In this study, an interactive method coupling a boundary element method (BEM) with a viscous flow solver solving the Reynolds-averaged Navier-Stokes (RANS) equations is applied to multiturbine interaction problems. The BEM is first applied to a single turbine problem to predict its performance with/without yaw in noncavitating/ cavitating conditions. Improved wake alignment models, the full wake alignment and the unsteady wake alignment, are used to align the blade wake. The former is adequate for steady state with zero yaw, and the latter is used for unsteady predictions in the case of nonzero yaw in the incoming flow. The BEM results are compared with the experimental measurements and the results from full-blown RANS simulations for a range of tip speed ratios. The comparisons show satisfactory agreement between the numerical and experimental approaches. Afterward, the BEM/RANS coupling method is applied to multiturbine interaction problems with different layouts and different turbine-to-turbine offsets in an axial turbine farm. The method is shown to work well in this multiturbine interaction problem because of the capability of using a strictly Cartesian grid in the RANS method, which minimizes the artificial diffusion and improves the numerical accuracy of long-range flow development. Representation of a turbine by the body force/mass source fields in the BEM/RANS coupling approach reduces the number of cells required for 3D full-blown RANS simulations, and therefore reduces the computational cost in an efficient way.
{"title":"A BEM/RANS Interactive Method Applied to an Axial Tidal Turbine Farm","authors":"Seungnam Kim, Yiran Su, S. Kinnas","doi":"10.5957/JOSR.04180018","DOIUrl":"https://doi.org/10.5957/JOSR.04180018","url":null,"abstract":"In this study, an interactive method coupling a boundary element method (BEM) with a viscous flow solver solving the Reynolds-averaged Navier-Stokes (RANS) equations is applied to multiturbine interaction problems. The BEM is first applied to a single turbine problem to predict its performance with/without yaw in noncavitating/ cavitating conditions. Improved wake alignment models, the full wake alignment and the unsteady wake alignment, are used to align the blade wake. The former is adequate for steady state with zero yaw, and the latter is used for unsteady predictions in the case of nonzero yaw in the incoming flow. The BEM results are compared with the experimental measurements and the results from full-blown RANS simulations for a range of tip speed ratios. The comparisons show satisfactory agreement between the numerical and experimental approaches. Afterward, the BEM/RANS coupling method is applied to multiturbine interaction problems with different layouts and different turbine-to-turbine offsets in an axial turbine farm. The method is shown to work well in this multiturbine interaction problem because of the capability of using a strictly Cartesian grid in the RANS method, which minimizes the artificial diffusion and improves the numerical accuracy of long-range flow development. Representation of a turbine by the body force/mass source fields in the BEM/RANS coupling approach reduces the number of cells required for 3D full-blown RANS simulations, and therefore reduces the computational cost in an efficient way.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"1 1","pages":"1-26"},"PeriodicalIF":1.4,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44010317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Zhang, G. Reliquet, B. Bouscasse, L. Gentaz, D. L. Touzé
In this study, the added resistance and seakeeping performance of the KVLCC2 ship is investigated by using the spectral wave explicit Navier-Stokes equations (SWENSE) method. The SWENSE method is based on the decomposition of the total field into an incident part explicitly obtained by the wave potential flow theory and a complementary part solved with a modified Reynolds-averaged Navier-Stokes solver. Therefore, the computational efficiency can be achieved by using a relatively coarse mesh in the far field, retaining the accuracy of the incident waves. A parametric study is performed under regular wave conditions with 3Degree of Freedom (DOF) motions of the hull. The results are compared with the large literature available. An additional case is simulated to demonstrate the capability of the present method in simulating seakeeping problems in irregular sea states. Good agreement between the computed results with the reference data can be observed for the hull model, which indicates that the added resistance and seakeeping performances can be well predicted by the present method.
{"title":"Numerical Investigation on the Added Resistance and Seakeeping Performance of KVLCC2 with the SWENSE Method","authors":"Yang Zhang, G. Reliquet, B. Bouscasse, L. Gentaz, D. L. Touzé","doi":"10.5957/JOSR.03200023","DOIUrl":"https://doi.org/10.5957/JOSR.03200023","url":null,"abstract":"In this study, the added resistance and seakeeping performance of the KVLCC2 ship is investigated by using the spectral wave explicit Navier-Stokes equations (SWENSE) method. The SWENSE method is based on the decomposition of the total field into an incident part explicitly obtained by the wave potential flow theory and a complementary part solved with a modified Reynolds-averaged Navier-Stokes solver. Therefore, the computational efficiency can be achieved by using a relatively coarse mesh in the far field, retaining the accuracy of the incident waves. A parametric study is performed under regular wave conditions with 3Degree of Freedom (DOF) motions of the hull. The results are compared with the large literature available. An additional case is simulated to demonstrate the capability of the present method in simulating seakeeping problems in irregular sea states. Good agreement between the computed results with the reference data can be observed for the hull model, which indicates that the added resistance and seakeeping performances can be well predicted by the present method.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"1 1","pages":"1-18"},"PeriodicalIF":1.4,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44401849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resistance and self-propulsion characteristics of a naval ship at full scale have been investigated by using Telfer’s GEOmetrically SIMilar (GEOSIM) method based on the computational fluid dynamics (CFD) approach. For this purpose, first, the resistance forces of the Office of Naval Research Tumblehome (ONRT) hull have been computed at different three model scales by using the overset mesh technique. The full-scale resistance and nominal wake fraction of the ONRT hull have been estimated by using Telfer’s GEOSIM method. Resistance and nominal wake fraction have then been compared with those of CFD at full scale. Later, the self-propulsion characteristics of the ONRT hull have been examined using Telfer’s GEOSIM method based on the CFD approach. Self-propulsion factors at the full-scale hull have been predicted by using the SST k-ω turbulence model to involve 2-degrees of freedom ship motions (heave and pitch). Rotational motion of the propeller has also been simulated by using the rigid body motion technique. The results calculated by Telfer’s GEOSIM method and the 1978 International Towing Tank Conference (ITTC) extrapolation technique have been compared with each other and discussed with those of the CFD approach at full scale. It was found that the full-scale results (both resistance and self-propulsion factors) predicted by Telfer’s GEOSIM method are closer to those of the CFD approach than those of the 1978 ITTC technique. It can be noted that Telfer’s GEOSIM method is fast, robust, and reliable and can be used as an alternative to the 1978 ITTC method for predicting the self-propulsion performance of a full-scale ship.
{"title":"Prediction of Resistance and Self-Propulsion Characteristics of a Full-Scale Naval Ship by CFD-Based GEOSIM Method","authors":"C. Delen, U. Can, S. Bal","doi":"10.5957/JOSR.03200022","DOIUrl":"https://doi.org/10.5957/JOSR.03200022","url":null,"abstract":"Resistance and self-propulsion characteristics of a naval ship at full scale have been investigated by using Telfer’s GEOmetrically SIMilar (GEOSIM) method based on the computational fluid dynamics (CFD) approach. For this purpose, first, the resistance forces of the Office of Naval Research Tumblehome (ONRT) hull have been computed at different three model scales by using the overset mesh technique. The full-scale resistance and nominal wake fraction of the ONRT hull have been estimated by using Telfer’s GEOSIM method. Resistance and nominal wake fraction have then been compared with those of CFD at full scale. Later, the self-propulsion characteristics of the ONRT hull have been examined using Telfer’s GEOSIM method based on the CFD approach. Self-propulsion factors at the full-scale hull have been predicted by using the SST k-ω turbulence model to involve 2-degrees of freedom ship motions (heave and pitch). Rotational motion of the propeller has also been simulated by using the rigid body motion technique. The results calculated by Telfer’s GEOSIM method and the 1978 International Towing Tank Conference (ITTC) extrapolation technique have been compared with each other and discussed with those of the CFD approach at full scale. It was found that the full-scale results (both resistance and self-propulsion factors) predicted by Telfer’s GEOSIM method are closer to those of the CFD approach than those of the 1978 ITTC technique. It can be noted that Telfer’s GEOSIM method is fast, robust, and reliable and can be used as an alternative to the 1978 ITTC method for predicting the self-propulsion performance of a full-scale ship.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":"1-16"},"PeriodicalIF":1.4,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48127946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongshu Ren, Javad Javaherian, Christine M. Gilbert
The interaction between the structural response and hydrodynamic loading (hydroelasticity) must be considered for design and operation purposes of high-speed planing craft made of composites that are prone to frequent water impact (slamming). A computational approach was proposed to study the hydroelastic slamming of a flexible wedge. The computational approach is a loose two-way coupling between a Wagner-based hydrodynamic solution and a linear finite element plate model. Verification and validation (V&V) was performed on this coupled model. It was found that the model overpredicts rigid-body/spray root kinematics by <15% and hydrodynamic loading/ structural response by <26%. One of the primary constraints on the operational envelope of high-speed craft is slamming (water impact). Slamming occurs between the hull body and the water surface when a portion/whole of the craft exits the water and then reenters at high-enough velocity (Lloyd 1989; Faltinsen 2005). The frequent water impacts, which work like “water hammers,” along with their induced acceleration pose great jeopardy on hull structures as well as crew and instrument on-board (Yamamoto et al. 1985; Ensign et al. 2000; Hirdaris et al. 2014). With the growing use of lightweight materials, the interaction between the structural deformation and the hydrodynamic loading (hydroelasticity) becomes more prevalent. The current design criteria of high-speed craft are based on empirical procedures with no regard to hydroelasticity due to the lack of understanding of this complex phenomenon (DNV 2013; ABS 2016). Therefore, a better comprehension of hydroelastic slamming is the first step to designing more high-performance craft (Fu et al. 2014; Judge et al. 2020).
{"title":"A Verification and Validation Study on a Loosely Two-Way Coupled Hydroelastic Model of Wedge Water Entry","authors":"Zhongshu Ren, Javad Javaherian, Christine M. Gilbert","doi":"10.5957/josr.10200054","DOIUrl":"https://doi.org/10.5957/josr.10200054","url":null,"abstract":"\u0000 \u0000 The interaction between the structural response and hydrodynamic loading (hydroelasticity) must be considered for design and operation purposes of high-speed planing craft made of composites that are prone to frequent water impact (slamming). A computational approach was proposed to study the hydroelastic slamming of a flexible wedge. The computational approach is a loose two-way coupling between a Wagner-based hydrodynamic solution and a linear finite element plate model. Verification and validation (V&V) was performed on this coupled model. It was found that the model overpredicts rigid-body/spray root kinematics by <15% and hydrodynamic loading/ structural response by <26%.\u0000 \u0000 \u0000 \u0000 One of the primary constraints on the operational envelope of high-speed craft is slamming (water impact). Slamming occurs between the hull body and the water surface when a portion/whole of the craft exits the water and then reenters at high-enough velocity (Lloyd 1989; Faltinsen 2005). The frequent water impacts, which work like “water hammers,” along with their induced acceleration pose great jeopardy on hull structures as well as crew and instrument on-board (Yamamoto et al. 1985; Ensign et al. 2000; Hirdaris et al. 2014). With the growing use of lightweight materials, the interaction between the structural deformation and the hydrodynamic loading (hydroelasticity) becomes more prevalent. The current design criteria of high-speed craft are based on empirical procedures with no regard to hydroelasticity due to the lack of understanding of this complex phenomenon (DNV 2013; ABS 2016). Therefore, a better comprehension of hydroelastic slamming is the first step to designing more high-performance craft (Fu et al. 2014; Judge et al. 2020).\u0000","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49643871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper provides the results of model tests in ice to evaluate the performance of the USCG Mackinaw Icebreaker that was equipped with two podded propulsors and compares with the data obtained from the full-scale ice trials. The objective of this collaborative model test program between the NRC and USCG was to understand the capability and limitation of the model tests with podded vessels in ice. As a result, the model tests showed a good agreement with attainable speeds at selected power levels but an overestimation of the ice resistance by an average of 7% (from 10% to 25%). Further discussion of podded icebreaker performance including turning circle tests in ice is provided and future work is proposed. This paper also provides a discussion of two different flexural strength test methods, which are simple beam and cantilever beam tests. The number of icebreakers with podded propulsors has been increasing in recent years and many new icebreakers are planning to use the pods because of high maneuverability and additional benefits such as low noise and vibration, and various usages of the propeller wake. The first pod unit (1.3 MW) was installed in a utility vessel Seili in 1990. Since then, several ice-going tankers/ icebreakers have used single or multiple pod units, which had up to 16 MW power (Wilkman et al. 2018).
{"title":"Full-Scale/Model-Scale Comparison of Podded Icebreaker’s Performance in Ice with Flexural Strength Measurement Study","authors":"Jungyong Wang, Jeffrey Brown, R. Frederking","doi":"10.5957/josr.09210031","DOIUrl":"https://doi.org/10.5957/josr.09210031","url":null,"abstract":"\u0000 \u0000 This paper provides the results of model tests in ice to evaluate the performance of the USCG Mackinaw Icebreaker that was equipped with two podded propulsors and compares with the data obtained from the full-scale ice trials. The objective of this collaborative model test program between the NRC and USCG was to understand the capability and limitation of the model tests with podded vessels in ice. As a result, the model tests showed a good agreement with attainable speeds at selected power levels but an overestimation of the ice resistance by an average of 7% (from 10% to 25%). Further discussion of podded icebreaker performance including turning circle tests in ice is provided and future work is proposed. This paper also provides a discussion of two different flexural strength test methods, which are simple beam and cantilever beam tests.\u0000 \u0000 \u0000 \u0000 The number of icebreakers with podded propulsors has been increasing in recent years and many new icebreakers are planning to use the pods because of high maneuverability and additional benefits such as low noise and vibration, and various usages of the propeller wake. The first pod unit (1.3 MW) was installed in a utility vessel Seili in 1990. Since then, several ice-going tankers/ icebreakers have used single or multiple pod units, which had up to 16 MW power (Wilkman et al. 2018).\u0000","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48665921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Carrica, M. Kerkvliet, F. Quadvlieg, J. E. Martin
We present simulations and experiments of the generic submarine Joubert BB2 performing standard turn, zigzag, and surfacing maneuvers in calm water at depth. The free sailing experiments, performed at Maritime Research Institute Netherlands (MARIN), are unique in that they present an open dataset for the community to benchmark maneuvering prediction methodologies. Computations were performed with explicitly gridded sailplanes, tail planes, and propellers using a dynamic overset technique. This study analyzes a 20-degree turning maneuver with vertical control commanding the stern planes and a 20/20 zigzag maneuver with vertical control commanding both sail and stern planes, both of them at a nominal speed of 10 knots, and a 20-degree rise maneuver with horizontal control at 12 knots. The results show that computational fluid dynamics can predict well motions and speeds for free-sailing conditions, but controller commands are harder to replicate. Computations of the rise maneuver with surfacing compare well with experiments, including a crashback maneuver to stop the submarine.
{"title":"CFD Simulations and Experiments of a Submarine in Turn, Zigzag, and Surfacing Maneuvers","authors":"P. Carrica, M. Kerkvliet, F. Quadvlieg, J. E. Martin","doi":"10.5957/JOSR.07200045","DOIUrl":"https://doi.org/10.5957/JOSR.07200045","url":null,"abstract":"We present simulations and experiments of the generic submarine Joubert BB2 performing standard turn, zigzag, and surfacing maneuvers in calm water at depth. The free sailing experiments, performed at Maritime Research Institute Netherlands (MARIN), are unique in that they present an open dataset for the community to benchmark maneuvering prediction methodologies. Computations were performed with explicitly gridded sailplanes, tail planes, and propellers using a dynamic overset technique. This study analyzes a 20-degree turning maneuver with vertical control commanding the stern planes and a 20/20 zigzag maneuver with vertical control commanding both sail and stern planes, both of them at a nominal speed of 10 knots, and a 20-degree rise maneuver with horizontal control at 12 knots. The results show that computational fluid dynamics can predict well motions and speeds for free-sailing conditions, but controller commands are harder to replicate. Computations of the rise maneuver with surfacing compare well with experiments, including a crashback maneuver to stop the submarine.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":" ","pages":"1-16"},"PeriodicalIF":1.4,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48104065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study considers a blunt trailing-edged propeller operating both in a uniform and a nominal wake fields. Experiments are performed in the cavitation tunnel of Hyundai Maritime Research Institute. The effects of propeller rotation speed, tunnel flow speed, and blade sheet cavitation growth on the generation mechanism of the singing propeller are investigated. The cavitation, sound, and vibration characteristics related to the singing phenomena are measured by a hydrophone, a microphone, an accelerometer, and a highspeed digital camera. The natural frequencies of propeller blades are predicted using a finite element method and verified by both contact- and noncontact-type impact hammer tests in air and underwater conditions. The inflow speed and angle of attack for each section of the propeller blades are calculated using the Reynolds-averaged Navier-Stokes equation-based flow analysis. Using a detached eddy simulation, the vortex shedding patterns and their frequencies are calculated. The predicted vortex shedding frequencies are compared with the measured singing frequency and blade natural frequency for determination of consistency. Under cavitation-free regime, the vortex shedding frequencies are predicted for normalized blade radial positions of .8R and .9R. The computed values are close to the two blade natural frequencies and also consistent with the double singing phenomena in the cavitation tunnel test. For fully developed blade sheet cavitation condition, the vortex formation in the wake region is observed to be strongly influenced by the cavitation growth on the pressure side surface. Propeller singing is diminished with the continuous growth of cavitation and is finally locked-off. The significant variation of the flow-induced sound and vibration levels are also observed for the locked-in and the locked-off conditions. The singing occurrence location and frequency under uniform inflow condition are analyzed to investigate the generation mechanism of propeller singing. This study can be applied to the analysis of singing location and its frequency of a propeller operating in the hull wake, which changes the angle of attack according to the propeller rotation angle.
{"title":"Numerical and Experimental Analysis of a Singing Propeller Having Blunt Trailing Edges","authors":"Taehyung Kim, J. Hur, Hyoungsuk Lee","doi":"10.5957/JOSR.09180067","DOIUrl":"https://doi.org/10.5957/JOSR.09180067","url":null,"abstract":"This study considers a blunt trailing-edged propeller operating both in a uniform and a nominal wake fields. Experiments are performed in the cavitation tunnel of Hyundai Maritime Research Institute. The effects of propeller rotation speed, tunnel flow speed, and blade sheet cavitation growth on the generation mechanism of the singing propeller are investigated. The cavitation, sound, and vibration characteristics related to the singing phenomena are measured by a hydrophone, a microphone, an accelerometer, and a highspeed digital camera. The natural frequencies of propeller blades are predicted using a finite element method and verified by both contact- and noncontact-type impact hammer tests in air and underwater conditions. The inflow speed and angle of attack for each section of the propeller blades are calculated using the Reynolds-averaged Navier-Stokes equation-based flow analysis. Using a detached eddy simulation, the vortex shedding patterns and their frequencies are calculated. The predicted vortex shedding frequencies are compared with the measured singing frequency and blade natural frequency for determination of consistency. Under cavitation-free regime, the vortex shedding frequencies are predicted for normalized blade radial positions of .8R and .9R. The computed values are close to the two blade natural frequencies and also consistent with the double singing phenomena in the cavitation tunnel test. For fully developed blade sheet cavitation condition, the vortex formation in the wake region is observed to be strongly influenced by the cavitation growth on the pressure side surface. Propeller singing is diminished with the continuous growth of cavitation and is finally locked-off. The significant variation of the flow-induced sound and vibration levels are also observed for the locked-in and the locked-off conditions. The singing occurrence location and frequency under uniform inflow condition are analyzed to investigate the generation mechanism of propeller singing. This study can be applied to the analysis of singing location and its frequency of a propeller operating in the hull wake, which changes the angle of attack according to the propeller rotation angle.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"125 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71030236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, the ship propulsion shaft system with cruciform universal coupling is studied. First, based on the analysis of the structure and characteristics of the cross-axis universal coupling, the motion relations and expressions between the components of the universal coupling are established by using the coordinate transformation method. Second, the characteristics of the four submodels of the head mass point element, the end mass point element, the universal coupling mass point element, and other mass point elements are discussed, and the corresponding torsional vibration differential equations of the four submodels are established. On this basis, the mathematical model of the propulsion shafting system and the differential equations of torsional vibration are established by using the modularization method and lumped parameter method. Finally, the torsional vibration modes and response characteristics of the shafts are calculated and analyzed by using the system matrix method when the external load driving torques of the universal coupling, propeller, and diesel engine are considered. At the same time, the correctness of the mathematical model and calculation method is verified by the test and comparative analysis of ship propulsion shafts. It lays a theoretical foundation for further research on torsional vibration characteristics and mechanisms of the ship propulsion shafting system based on universal coupling.
{"title":"Study on Torsional Vibration Characteristics of Cross Shaft Universal Coupling","authors":"Nengqi Xiao, Xiang Xu, Rui-ping Zhou, Chen Baojia","doi":"10.5957/JOSR.07190041","DOIUrl":"https://doi.org/10.5957/JOSR.07190041","url":null,"abstract":"In this work, the ship propulsion shaft system with cruciform universal coupling is studied. First, based on the analysis of the structure and characteristics of the cross-axis universal coupling, the motion relations and expressions between the components of the universal coupling are established by using the coordinate transformation method. Second, the characteristics of the four submodels of the head mass point element, the end mass point element, the universal coupling mass point element, and other mass point elements are discussed, and the corresponding torsional vibration differential equations of the four submodels are established. On this basis, the mathematical model of the propulsion shafting system and the differential equations of torsional vibration are established by using the modularization method and lumped parameter method. Finally, the torsional vibration modes and response characteristics of the shafts are calculated and analyzed by using the system matrix method when the external load driving torques of the universal coupling, propeller, and diesel engine are considered. At the same time, the correctness of the mathematical model and calculation method is verified by the test and comparative analysis of ship propulsion shafts. It lays a theoretical foundation for further research on torsional vibration characteristics and mechanisms of the ship propulsion shafting system based on universal coupling.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"1 1","pages":"1-11"},"PeriodicalIF":1.4,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44947154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao, Jianxi, Wuhan University of Technology / Ministry of Education, China Liu, Zuyuan, Wuhan University of Technology / Ministry of Education, China Su, Yan, Wuhan University of Technology / Ministry of Education, China Cheng, Xide, Wuhan University of Technology / Ministry of Education, China Song, Xuemin, Wuhan University of Technology / Ministry of Education, China Zhan, Chengsheng, Wuhan University of Technology / Ministry of Education, China
{"title":"A Time-Averaged Method for Ship Maneuvering Prediction in Waves","authors":"Jianxi Yao, Zuyuan Liu, Yangyang Su, Xide Cheng, Xuemin Song, Cheng-sheng Zhan","doi":"10.5957/josr.12180111","DOIUrl":"https://doi.org/10.5957/josr.12180111","url":null,"abstract":"Yao, Jianxi, Wuhan University of Technology / Ministry of Education, China Liu, Zuyuan, Wuhan University of Technology / Ministry of Education, China Su, Yan, Wuhan University of Technology / Ministry of Education, China Cheng, Xide, Wuhan University of Technology / Ministry of Education, China Song, Xuemin, Wuhan University of Technology / Ministry of Education, China Zhan, Chengsheng, Wuhan University of Technology / Ministry of Education, China","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"64 1","pages":"203-225"},"PeriodicalIF":1.4,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43376335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A higher-order moving particle semi-implicit (MPS) method was further developed to solve 2-D water entry problems. To overcome the inconsistency in the original MPS methods, a pressure gradient correction was implemented to guarantee the first-order consistency of the gradient. The corrective matrix was modified by using the derivative of the kernel function. A particle shifting technique was also applied to improve the numerical stability. Validation studies were carried out for water entry of a rigid wedge with the tilting angles of 0º, 10°, and 20º, and two rigid ship sections. Convergence studies were conducted on domain size, particle spacing, and time step. A particle convergence index method was proposed to evaluate numerical uncertainties in the improved MPS method. Uncertainties in numerical solutions due to spatial discretization were calculated. The predicted impact pressures and forces by the present method are in good agreement with experimental data.
{"title":"Solving 2-D Slamming Problems by an Improved Higher-Order Moving Particle Semi-Implicit Method","authors":"Ruosi Zha, H. Peng, W. Qiu","doi":"10.5957/JOSR.10190061","DOIUrl":"https://doi.org/10.5957/JOSR.10190061","url":null,"abstract":"A higher-order moving particle semi-implicit (MPS) method was further developed to solve 2-D water entry problems. To overcome the inconsistency in the original MPS methods, a pressure gradient correction was implemented to guarantee the first-order consistency of the gradient. The corrective matrix was modified by using the derivative of the kernel function. A particle shifting technique was also applied to improve the numerical stability. Validation studies were carried out for water entry of a rigid wedge with the tilting angles of 0º, 10°, and 20º, and two rigid ship sections. Convergence studies were conducted on domain size, particle spacing, and time step. A particle convergence index method was proposed to evaluate numerical uncertainties in the improved MPS method. Uncertainties in numerical solutions due to spatial discretization were calculated. The predicted impact pressures and forces by the present method are in good agreement with experimental data.","PeriodicalId":50052,"journal":{"name":"Journal of Ship Research","volume":"1 1","pages":"1-29"},"PeriodicalIF":1.4,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47410500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}