states. The main difficulty lies in the singularity of the error variable for the electric field <span><math><mi>E</mi></math></span>, so that more careful estimates for the time derivatives of error variables should be established. The proof takes good advantage of the anti-symmetric structure of the error system and an induction argument on the order of the derivatives.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104163"},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parabolic double phase obstacle problems 抛物线双相障碍问题
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104169
Siegfried Carl , Patrick Winkert
<div><p>We prove existence results for the parabolic double phase obstacle problem: Find <span><math><mrow><mi>u</mi><mo>∈</mo><mi>K</mi><mo>⊂</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> with <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> satisfying <span><span><span><math><mrow><mn>0</mn><mo>∈</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mi>u</mi><mo>+</mo><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>∂</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><msubsup><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>A</mi><mo>:</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> given by <span><span><span><math><mrow><mi>A</mi><mi>u</mi><mo>≔</mo><mo>−</mo><mo>div</mo><mfenced><mrow><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>+</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi></mrow></mfenced><mspace></mspace><mtext>for</mtext><mi>u</mi><mo>∈</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>is the double phase operator acting on <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>τ</mi><mo>;</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> denoting the associated Musielak–Orlicz Sobolev space with generalized homogeneous boundary values. The obstacle is represented by the closed convex set <span><math><mi>K</mi></math></span> with the obstacle function <span><math><mi>ψ</mi></math></span> through <span><span><span><math><mrow><mi>K</mi><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mtext>for a.a.</mtext><mspace></mspace><mrow><mo>(</mo><mi>x</mi><mo>,<
我们证明了抛物线双相障碍问题的存在性结果:在 u(⋅,0)=0 时找到 u∈K⊂X0 满足 0∈ut+Au+F(u)+∂IK(u)inX0∗ 的 u∈K⊂X0,其中,A:X0→X0∗,Au≔-div|∇u|p-2∇u+μ(x)|∇u|q-2∇uforu∈X0,是作用于 X0=Lp(0,τ;W01,H(Ω))的双相算子,W01,H(Ω)表示具有广义同质边界值的相关穆西拉克-奥利兹索博廖夫空间。障碍由封闭凸集 K 表示,障碍函数 ψ 通过 K={v∈X0:v(x,t)≤ψ(x,t)for a.a.(x,t)∈Q=Ω×(0,τ)} 表示,IK 是与 K 相关的指示函数,∂IK 表示其在凸分析意义上的次微分。
{"title":"Parabolic double phase obstacle problems","authors":"Siegfried Carl ,&nbsp;Patrick Winkert","doi":"10.1016/j.nonrwa.2024.104169","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104169","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We prove existence results for the parabolic double phase obstacle problem: Find &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; satisfying &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; given by &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;≔&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;div&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;for&lt;/mtext&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;is the double phase operator acting on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denoting the associated Musielak–Orlicz Sobolev space with generalized homogeneous boundary values. The obstacle is represented by the closed convex set &lt;span&gt;&lt;math&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with the obstacle function &lt;span&gt;&lt;math&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; through &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mtext&gt;for a.a.&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104169"},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001093/pdfft?md5=8c45c9bac4bc0752dc7ba149da99cd83&pid=1-s2.0-S1468121824001093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple standing waves of matrix nonlinear Schrödinger equations with mixed growth nonlinearities in RN RN 中具有混合增长非线性的矩阵非线性薛定谔方程的多重驻波
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104153
Ting Zhang, Guanwei Chen

In the whole space RN, we study the existence of two standing waves for a class of matrix nonlinear Schrödinger equations with potentials by using variational methods, where the nonlinearities are sublinear or asymptotically linear at infinity. The novelties are as follows. (1) The matrix nonlinear equations are defined in the whole space RN. (2) The nonlinearities are composed of two mixed nonlinear terms with different growth conditions. (3) The weight function may be sign-changing. (4) Our results can be applied to many examples.

在整个空间 RN 中,我们利用变分法研究了一类带电势的矩阵非线性薛定谔方程的两个驻波的存在性,其中非线性在无穷大处是亚线性或渐近线性的。新颖之处如下(1) 矩阵非线性方程在整个空间 RN 中定义。(2) 非线性由两个具有不同增长条件的混合非线性项组成。(3) 权重函数可能是符号变化的。(4) 我们的结果可应用于许多实例。
{"title":"Multiple standing waves of matrix nonlinear Schrödinger equations with mixed growth nonlinearities in RN","authors":"Ting Zhang,&nbsp;Guanwei Chen","doi":"10.1016/j.nonrwa.2024.104153","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104153","url":null,"abstract":"<div><p>In the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, we study the existence of two standing waves for a class of matrix nonlinear Schrödinger equations with potentials by using variational methods, where the nonlinearities are sublinear or asymptotically linear at infinity. The novelties are as follows. (1) The matrix nonlinear equations are defined in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. (2) The nonlinearities are composed of two mixed nonlinear terms with different growth conditions. (3) The weight function may be sign-changing. (4) Our results can be applied to many examples.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104153"},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Real World Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1