首页 > 最新文献

Nonlinear Analysis-Real World Applications最新文献

英文 中文
Weak solvability of elliptic variational inequalities coupled with a nonlinear differential equation 与非线性微分方程耦合的椭圆变分不等式的弱可解性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-14 DOI: 10.1016/j.nonrwa.2024.104216

In this paper we establish existence, uniqueness, and boundedness results for an elliptic variational inequality coupled with a nonlinear ordinary differential equation. Under the general framework, we present a new application modeling the antiplane shear deformation of a static frictional adhesive contact problem. The adhesion process has been extensively studied, but it is usual to assume a priori that the intensity of adhesion is bounded by introducing truncation operators. The aim of this article is to remove this restriction.

The proof is based on an iterative approximation scheme showing that the problem has a unique solution. A key ingredient is finding uniform a priori bounds for each iterate. These are obtained by adapting versions of the Moser iteration to our system of equations.

在本文中,我们建立了与非线性常微分方程耦合的椭圆变分不等式的存在性、唯一性和有界性结果。在一般框架下,我们提出了一个新的应用模型,即静态摩擦粘合接触问题的反平面剪切变形。粘附过程已被广泛研究,但通常是通过引入截断算子先验地假定粘附强度是有界的。本文的目的是消除这一限制。证明基于迭代近似方案,表明问题有唯一解。证明的关键是为每个迭代找到统一的先验边界。这些先验界限是通过将莫瑟迭代法的各个版本与我们的方程系统相匹配而获得的。
{"title":"Weak solvability of elliptic variational inequalities coupled with a nonlinear differential equation","authors":"","doi":"10.1016/j.nonrwa.2024.104216","DOIUrl":"10.1016/j.nonrwa.2024.104216","url":null,"abstract":"<div><p>In this paper we establish existence, uniqueness, and boundedness results for an elliptic variational inequality coupled with a nonlinear ordinary differential equation. Under the general framework, we present a new application modeling the antiplane shear deformation of a static frictional adhesive contact problem. The adhesion process has been extensively studied, but it is usual to assume a priori that the intensity of adhesion is bounded by introducing truncation operators. The aim of this article is to remove this restriction.</p><p>The proof is based on an iterative approximation scheme showing that the problem has a unique solution. A key ingredient is finding uniform a priori bounds for each iterate. These are obtained by adapting versions of the Moser iteration to our system of equations.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S146812182400155X/pdfft?md5=f0c8fe02474b074f403dd8ccda859969&pid=1-s2.0-S146812182400155X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source 描述有/无逻辑源的肿瘤血管生成的准线性趋化模型解的大时间特性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-14 DOI: 10.1016/j.nonrwa.2024.104214
<div><p>In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a bounded smooth domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≤</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, where the parameter <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>ξ</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>μ</mi><mo>≥</mo><
在本文中,我们处理了以下描述肿瘤血管生成的准线性趋化模型的诺伊曼初始边界值问题:ut=∇⋅(D(u)∇u)-χ∇⋅(u∇v)+ξ∇⋅(u∇w)+μu-μu2,x∈Ω,t>0,vt=Δv+∇⋅(v∇w)-v+u,x∈Ω,t>0,0=Δw-w+u,x∈Ω,t>0,∂u∂ν=∂v∂ν=∂w∂ν=0,x∈∂Ω,t>;0,u(x,0)=u0(x),v(x,0)=v0(x),x∈Ω,在有界光滑域Ω⊂Rn(n≤3)中,其中参数χ,ξ>0,μ≥0,D(u)理应满足后面的性质D(u)≥(u+1)αwithα>0。假设μ≥0,α>1或μ=0,ξ≥λ1∗χ2,其中参数λ1∗=λ1∗(u0,v0,Ω)>0,则通过微妙的能量估计,系统接纳一个全局经典解(u,v,w)。此外,当 μ=0 时,可以断言,只要初始数据 u0 足够小,相应的解就会指数收敛到恒定静止解 (u0¯,u0¯,u0¯),其中 u0¯=∫Ωu0|Ω| 。最后,当μ>0 时,可以证明系统的相应解在合适的大μ下指数衰减到(1,1,1)。
{"title":"Large time behavior of solution to a quasilinear chemotaxis model describing tumor angiogenesis with/without logistic source","authors":"","doi":"10.1016/j.nonrwa.2024.104214","DOIUrl":"10.1016/j.nonrwa.2024.104214","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In this paper, we deal with the following Neumann-initial boundary value problem for a quasilinear chemotaxis model describing tumor angiogenesis: &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;in a bounded smooth domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where the parameter &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of a size-structured predator–prey model with chemotaxis mechanism 具有趋化机制的大小结构捕食者-猎物模型的动力学研究
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-14 DOI: 10.1016/j.nonrwa.2024.104218

This paper is concerned with a size-structured diffusive predator–prey model with chemotaxis mechanism. The existence, linearized stability and monotonicity with respect to the growth rates of boundary steady-state solutions are analyzed. Moreover, the global stability of trivial steady-state solution under certain conditions is proved by constructing Lyapunov functional. We investigate the local and global bifurcations of positive steady-state solutions that emanate from semi-trivial steady-state solutions using Lyapunov–Schmidt reduction and bifurcation techniques when the fertility intensity of a predator or prey is used as a bifurcation parameter. It is shown that the nonlinear nonlocal chemotaxis term can lead to the emergence of Allee effect.

本文研究了一个具有趋化机制的大小结构扩散捕食者-猎物模型。分析了边界稳态解的存在性、线性化稳定性和增长率的单调性。此外,还通过构建 Lyapunov 函数证明了微稳态解在特定条件下的全局稳定性。当捕食者或被捕食者的生育强度被用作分岔参数时,我们利用 Lyapunov-Schmidt 还原和分岔技术研究了由半琐碎稳态解产生的正稳态解的局部和全局分岔。研究表明,非线性非局部趋化项会导致阿利效应的出现。
{"title":"Dynamics of a size-structured predator–prey model with chemotaxis mechanism","authors":"","doi":"10.1016/j.nonrwa.2024.104218","DOIUrl":"10.1016/j.nonrwa.2024.104218","url":null,"abstract":"<div><p>This paper is concerned with a size-structured diffusive predator–prey model with chemotaxis mechanism. The existence, linearized stability and monotonicity with respect to the growth rates of boundary steady-state solutions are analyzed. Moreover, the global stability of trivial steady-state solution under certain conditions is proved by constructing Lyapunov functional. We investigate the local and global bifurcations of positive steady-state solutions that emanate from semi-trivial steady-state solutions using Lyapunov–Schmidt reduction and bifurcation techniques when the fertility intensity of a predator or prey is used as a bifurcation parameter. It is shown that the nonlinear nonlocal chemotaxis term can lead to the emergence of Allee effect.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavior in time of solutions to a degenerate chemotaxis system with flux limitation 具有通量限制的退化趋化系统解的时间行为
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.nonrwa.2024.104215
<div><p>We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mspace></mspace><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>u</mi></mrow><mrow><msqrt><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>v</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>v</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>μ</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under no flux boundary conditions in a ball <span><math><mrow><mi>B</mi><mo>=</mo><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> and initial condition <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn><mo>,</mo><mi>χ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>k</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>d</mi><mi>x</mi><mo>.</mo></mrow></math></span> Under suitable conditions on <span><math><mi>α</mi></math></span> and <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> it is shown that the solution blows up in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm at a finite time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></sp
我们研究了一类新的凯勒-西格尔(Keller-Segel)模型,该模型根据化学信号密度提出了细胞密度的有限通量和最佳传输。作为该类模型的原型,我们研究了抛物线-椭圆系统的径向对称解 ut=∇⋅(u∇uu2+|∇u|2)-χkf∇⋅(u∇v(1+|∇v|2)α),x∈Ω,t>;0,0=Δv-μ+u,x∈Ω,t>0,在球 B=Ω⊂RN 中无通量边界条件下,初始条件 u(x,0)=u0(x)>0,χ>0,α>0,kf>0 和 μ=1|Ω|∫Ωu0dx.在α和u0的适当条件下,可以证明解在有限时间Tmax内以L∞-norm形式炸毁,对于某些p>1,它也以Lp-norm形式炸毁。证明主要基于有用的变量变化、比较论证和一些适当的估计。
{"title":"Behavior in time of solutions to a degenerate chemotaxis system with flux limitation","authors":"","doi":"10.1016/j.nonrwa.2024.104215","DOIUrl":"10.1016/j.nonrwa.2024.104215","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We study a new class of Keller–Segel models, which presents a limited flux and an optimal transport of cells density according to chemical signal density. As a prototype of this class we study radially symmetric solutions to the parabolic–elliptic system &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;under no flux boundary conditions in a ball &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and initial condition &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; Under suitable conditions on &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; it is shown that the solution blows up in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-norm at a finite time &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/sp","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001548/pdfft?md5=6f13fb993e83f3c2deb3af5f4ca4b00b&pid=1-s2.0-S1468121824001548-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics for a nonlocal diffusive SIR epidemic model with double free boundaries 具有双自由边界的非局部扩散 SIR 流行病模型的动力学原理
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.nonrwa.2024.104208

In this paper, we study an SIR epidemic model with nonlocal diffusion and double free boundaries, which can be used to describe a class of biological phenomena: the depletion of native resources by all individuals, the infected individuals do not lose their fertility completely, the recovered individuals are immune and no longer infected, the infected and recovered individuals spread along the same free boundary. We first investigate the existence and uniqueness of global solution, long time behaviors and some sufficient conditions for spreading and vanishing. Then we estimate the spreading speed and derive that accelerated spreading could happen when the kernel function does not satisfy a threshold condition.

本文研究了一个具有非局部扩散和双重自由边界的 SIR 流行病模型,该模型可用于描述一类生物现象:所有个体的本地资源耗尽,受感染个体不会完全丧失生育能力,康复个体具有免疫力且不再受感染,受感染个体和康复个体沿同一自由边界扩散。我们首先研究了全局解的存在性和唯一性、长时间行为以及扩散和消失的一些充分条件。然后,我们估算了传播速度,并推导出当核函数不满足阈值条件时,可能会发生加速传播。
{"title":"Dynamics for a nonlocal diffusive SIR epidemic model with double free boundaries","authors":"","doi":"10.1016/j.nonrwa.2024.104208","DOIUrl":"10.1016/j.nonrwa.2024.104208","url":null,"abstract":"<div><p>In this paper, we study an SIR epidemic model with nonlocal diffusion and double free boundaries, which can be used to describe a class of biological phenomena: the depletion of native resources by all individuals, the infected individuals do not lose their fertility completely, the recovered individuals are immune and no longer infected, the infected and recovered individuals spread along the same free boundary. We first investigate the existence and uniqueness of global solution, long time behaviors and some sufficient conditions for spreading and vanishing. Then we estimate the spreading speed and derive that accelerated spreading could happen when the kernel function does not satisfy a threshold condition.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singular double phase problems with convection 带对流的奇异双相问题
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-11 DOI: 10.1016/j.nonrwa.2024.104213

We consider a Dirichlet problem driven by the double phase differential operator and a parametric reaction which has the combined effects of a singular term and of a convective perturbation. Using nonlinear operators of monotone type, truncation and comparison techniques, and fixed point theory, we show that for all small values of the parameter, the problem has a bounded positive solution.

我们考虑了一个由双相微分算子和参数反应驱动的德里赫特问题,该参数反应具有奇异项和对流扰动的综合效应。利用单调型非线性算子、截断和比较技术以及定点理论,我们证明了对于所有小的参数值,该问题都有一个有界的正解。
{"title":"Singular double phase problems with convection","authors":"","doi":"10.1016/j.nonrwa.2024.104213","DOIUrl":"10.1016/j.nonrwa.2024.104213","url":null,"abstract":"<div><p>We consider a Dirichlet problem driven by the double phase differential operator and a parametric reaction which has the combined effects of a singular term and of a convective perturbation. Using nonlinear operators of monotone type, truncation and comparison techniques, and fixed point theory, we show that for all small values of the parameter, the problem has a bounded positive solution.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and uniqueness of the solution to a new class of evolutionary variational hemivariational inequalities 一类新的进化变分半变量不等式解的存在性和唯一性
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-10 DOI: 10.1016/j.nonrwa.2024.104210

This paper is concerned with an evolutionary variational hemivariational inequality which is considered in the form of a nonlinear evolution inclusion. In the inclusion, both the convex subdifferential and Clarke subdifferential are related to the time derivative of the unknown function. In addition, the convex subdifferential operator is unbounded and thus the Signorini case is included. Due to these features, the existing surjectivity theorems for evolution inclusions are not applicable. Instead, the Rothe method based on the temporal discretization strategy is used to study the solvability of this new variational hemivariational inequality. We first show the existence of solutions to the discrete stationary problem. Then we establish a convergence result of the semidiscrete scheme and prove the existence and uniqueness of the solution to the inclusion. Moreover, we show the existence and uniqueness of the solution to the original variational hemivariational inequality. Finally, an example is given to illustrate the abstract result.

本文关注的是以非线性演化包含形式考虑的演化变分半变量不等式。在包容中,凸次微分和克拉克次微分都与未知函数的时间导数有关。此外,凸次微分算子是无界的,因此也包括 Signorini 情况。由于这些特点,现有的演化夹杂的可射性定理并不适用。相反,我们使用基于时间离散化策略的罗特方法来研究这种新的变分半变量不等式的可解性。我们首先证明了离散静止问题解的存在性。然后,我们建立了半离散方案的收敛结果,并证明了包含解的存在性和唯一性。此外,我们还证明了原始变分半变量不等式解的存在性和唯一性。最后,我们举例说明了抽象结果。
{"title":"Existence and uniqueness of the solution to a new class of evolutionary variational hemivariational inequalities","authors":"","doi":"10.1016/j.nonrwa.2024.104210","DOIUrl":"10.1016/j.nonrwa.2024.104210","url":null,"abstract":"<div><p>This paper is concerned with an evolutionary variational hemivariational inequality which is considered in the form of a nonlinear evolution inclusion. In the inclusion, both the convex subdifferential and Clarke subdifferential are related to the time derivative of the unknown function. In addition, the convex subdifferential operator is unbounded and thus the Signorini case is included. Due to these features, the existing surjectivity theorems for evolution inclusions are not applicable. Instead, the Rothe method based on the temporal discretization strategy is used to study the solvability of this new variational hemivariational inequality. We first show the existence of solutions to the discrete stationary problem. Then we establish a convergence result of the semidiscrete scheme and prove the existence and uniqueness of the solution to the inclusion. Moreover, we show the existence and uniqueness of the solution to the original variational hemivariational inequality. Finally, an example is given to illustrate the abstract result.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Velocity extrema in ocean gyre flows 海洋涡流中的极值速度
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-09 DOI: 10.1016/j.nonrwa.2024.104206

Ocean gyres are modelled by the two-dimensional vorticity equation for inviscid flow on a rotating sphere, since their flow is governed by the tangential velocity components, whereas the vertical velocity component is negligible. From the vorticity equation we derive nonlinear elliptic equations for the square of the meridional velocity component as well as for the azimuthal velocity component. Using maximum principles we then show that, under suitable conditions on the oceanic vorticity, the velocity extrema are attained on the boundary of a subtropical gyre located in the zonal band between 15 and 45 Northern, respectively Southern latitude, where the five major gyres are found.

海洋涡流是由旋转球体上不粘性流的二维涡度方程模拟的,因为其流动受切向速度分量支配,而垂直速度分量可以忽略不计。根据涡度方程,我们推导出子午速度分量平方和方位速度分量的非线性椭圆方程。然后,我们利用最大值原理证明,在海洋涡度的适当条件下,速度极值出现在位于北纬 15 ∘ 和南纬 45 ∘ 之间的地带性副热带涡旋的边界上,这里有五个主要的涡旋。
{"title":"Velocity extrema in ocean gyre flows","authors":"","doi":"10.1016/j.nonrwa.2024.104206","DOIUrl":"10.1016/j.nonrwa.2024.104206","url":null,"abstract":"<div><p>Ocean gyres are modelled by the two-dimensional vorticity equation for inviscid flow on a rotating sphere, since their flow is governed by the tangential velocity components, whereas the vertical velocity component is negligible. From the vorticity equation we derive nonlinear elliptic equations for the square of the meridional velocity component as well as for the azimuthal velocity component. Using maximum principles we then show that, under suitable conditions on the oceanic vorticity, the velocity extrema are attained on the boundary of a subtropical gyre located in the zonal band between 15<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> and 45<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> Northern, respectively Southern latitude, where the five major gyres are found.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behaviors of global weak solutions for an epitaxial thin film growth equation 外延薄膜生长方程全局弱解的渐近行为
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-07 DOI: 10.1016/j.nonrwa.2024.104209

This paper is concerned with the Dirichlet initial boundary value problem of an epitaxial thin film growth equation involving gradient-type logarithmic nonlinearity and absorption terms. By introducing an equivalent norm and approximating Lipschitz functions, combining with the technique of Faedo–Galerkin approximation and the family of potential wells, we establish the well-posedness of global weak solutions. Meantime, we classify the decay properties and grow-up phenomenon of the considered problem by using the energy functional and the related Nehari manifold.

本文关注的是涉及梯度型对数非线性和吸收项的外延薄膜生长方程的 Dirichlet 初始边界值问题。通过引入等效规范和近似 Lipschitz 函数,结合 Faedo-Galerkin 近似技术和势阱族,我们建立了全局弱解的好求解性。同时,我们利用能量函数和相关的内哈里流形对所考虑问题的衰减特性和增长现象进行了分类。
{"title":"Asymptotic behaviors of global weak solutions for an epitaxial thin film growth equation","authors":"","doi":"10.1016/j.nonrwa.2024.104209","DOIUrl":"10.1016/j.nonrwa.2024.104209","url":null,"abstract":"<div><p>This paper is concerned with the Dirichlet initial boundary value problem of an epitaxial thin film growth equation involving gradient-type logarithmic nonlinearity and absorption terms. By introducing an equivalent norm and approximating Lipschitz functions, combining with the technique of Faedo–Galerkin approximation and the family of potential wells, we establish the well-posedness of global weak solutions. Meantime, we classify the decay properties and grow-up phenomenon of the considered problem by using the energy functional and the related Nehari manifold.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blow-up of classical solutions of quasilinear wave equations in one space dimension 一个空间维度上准线性波方程经典解的胀大
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-09-07 DOI: 10.1016/j.nonrwa.2024.104212

This paper studies the upper bound of the lifespan of classical solutions of the initial value problems for one dimensional wave equations with quasilinear terms of space-, or time-derivatives of the unknown function. The result for the space-derivative case guarantees the optimality of the general theory for nonlinear wave equations, and its proof is carried out by combination of ordinary differential inequality and iteration method on the lower bound of the weighted functional of the solution.

本文研究了带有未知函数的空间或时间导数准线性项的一维波方程初值问题经典解的寿命上限。空间导数情况下的结果保证了非线性波方程一般理论的最优性,其证明是通过结合常微分不等式和解的加权函数下界的迭代法进行的。
{"title":"Blow-up of classical solutions of quasilinear wave equations in one space dimension","authors":"","doi":"10.1016/j.nonrwa.2024.104212","DOIUrl":"10.1016/j.nonrwa.2024.104212","url":null,"abstract":"<div><p>This paper studies the upper bound of the lifespan of classical solutions of the initial value problems for one dimensional wave equations with quasilinear terms of space-, or time-derivatives of the unknown function. The result for the space-derivative case guarantees the optimality of the general theory for nonlinear wave equations, and its proof is carried out by combination of ordinary differential inequality and iteration method on the lower bound of the weighted functional of the solution.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001512/pdfft?md5=8d3c17560b8046622b27bc7b02e5e3fe&pid=1-s2.0-S1468121824001512-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Real World Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1