Pub Date : 2024-11-09DOI: 10.1016/j.nonrwa.2024.104254
Denis de Carvalho Braga , Fabio Scalco Dias , Jaume Llibre , Luis Fernando Mello
A Markus-Yamabe vector field is a smooth vector field in having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point : all the orbits tend to in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in , , does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.
{"title":"The matching of two Markus-Yamabe piecewise smooth systems in the plane","authors":"Denis de Carvalho Braga , Fabio Scalco Dias , Jaume Llibre , Luis Fernando Mello","doi":"10.1016/j.nonrwa.2024.104254","DOIUrl":"10.1016/j.nonrwa.2024.104254","url":null,"abstract":"<div><div>A Markus-Yamabe vector field is a smooth vector field in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point <span><math><mi>p</mi></math></span>: all the orbits tend to <span><math><mi>p</mi></math></span> in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104254"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider the continuous superposition of operators of the form where denotes a signed measure over the set , joined to a nonlinearity satisfying a proper subcritical growth. The novelty of the paper relies in the fact that, differently from the existing literature, the superposition occurs in both and .
Here we introduce a new framework which is so broad to include, for example, the scenarios of the finite sum of different (in both and ) Laplacians, or of a fractional -Laplacian plus a -Laplacian, or even combinations involving some fractional Laplacians with the “wrong” sign.
The development of this new setting comes with two applications, which are related to the Weierstrass Theorem and a Mountain Pass technique. The results obtained contribute to the existing literature with several specific cases of interest.
我们考虑的是形式为 Δ[0,1]×(1,N)(-Δ)psudμ(s,p) 的算子的连续叠加,其中 μ 表示集合 [0,1]×(1,N) 上的有符号度量,并与满足适当次临界增长的非线性连接。本文的新颖之处在于,与现有文献不同的是,叠加同时发生在 s 和 p 中。在此,我们引入了一个新的框架,该框架非常宽泛,可以包括不同(同时发生在 s 和 p 中)拉普拉斯的有限和,或分数 p 拉普拉斯加 p 拉普拉斯,甚至是涉及一些带有 "错误 "符号的分数拉普拉斯的组合。所获得的结果为现有文献提供了几个值得关注的具体案例。
{"title":"A general theory for the (s,p)-superposition of nonlinear fractional operators","authors":"Serena Dipierro, Edoardo Proietti Lippi, Caterina Sportelli, Enrico Valdinoci","doi":"10.1016/j.nonrwa.2024.104251","DOIUrl":"10.1016/j.nonrwa.2024.104251","url":null,"abstract":"<div><div>We consider the continuous superposition of operators of the form <span><span><span><math><mrow><msub><mrow><mo>∬</mo></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></msub><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mspace></mspace><mi>u</mi><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>μ</mi></math></span> denotes a signed measure over the set <span><math><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, joined to a nonlinearity satisfying a proper subcritical growth. The novelty of the paper relies in the fact that, differently from the existing literature, the superposition occurs in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>.</div><div>Here we introduce a new framework which is so broad to include, for example, the scenarios of the finite sum of different (in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>) Laplacians, or of a fractional <span><math><mi>p</mi></math></span>-Laplacian plus a <span><math><mi>p</mi></math></span>-Laplacian, or even combinations involving some fractional Laplacians with the “wrong” sign.</div><div>The development of this new setting comes with two applications, which are related to the Weierstrass Theorem and a Mountain Pass technique. The results obtained contribute to the existing literature with several specific cases of interest.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104251"},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.nonrwa.2024.104247
Luli Xu, Chunlai Mu, Minghua Zhang, Jing Zhang
This paper deals with an attraction–repulsion Chemotaxis-Navier–Stokes system with Dirichlet boundary for the attraction signal and Neumann boundary for the repulsion signal. Based on the work of Winkler (2020) and Wang et al. (2022), by using a series estimates, it is shown that in two dimension the classical solution of the system is globally bounded, under the condition of small initial values in the explicit expressions for and attraction–repulsion coefficients.
本文讨论了一个吸引-排斥趋化-纳维尔-斯托克斯系统,该系统的吸引信号和排斥信号分别具有迪里夏特边界和诺伊曼边界。在 Winkler (2020) 和 Wang 等人 (2022) 的研究基础上,通过系列估计,证明了在二维中,在‖c0‖L∞(Ω) 和吸引-排斥系数的显式中初始值‖n0‖L1(Ω) 较小的条件下,系统的经典解是全局有界的。
{"title":"Global bounded solution in an attraction repulsion Chemotaxis-Navier-Stokes system with Neumann and Dirichlet boundary conditions","authors":"Luli Xu, Chunlai Mu, Minghua Zhang, Jing Zhang","doi":"10.1016/j.nonrwa.2024.104247","DOIUrl":"10.1016/j.nonrwa.2024.104247","url":null,"abstract":"<div><div>This paper deals with an attraction–repulsion Chemotaxis-Navier–Stokes system with Dirichlet boundary for the attraction signal and Neumann boundary for the repulsion signal. Based on the work of Winkler (2020) and Wang et al. (2022), by using a series estimates, it is shown that in two dimension the classical solution of the system is globally bounded, under the condition of small initial values <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></math></span> in the explicit expressions for <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></math></span> and attraction–repulsion coefficients.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104247"},"PeriodicalIF":1.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.nonrwa.2024.104253
Hua Zhong
<div><div>We consider a quasilinear chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> with nonlinear diffusion function <span><math><mrow><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and chemotactic sensitivity <span><math><mrow><mi>S</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> <span><math><mrow><mo>(</mo><mi>d</mi><mo>≥</mo><mn>3</mn><mo>)</mo></mrow></math></span>. Here the rate <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></math></span> grows like <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>m</mi></mrow></msup></math></span> with <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span> as <span><math><mrow><mi>s</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>.</div><div>It is first shown that there exists a <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> such that if free energy with initial data is suitably small and <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo><</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>/</mo><mrow>
{"title":"Threshold value for a quasilinear Keller–Segel chemotaxis system with the intermediate exponent in a bounded domain","authors":"Hua Zhong","doi":"10.1016/j.nonrwa.2024.104253","DOIUrl":"10.1016/j.nonrwa.2024.104253","url":null,"abstract":"<div><div>We consider a quasilinear chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> with nonlinear diffusion function <span><math><mrow><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and chemotactic sensitivity <span><math><mrow><mi>S</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> <span><math><mrow><mo>(</mo><mi>d</mi><mo>≥</mo><mn>3</mn><mo>)</mo></mrow></math></span>. Here the rate <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></math></span> grows like <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>m</mi></mrow></msup></math></span> with <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span> as <span><math><mrow><mi>s</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>.</div><div>It is first shown that there exists a <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> such that if free energy with initial data is suitably small and <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo><</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>/</mo><mrow>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104253"},"PeriodicalIF":1.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.nonrwa.2024.104246
Yuan Chang, Liqin Zhao, Qiuyi Wang
This paper studies the Poincaré bifurcation of the planar vector fields , , where , with , and and are polynomials in of the degree . The phase portraits of the unperturbed systems with at least one center can be divided into 10 classes by their phase portraits. For general , we obtain the upper bound of the number of limit cycles bifurcating from period annuli if the first order Melnikov function is not identically zero. The results are new and some of the results in the literatures are improved.
本文研究了平面向量场ẋ=Hy(x,y)+ɛf(x,y),ẏ=-Hx(x,y)+ɛg(x,y)的泊恩卡分岔,其中 0<;|ɛ|≪1,H(x,y)=αx2+βy2+ax4+bx2y2+cy4,(α,β,a,b,c)∈R5,αβ<0,a2+b2+c2≠0,f(x,y)和g(x,y)是(x,y)的 n 阶多项式。至少有一个中心的无扰动系统的相位肖像可按其相位肖像分为 10 类。对于一般 n,如果一阶梅利尼科夫函数不为同零,我们得到了从周期环分岔出的极限周期数的上限。这些结果是新的,并且改进了文献中的一些结果。
{"title":"The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems","authors":"Yuan Chang, Liqin Zhao, Qiuyi Wang","doi":"10.1016/j.nonrwa.2024.104246","DOIUrl":"10.1016/j.nonrwa.2024.104246","url":null,"abstract":"<div><div>This paper studies the Poincaré bifurcation of the planar vector fields <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><mrow><mo>|</mo><mi>ɛ</mi><mo>|</mo></mrow><mo>≪</mo><mn>1</mn></mrow></math></span>, <span><span><span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>β</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>α</mi><mi>β</mi><mo><</mo><mn>0</mn></mrow></math></span></span></span>with <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≠</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> are polynomials in <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span> of the degree <span><math><mi>n</mi></math></span>. The phase portraits of the unperturbed systems with at least one center can be divided into 10 classes by their phase portraits. For general <span><math><mi>n</mi></math></span>, we obtain the upper bound of the number of limit cycles bifurcating from period annuli if the first order Melnikov function is not identically zero. The results are new and some of the results in the literatures are improved.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104246"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.nonrwa.2024.104234
Chuanjia Wan, Pan Zheng
<div><div>This paper deals with an indirect pursuit-evasion model with signal-dependent diffusion and sensitivity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>u</mi><mo>∇</mo><mi>z</mi></mrow></mfenced><mo>+</mo><mi>u</mi><mfenced><mrow><mi>α</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mi>v</mi><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>v</mi><mfenced><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>−</mo><mi>γ</mi><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>+</mo><mi>δ</mi><mi>v</mi><mo>−</mo><mi>ρ</mi><mi>z</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow
{"title":"Boundedness and stabilization in an indirect pursuit-evasion model with nonlinear signal-dependent diffusion and sensitivity","authors":"Chuanjia Wan, Pan Zheng","doi":"10.1016/j.nonrwa.2024.104234","DOIUrl":"10.1016/j.nonrwa.2024.104234","url":null,"abstract":"<div><div>This paper deals with an indirect pursuit-evasion model with signal-dependent diffusion and sensitivity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>u</mi><mo>∇</mo><mi>z</mi></mrow></mfenced><mo>+</mo><mi>u</mi><mfenced><mrow><mi>α</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mi>v</mi><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>v</mi><mfenced><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>−</mo><mi>γ</mi><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>+</mo><mi>δ</mi><mi>v</mi><mo>−</mo><mi>ρ</mi><mi>z</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104234"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.nonrwa.2024.104249
Ryunosuke Kusaba
This paper is devoted to the asymptotic behavior of global solutions to the convection–diffusion equation in the Fujita-subcritical case. We improve the result by Zuazua (1993) and establish higher order asymptotic expansions with decay estimates of the remainders. We also discuss the optimality for the decay rates of the remainders.
{"title":"Higher order asymptotic expansions for the convection–diffusion equation in the Fujita-subcritical case","authors":"Ryunosuke Kusaba","doi":"10.1016/j.nonrwa.2024.104249","DOIUrl":"10.1016/j.nonrwa.2024.104249","url":null,"abstract":"<div><div>This paper is devoted to the asymptotic behavior of global solutions to the convection–diffusion equation in the Fujita-subcritical case. We improve the result by Zuazua (1993) and establish higher order asymptotic expansions with decay estimates of the remainders. We also discuss the optimality for the decay rates of the remainders.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104249"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.nonrwa.2024.104250
Sevdzhan Hakkaev , Kadir Şamdanlı
This paper concerns the stability of periodic traveling waves of cnoidal type for the nonlinear dispersive systems. The main objective of the paper is to study their stability with respect to co-periodic perturbations.
本文涉及非线性色散系统的周期行波的稳定性。本文的主要目的是研究它们在共周期扰动下的稳定性。
{"title":"On the spectral stability of periodic waves of the dispersive systems of modified KdV equations","authors":"Sevdzhan Hakkaev , Kadir Şamdanlı","doi":"10.1016/j.nonrwa.2024.104250","DOIUrl":"10.1016/j.nonrwa.2024.104250","url":null,"abstract":"<div><div>This paper concerns the stability of periodic traveling waves of cnoidal type for the nonlinear dispersive systems. The main objective of the paper is to study their stability with respect to co-periodic perturbations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104250"},"PeriodicalIF":1.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.nonrwa.2024.104248
Yeping Li, Heyu Liu, Rong Yin
In this article, we investigate the large-time behavior of the solution to outflow problem for full compressible Navier–Stokes–Korteweg equations in the one-dimensional half space. The full compressible Navier–Stokes–Korteweg equations model compressible fluids with viscosity, heat-conductivity and internal capillarity, and include the Korteweg stress effects into the dissipative structure of the hyperbolic–parabolic system and turn out to be more complicated than that in the simpler full compressible Navier–Stokes equations. Under some suitable assumptions of the far fields and the boundary values of the density, the velocity and the absolute temperature, the asymptotic stability of the boundary layer, the 3-rarefaction wave, and the superposition of the boundary layer and the 3-rarefaction wave are shown provided that the initial perturbation and the strength of the nonlinear wave are small. The proof is mainly based on -energy method, some time-decay estimates of the smoothed rarefaction wave and the space-decay estimates of the boundary layer. This can be viewed as the first result about the stability of basic wave patterns for the outflow problem of the full compressible Navier–Stokes–Korteweg equations.
{"title":"Large-time behavior of solutions to outflow problem of full compressible Navier–Stokes–Korteweg equations","authors":"Yeping Li, Heyu Liu, Rong Yin","doi":"10.1016/j.nonrwa.2024.104248","DOIUrl":"10.1016/j.nonrwa.2024.104248","url":null,"abstract":"<div><div>In this article, we investigate the large-time behavior of the solution to outflow problem for full compressible Navier–Stokes–Korteweg equations in the one-dimensional half space. The full compressible Navier–Stokes–Korteweg equations model compressible fluids with viscosity, heat-conductivity and internal capillarity, and include the Korteweg stress effects into the dissipative structure of the hyperbolic–parabolic system and turn out to be more complicated than that in the simpler full compressible Navier–Stokes equations. Under some suitable assumptions of the far fields and the boundary values of the density, the velocity and the absolute temperature, the asymptotic stability of the boundary layer, the 3-rarefaction wave, and the superposition of the boundary layer and the 3-rarefaction wave are shown provided that the initial perturbation and the strength of the nonlinear wave are small. The proof is mainly based on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-energy method, some time-decay estimates of the smoothed rarefaction wave and the space-decay estimates of the boundary layer. This can be viewed as the first result about the stability of basic wave patterns for the outflow problem of the full compressible Navier–Stokes–Korteweg equations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104248"},"PeriodicalIF":1.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.nonrwa.2024.104244
Erdal Karapınar , Ravi P. Agarwal
This paper aims to introduce some basic fixed point theorems on interpolative metric space that is a natural extension of standard metric space.
本文旨在介绍插值度量空间的一些基本定点定理,插值度量空间是标准度量空间的自然扩展。
{"title":"Some fixed point results on interpolative metric spaces","authors":"Erdal Karapınar , Ravi P. Agarwal","doi":"10.1016/j.nonrwa.2024.104244","DOIUrl":"10.1016/j.nonrwa.2024.104244","url":null,"abstract":"<div><div>This paper aims to introduce some basic fixed point theorems on interpolative metric space that is a natural extension of standard metric space.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104244"},"PeriodicalIF":1.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}