首页 > 最新文献

Nonlinear Analysis-Real World Applications最新文献

英文 中文
Local existence and blow-up of solutions for the higher-order viscoelastic equation with general source term and variable exponents: Theoretical and numerical results 具有一般源项和变指数的高阶粘弹性方程解的局部存在性和爆破性:理论和数值结果
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-10-07 DOI: 10.1016/j.nonrwa.2025.104512
Nebi Yılmaz , Muhteşem Demir , Erhan Pişkin
This study explores a higher-order viscoelastic equation characterized by variable exponents. We demonstrate the local existence of weak solutions by imposing appropriate conditions on these variable exponents. Furthermore, we investigate the phenomenon of finite-time blow-up for solutions that begin with positive initial energy. Finally, we give a 2D numerical example for the blow up.
研究了一种以变指数为特征的高阶粘弹性方程。通过对这些变指数施加适当的条件,证明了弱解的局部存在性。进一步研究了初始能量为正的解的有限时间爆破现象。最后,给出了爆破的二维数值算例。
{"title":"Local existence and blow-up of solutions for the higher-order viscoelastic equation with general source term and variable exponents: Theoretical and numerical results","authors":"Nebi Yılmaz ,&nbsp;Muhteşem Demir ,&nbsp;Erhan Pişkin","doi":"10.1016/j.nonrwa.2025.104512","DOIUrl":"10.1016/j.nonrwa.2025.104512","url":null,"abstract":"<div><div>This study explores a higher-order viscoelastic equation characterized by variable exponents. We demonstrate the local existence of weak solutions by imposing appropriate conditions on these variable exponents. Furthermore, we investigate the phenomenon of finite-time blow-up for solutions that begin with positive initial energy. Finally, we give a 2D numerical example for the blow up.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"89 ","pages":"Article 104512"},"PeriodicalIF":1.8,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145270702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical null controllability of a degenerate parabolic equation with nonlocal coefficient 一类具有非局部系数的退化抛物方程的层次零可控性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-10-04 DOI: 10.1016/j.nonrwa.2025.104513
Juan Límaco, João Carlos Barreira, Suerlan Silva, Luis P. Yapu
In this paper we use a Stackelberg-Nash strategy to show the local null controllability of a parabolic equation where the diffusion coefficient is the product of a degenerate function in space and a nonlocal term. We consider one control called leader and two controls called followers. To each leader we associate a Nash equilibrium corresponding to a bi-objective optimal control problem; then, we find a leader that solves the null controllability problem. The linearized degenerated system is treated adapting Carleman estimates for degenerated systems from Demarque, Límaco and Viana [31] and the local controllability of the non-linear system is obtained using Liusternik’s inverse function theorem. The nonlocal coefficient originates a multiplicative coupling in the optimality system that gives rise to interesting calculations in the applications of the inverse function theorem.
本文利用Stackelberg-Nash策略,给出了扩散系数为空间退化函数与非局部项积的抛物方程的局部零可控性。我们考虑一个称为领导者的控制和两个称为追随者的控制。对于每个领导者,我们将纳什均衡与双目标最优控制问题相关联;然后,我们找到一个解决零可控性问题的领导者。采用Demarque, Límaco和Viana[31]对退化系统的Carleman估计对线性化退化系统进行处理,并利用Liusternik反函数定理得到非线性系统的局部可控性。非局部系数在最优性系统中产生了乘法耦合,在反函数定理的应用中产生了有趣的计算。
{"title":"Hierarchical null controllability of a degenerate parabolic equation with nonlocal coefficient","authors":"Juan Límaco,&nbsp;João Carlos Barreira,&nbsp;Suerlan Silva,&nbsp;Luis P. Yapu","doi":"10.1016/j.nonrwa.2025.104513","DOIUrl":"10.1016/j.nonrwa.2025.104513","url":null,"abstract":"<div><div>In this paper we use a Stackelberg-Nash strategy to show the local null controllability of a parabolic equation where the diffusion coefficient is the product of a degenerate function in space and a nonlocal term. We consider one control called <em>leader</em> and two controls called <em>followers</em>. To each leader we associate a Nash equilibrium corresponding to a bi-objective optimal control problem; then, we find a leader that solves the null controllability problem. The linearized degenerated system is treated adapting Carleman estimates for degenerated systems from Demarque, Límaco and Viana [31] and the local controllability of the non-linear system is obtained using Liusternik’s inverse function theorem. The nonlocal coefficient originates a multiplicative coupling in the optimality system that gives rise to interesting calculations in the applications of the inverse function theorem.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"89 ","pages":"Article 104513"},"PeriodicalIF":1.8,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145223607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave breaking and traveling waves for the quadratic-cubic Camassa–Holm equation 二次立方Camassa-Holm方程的破波和行波
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-29 DOI: 10.1016/j.nonrwa.2025.104493
Xuanxuan Han, Shaojie Yang
This paper is concerned with the solutions of the quadratic-cubic Camassa–Holm equation which is a model that explore the change in the physical structure of the solutions from the peakons to the bell-shaped solitary wave solutions. The first type of solutions exhibits finite time singularity in the sense of wave breaking. We perform a refined analysis based on the local structure of the dynamics to provide a condition on the initial data to guarantee wave breaking. The key feature of the method is to refine the analysis on characteristics and conserved quantities to the Riccati-type differential inequality. The other type of solutions which we study is the traveling waves, we investigate nonexistence of the Camassa–Holm-type peaked traveling wave solutions. Moreover, we discover how the symmetric structure is connected to the steady structure of solutions to the quadratic-cubic Camassa–Holm equation, and prove that the classical symmetric waves must be traveling wave solutions.
本文研究了二次-三次Camassa-Holm方程的解,该方程是一个探讨从峰到钟形孤波解的物理结构变化的模型。第一类解在破波意义上表现出有限时间奇点。我们根据动力学的局部结构进行了精细的分析,以提供一个初始数据的条件来保证破波。该方法的主要特点是将特征和守恒量的分析细化到riccati型微分不等式。我们研究的另一类解是行波,我们研究了camassa - holm型峰值行波解的不存在性。此外,我们还发现了对称结构与二次三次Camassa-Holm方程解的稳定结构之间的联系,并证明了经典对称波必须是行波解。
{"title":"Wave breaking and traveling waves for the quadratic-cubic Camassa–Holm equation","authors":"Xuanxuan Han,&nbsp;Shaojie Yang","doi":"10.1016/j.nonrwa.2025.104493","DOIUrl":"10.1016/j.nonrwa.2025.104493","url":null,"abstract":"<div><div>This paper is concerned with the solutions of the quadratic-cubic Camassa–Holm equation which is a model that explore the change in the physical structure of the solutions from the peakons to the bell-shaped solitary wave solutions. The first type of solutions exhibits finite time singularity in the sense of wave breaking. We perform a refined analysis based on the local structure of the dynamics to provide a condition on the initial data to guarantee wave breaking. The key feature of the method is to refine the analysis on characteristics and conserved quantities to the Riccati-type differential inequality. The other type of solutions which we study is the traveling waves, we investigate nonexistence of the Camassa–Holm-type peaked traveling wave solutions. Moreover, we discover how the symmetric structure is connected to the steady structure of solutions to the quadratic-cubic Camassa–Holm equation, and prove that the classical symmetric waves must be traveling wave solutions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104493"},"PeriodicalIF":1.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system 三维共旋转Beris-Edwards系统弱解奇异性的部分正则性和上Minkowski维数
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-26 DOI: 10.1016/j.nonrwa.2025.104511
Qiao Liu, Zhongbao Zuo
<div><div>We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a <span><math><mrow><mrow><mi>ε</mi></mrow><mo>></mo><mn>0</mn></mrow></math></span> such that if <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mrow><mi>P</mi></mrow><mo>)</mo></mrow></math></span> is a suitable weak solution, and satisfies<span><span><span><math><mrow><msup><mi>r</mi><mrow><mo>−</mo><mfrac><mrow><mn>6</mn><mi>α</mi></mrow><mrow><mn>7</mn><mi>α</mi><mo>−</mo><mn>6</mn></mrow></mfrac></mrow></msup><msubsup><mo>∫</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>−</mo><msup><mi>r</mi><mn>2</mn></msup></mrow><msub><mi>t</mi><mn>0</mn></msub></msubsup><msup><mrow><mo>(</mo><mo>∥</mo><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mn>2</mn></msup><msup><mrow><mo>,</mo><mo>|</mo><mi>∇</mi><mi>Q</mi><mo>|</mo></mrow><mn>2</mn></msup><msubsup><mrow><mo>)</mo><mo>∥</mo></mrow><mrow><msup><mi>L</mi><mi>α</mi></msup><mrow><mo>(</mo><msub><mi>B</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mi>β</mi></msubsup><mo>+</mo><msubsup><mrow><mo>∥</mo><mrow><mi>P</mi></mrow><mo>∥</mo></mrow><mrow><msup><mi>L</mi><mi>α</mi></msup><mrow><mo>(</mo><msub><mi>B</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mi>β</mi></msubsup><mo>)</mo><mrow><mi>d</mi></mrow><mi>t</mi><mo>≤</mo><mrow><mi>ε</mi></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mn>6</mn><mn>5</mn></mfrac><mo>,</mo><mn>2</mn><mo>]</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>α</mi></mrow><mrow><mn>7</mn><mi>α</mi><mo>−</mo><mn>6</mn></mrow></mfrac><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>, then <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow></math></span> is regular at <span><math><msub><mi>z</mi><mn>0</mn></msub></math></span>. Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most <span><math><mrow><mfrac><mn>975</mn><mn>758</mn></mfrac><mrow><mo>(</mo><mo>≈</mo><mn>1.286</mn><mo>)</mo></mrow></mrow></math></span>. Additionally, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>Q</mi><mo>)</mo></mrow><mo>∈</mo><msup><mi>L</mi><mi>p</mi></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mi>L</mi><mi>q</mi></msup><mrow><mo>(</mo><msup><mi>R</mi><mn>3</mn></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mn>1</mn><mo>≤</mo><mfrac><mn>2</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>3</mn><mi>q</mi></
研究了具有Landau-de Gennes势的向列液晶流的三维共旋转Beris-Edwards系统的弱解的部分正则性和势奇异点的上Minkowski维数。准确地说,我们建立了一个ε>;0,使得(u,Q,P)是一个合适的弱解,且满足r - 6α - 7α - 6∫t0 - r2t0(∥(|u|2,|∇Q|2)∥Lα(Br(x0))β+∥P∥Lα(Br(x0))β)dt≤ε,其中α∈[65,2],β=4α7α - 6∈[1,2],则(u,Q)在z0处正则。基于上述正则性结果,我们证明了任意合适弱解的潜在奇异点的上Minkowski维数不超过975758(≈1.286)。另外,如果(u,∇Q)∈Lp(0,T;Lq(R3))且1≤2p+3q且207≤p,q<∞,则潜在奇异点的上Minkowski维数不大于max{p, Q}(2p+3q−1)。
{"title":"Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system","authors":"Qiao Liu,&nbsp;Zhongbao Zuo","doi":"10.1016/j.nonrwa.2025.104511","DOIUrl":"10.1016/j.nonrwa.2025.104511","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a suitable weak solution, and satisfies&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/msubsup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is regular at &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;975&lt;/mn&gt;&lt;mn&gt;758&lt;/mn&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;mn&gt;1.286&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Additionally, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104511"},"PeriodicalIF":1.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape 一类具有L形不连续线的混合分段微分系统的极限环
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-25 DOI: 10.1016/j.nonrwa.2025.104492
Marly Tatiana Anacona Cabrera , Gerardo Anacona Erazo , Jaume Llibre
<div><div>In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions <span><span><span><span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>y</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>x</mi><mi>y</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>A</mi><mo>,</mo><mtext>if</mtext><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span></span><span><span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>y</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>x</mi><mi>y</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mtext>if</mtext><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span></span></span></span>with reset maps <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>s</mi><mi>x</mi></mrow></math></span> on <span><math><mrow><mi>x</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>r</mi><mi>y</mi></mrow></math></span> on <span><math><mrow><mi>y</mi><mo>≥</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mn>0</mn><mo><</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo><</mo><mn>1</mn></mrow></math></span>, and <span><math><mi>A</mi></math></span>, <span><math><mi>B</mi></math></span> are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow
本文研究了一类由两个哈密顿系统组成的不连续混合分段微分系统,我们称之为分段混合哈密顿系统。更准确地说,我们考虑具有哈密顿函数H1(x,y)=a1x+a2y+a3x2+a4xy+a5y2+A的微分系统,如果(x,y)∈Σ+H2(x,y)=b1x+b2y+b3x2+b4xy+b5y2+B,如果(x,y)∈Σ−具有复位映射R1(x)=sx在x≥0,R2(y)=ry在y≥0,对于0<;r,s<;1和A, B为零,或者其中一个是3次的非零齐次多项式,Σ+={(x,y)∈R2:x≥0andy≥0},Σ−是R2∈Σ+的闭包。我们给出了这些混合分段微分系统所能表现出的最大极限环数的上界。换句话说,我们解决了第16阶希尔伯特问题对这类混合微分系统的推广。
{"title":"Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape","authors":"Marly Tatiana Anacona Cabrera ,&nbsp;Gerardo Anacona Erazo ,&nbsp;Jaume Llibre","doi":"10.1016/j.nonrwa.2025.104492","DOIUrl":"10.1016/j.nonrwa.2025.104492","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mtext&gt;if&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mtext&gt;if&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;with reset maps &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104492"},"PeriodicalIF":1.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the value function for optimal control of semilinear parabolic equations 半线性抛物型方程最优控制的值函数
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-25 DOI: 10.1016/j.nonrwa.2025.104508
Eduardo Casas , Karl Kunisch , Fredi Tröltzsch
The value function for an infinite horizon tracking type optimal control problem with semilinear parabolic equation is investigated. In view of a possible nonconvexity of the optimal control problem, a local version of the value function is considered. Its differentiability is proved for initial data in a neighborhood around the nominal initial value, provided a second order sufficient optimality condition is fulfilled for the nominal locally optimal control. Based on the differentiability of the value function, a Hamilton-Jacobi-Bellman equation is derived.
研究了一类具有半线性抛物型方程的无限视界跟踪型最优控制问题的值函数。考虑到最优控制问题可能存在的非凸性,考虑了值函数的局部形式。在满足二阶充分最优条件的条件下,证明了该方法在标称局部最优控制的邻域内初始数据的可微性。基于值函数的可微性,导出了Hamilton-Jacobi-Bellman方程。
{"title":"On the value function for optimal control of semilinear parabolic equations","authors":"Eduardo Casas ,&nbsp;Karl Kunisch ,&nbsp;Fredi Tröltzsch","doi":"10.1016/j.nonrwa.2025.104508","DOIUrl":"10.1016/j.nonrwa.2025.104508","url":null,"abstract":"<div><div>The value function for an infinite horizon tracking type optimal control problem with semilinear parabolic equation is investigated. In view of a possible nonconvexity of the optimal control problem, a local version of the value function is considered. Its differentiability is proved for initial data in a neighborhood around the nominal initial value, provided a second order sufficient optimality condition is fulfilled for the nominal locally optimal control. Based on the differentiability of the value function, a Hamilton-Jacobi-Bellman equation is derived.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104508"},"PeriodicalIF":1.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolving surface Cahn–Hilliard equation with a degenerate mobility 具有简并迁移率的曲面Cahn-Hilliard方程
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-24 DOI: 10.1016/j.nonrwa.2025.104481
Charles M. Elliott, Thomas Sales
We consider the existence of suitable weak solutions to the Cahn-Hilliard equation with a non-constant (degenerate) mobility on a class of evolving surfaces. We also show weak-strong uniqueness for the case of a positive mobility function, and under some further assumptions on the initial data we show uniqueness for a class of strong solutions for a degenerate mobility function.
考虑一类演化曲面上具有非常数(退化)迁移率的Cahn-Hilliard方程的弱解的存在性。我们还证明了正迁移函数的弱-强唯一性,并在初始数据的进一步假设下,证明了退化迁移函数的一类强解的唯一性。
{"title":"The evolving surface Cahn–Hilliard equation with a degenerate mobility","authors":"Charles M. Elliott,&nbsp;Thomas Sales","doi":"10.1016/j.nonrwa.2025.104481","DOIUrl":"10.1016/j.nonrwa.2025.104481","url":null,"abstract":"<div><div>We consider the existence of suitable weak solutions to the Cahn-Hilliard equation with a non-constant (degenerate) mobility on a class of evolving surfaces. We also show weak-strong uniqueness for the case of a positive mobility function, and under some further assumptions on the initial data we show uniqueness for a class of strong solutions for a degenerate mobility function.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104481"},"PeriodicalIF":1.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global stability of perturbed chemostat systems 扰动恒化系统的全局稳定性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-23 DOI: 10.1016/j.nonrwa.2025.104509
Claudia Alvarez-Latuz , Térence Bayen , Jérôme Coville
This paper is devoted to the analysis of the global stability of the chemostat system with a perturbation term representing a general form of exchange between species. This conversion term depends not only on species and substrate concentrations, but also on a positive perturbation parameter. After expressing the invariant manifold as a union of a family of compact subsets, our main result states that for each subset in this family, there exists a positive threshold for the perturbation parameter below which the system is globally asymptotically stable in the corresponding subset. Our approach relies on the Malkin-Gorshin Theorem and on a Theorem by Smith and Waltman concerning perturbations of a globally stable steady-state. Properties of the steady-states and numerical simulations of the system’s asymptotic behavior complement this study for two types of perturbation terms between the species.
本文研究了一类具有扰动项的恒化系统的全局稳定性,该扰动项代表了物种间交换的一般形式。这一转换项不仅取决于物质和底物浓度,还取决于一个正扰动参数。在将不变流形表示为紧子集族的并集之后,我们的主要结果表明,对于该族中的每个子集,存在一个正的摄动参数阈值,在该阈值以下,系统在相应子集中是全局渐近稳定的。我们的方法依赖于Malkin-Gorshin定理和Smith和Waltman关于全局稳定稳态扰动的定理。稳态的性质和系统的渐近行为的数值模拟补充了本研究的两种类型的扰动项之间的物种。
{"title":"Global stability of perturbed chemostat systems","authors":"Claudia Alvarez-Latuz ,&nbsp;Térence Bayen ,&nbsp;Jérôme Coville","doi":"10.1016/j.nonrwa.2025.104509","DOIUrl":"10.1016/j.nonrwa.2025.104509","url":null,"abstract":"<div><div>This paper is devoted to the analysis of the global stability of the chemostat system with a perturbation term representing a general form of exchange between species. This conversion term depends not only on species and substrate concentrations, but also on a positive perturbation parameter. After expressing the invariant manifold as a union of a family of compact subsets, our main result states that for each subset in this family, there exists a positive threshold for the perturbation parameter below which the system is globally asymptotically stable in the corresponding subset. Our approach relies on the Malkin-Gorshin Theorem and on a Theorem by Smith and Waltman concerning perturbations of a globally stable steady-state. Properties of the steady-states and numerical simulations of the system’s asymptotic behavior complement this study for two types of perturbation terms between the species.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104509"},"PeriodicalIF":1.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global well-posedness of full compressible magnetohydrodynamic system in 3D bounded domains with large oscillations and vacuum 三维大振荡真空有界区域中全可压缩磁流体动力系统的全局适定性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-23 DOI: 10.1016/j.nonrwa.2025.104507
Yazhou Chen , Yunkun Chen , Xue Wang
The three-dimensional (3D) full compressible magnetohydrodynamic system is studied in a general bounded domain with slip boundary condition for the velocity filed, adiabatic condition for the temperature and perfect conduction for the magnetic field. For the regular initial data with small energy but possibly large oscillations, the global existence of classical and weak solution as well as the exponential decay rate to the initial-boundary-value problem of this system is obtained. In particular, the density and temperature of such a classical solution are both allowed to vanish initially. Moreover, it is also shown that for the classical solutions, the oscillation of the density will grow unboundedly with an exponential rate when the initial vacuum appears (even at a point). Some new observations and useful estimates are developed to overcome the difficulties caused by the slip boundary conditions.
在一般有界域中研究了三维全可压缩磁流体动力系统,速度场具有滑移边界条件,温度场具有绝热条件,磁场具有完全导通条件。对于能量小但可能振荡大的正则初始数据,得到了该系统初边值问题的经典解和弱解的整体存在性以及指数衰减率。特别地,这种经典溶液的密度和温度都被允许在初始时消失。此外,还表明,对于经典解,当初始真空出现时(即使在某一点),密度的振荡将以指数速率无界增长。为了克服由滑移边界条件引起的困难,提出了一些新的观测和有用的估计。
{"title":"Global well-posedness of full compressible magnetohydrodynamic system in 3D bounded domains with large oscillations and vacuum","authors":"Yazhou Chen ,&nbsp;Yunkun Chen ,&nbsp;Xue Wang","doi":"10.1016/j.nonrwa.2025.104507","DOIUrl":"10.1016/j.nonrwa.2025.104507","url":null,"abstract":"<div><div>The three-dimensional (3D) full compressible magnetohydrodynamic system is studied in a general bounded domain with slip boundary condition for the velocity filed, adiabatic condition for the temperature and perfect conduction for the magnetic field. For the regular initial data with small energy but possibly large oscillations, the global existence of classical and weak solution as well as the exponential decay rate to the initial-boundary-value problem of this system is obtained. In particular, the density and temperature of such a classical solution are both allowed to vanish initially. Moreover, it is also shown that for the classical solutions, the oscillation of the density will grow unboundedly with an exponential rate when the initial vacuum appears (even at a point). Some new observations and useful estimates are developed to overcome the difficulties caused by the slip boundary conditions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104507"},"PeriodicalIF":1.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the critical points of planar polynomial Hamiltonian systems 平面多项式哈密顿系统的临界点
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-21 DOI: 10.1016/j.nonrwa.2025.104503
Anna Cima, Armengol Gasull, Francesc Mañosas
It is well known that the critical points of planar polynomial Hamiltonian vector fields are either centers or points with an even number of hyperbolic sectors. We give a sharp upper bound of the number of centers that these systems can have in terms of the degrees of their components. We also prove that generically the critical points at infinity of their Poincaré compactification are either nodes or have indices 1,0 or 1 and have at most two sectors: both hyperbolic, both elliptic or one of each type. These characteristics are no more true in the non generic situation. Although these results are known we revisit their proofs. The new proofs are shorter and based on a new approach.
众所周知,平面多项式哈密顿向量场的临界点要么是中心,要么是具有偶数个双曲扇区的点。我们给出了一个明显的上限,这些系统可以有中心的数量,根据它们组成部分的度数。我们还证明,一般的临界点在无穷远处庞加莱紧化节点或指标−1,0或1,最多有两个部门:双曲线,椭圆或每种类型之一。这些特征在非一般情况下不再成立。虽然这些结果是已知的,我们重新审视它们的证明。新的证明更短,并且基于一种新的方法。
{"title":"On the critical points of planar polynomial Hamiltonian systems","authors":"Anna Cima,&nbsp;Armengol Gasull,&nbsp;Francesc Mañosas","doi":"10.1016/j.nonrwa.2025.104503","DOIUrl":"10.1016/j.nonrwa.2025.104503","url":null,"abstract":"<div><div>It is well known that the critical points of planar polynomial Hamiltonian vector fields are either centers or points with an even number of hyperbolic sectors. We give a sharp upper bound of the number of centers that these systems can have in terms of the degrees of their components. We also prove that generically the critical points at infinity of their Poincaré compactification are either nodes or have indices <span><math><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn></mrow></math></span> or 1 and have at most two sectors: both hyperbolic, both elliptic or one of each type. These characteristics are no more true in the non generic situation. Although these results are known we revisit their proofs. The new proofs are shorter and based on a new approach.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104503"},"PeriodicalIF":1.8,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145099838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Real World Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1