Pub Date : 2024-08-07DOI: 10.1016/j.jprocont.2024.103285
Yichao Yang, Chen Xu, Li Xie, Hongfeng Tao, Huizhong Yang
State estimation for the Markov jump linear system (MJLS) is a intractable task when the unpredictable measurement loss exists. Although the conventional methods, such as interacting multiple-model method, are widely used in MJLS, their performance still depends on the known transition probability matrix (TPM). In this article, a novel adaptive state estimation method is proposed for MJLS with unknown measurement loss and TPM based on variational Bayesian inference. Specifically, under system state dynamic and measurement loss are independent, the system state, measurement loss probability and TPM are jointly inferred. In particular, when the stochastic measurement loss occurs, a selective learning mechanism is used to the updating of TPM. The efficiency and superiority of the proposed method is verified by a numerical example and a fermenter process compared with the existing methods.
{"title":"Adaptive state estimation for Markov jump linear system with unknown measurement loss and transition probability matrix","authors":"Yichao Yang, Chen Xu, Li Xie, Hongfeng Tao, Huizhong Yang","doi":"10.1016/j.jprocont.2024.103285","DOIUrl":"10.1016/j.jprocont.2024.103285","url":null,"abstract":"<div><p>State estimation for the Markov jump linear system (MJLS) is a intractable task when the unpredictable measurement loss exists. Although the conventional methods, such as interacting multiple-model method, are widely used in MJLS, their performance still depends on the known transition probability matrix (TPM). In this article, a novel adaptive state estimation method is proposed for MJLS with unknown measurement loss and TPM based on variational Bayesian inference. Specifically, under system state dynamic and measurement loss are independent, the system state, measurement loss probability and TPM are jointly inferred. In particular, when the stochastic measurement loss occurs, a selective learning mechanism is used to the updating of TPM. The efficiency and superiority of the proposed method is verified by a numerical example and a fermenter process compared with the existing methods.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"142 ","pages":"Article 103285"},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.jprocont.2024.103284
Aoxue Yang , Min Wu , Chengda Lu , Jie Hu , Yosuke Nakanishi
Presently, the demand for precise process monitoring during geological drilling has increased dramatically. However, there exists complex dynamic characteristics due to the various forms of changes in operation conditions. A large number of false alarms are usually triggered when using the conventional static-based monitoring methods. In this paper, two types of dynamic behaviors are comprehensively considered, including the dynamic behaviors caused by the operating parameters adjustment and the operating mode switching, and then, a full condition monitoring method is proposed for the drilling process based on just-in-time learning (JITL)-aided slow feature analysis (SFA). On one hand, the JITL local modeling strategy is improved and adopted to deal with the dynamic behavior due to the operating mode switching. Specifically, a sequence spatiotemporal similarity analysis method is developed to improve the local modeling performance. On the other hand, the SFA-based concurrent monitoring of static deviations and dynamic anomalies is realized to cope with the dynamic behavior due to the operating parameters adjustment. Several industrial cases based on actual drilling data are conducted, which illustrate the effectiveness and superiority of the proposed method.
{"title":"Full condition monitoring of geological drilling process based on just-in-time learning-aided slow feature analysis","authors":"Aoxue Yang , Min Wu , Chengda Lu , Jie Hu , Yosuke Nakanishi","doi":"10.1016/j.jprocont.2024.103284","DOIUrl":"10.1016/j.jprocont.2024.103284","url":null,"abstract":"<div><p>Presently, the demand for precise process monitoring during geological drilling has increased dramatically. However, there exists complex dynamic characteristics due to the various forms of changes in operation conditions. A large number of false alarms are usually triggered when using the conventional static-based monitoring methods. In this paper, two types of dynamic behaviors are comprehensively considered, including the dynamic behaviors caused by the operating parameters adjustment and the operating mode switching, and then, a full condition monitoring method is proposed for the drilling process based on just-in-time learning (JITL)-aided slow feature analysis (SFA). On one hand, the JITL local modeling strategy is improved and adopted to deal with the dynamic behavior due to the operating mode switching. Specifically, a sequence spatiotemporal similarity analysis method is developed to improve the local modeling performance. On the other hand, the SFA-based concurrent monitoring of static deviations and dynamic anomalies is realized to cope with the dynamic behavior due to the operating parameters adjustment. Several industrial cases based on actual drilling data are conducted, which illustrate the effectiveness and superiority of the proposed method.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"142 ","pages":"Article 103284"},"PeriodicalIF":3.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1016/j.jprocont.2024.103283
Kaixiang Peng , Jianhua Chen , Hui Yang , Xin Qin
Process monitoring detects faults and issues alerts when faults occur. It has become an integral part of ensuring the safety and quality of industrial processes. Existing mainstream process-monitoring methods often separate data from knowledge, forming distinct systems. However, data and knowledge exhibit complementary characteristics, and using them together can contribute to enhancing monitoring performance. Furthermore, the importance of fault data has not been adequately emphasized. Within this fault data, valuable fault features contribute significantly to process monitoring. In light of these considerations, we propose a process-monitoring method based on temporal knowledge graphs and supervised contrastive learning,which can fully use knowledge, data, and fault information to improve the monitoring performance of the model. First, a temporal knowledge graph is constructed, in which knowledge and data are organically integrated through qualitative knowledge and quantitative data calculations to enhance the interpretability and accuracy of the graph. Second, spatiotemporal features are extracted from the temporal knowledge graph at multiple levels through differentiable graph pooling. Finally, a monitoring statistic is constructed, and fault information is introduced into the statistic through supervised contrastive learning, using fault information to enhance monitoring performance of the model. The fault detection rate on the float-glass production process reaches 95%.
{"title":"Knowledge-data-driven process monitoring based on temporal knowledge graphs and supervised contrastive learning for complex industrial processes","authors":"Kaixiang Peng , Jianhua Chen , Hui Yang , Xin Qin","doi":"10.1016/j.jprocont.2024.103283","DOIUrl":"10.1016/j.jprocont.2024.103283","url":null,"abstract":"<div><p>Process monitoring detects faults and issues alerts when faults occur. It has become an integral part of ensuring the safety and quality of industrial processes. Existing mainstream process-monitoring methods often separate data from knowledge, forming distinct systems. However, data and knowledge exhibit complementary characteristics, and using them together can contribute to enhancing monitoring performance. Furthermore, the importance of fault data has not been adequately emphasized. Within this fault data, valuable fault features contribute significantly to process monitoring. In light of these considerations, we propose a process-monitoring method based on temporal knowledge graphs and supervised contrastive learning,which can fully use knowledge, data, and fault information to improve the monitoring performance of the model. First, a temporal knowledge graph is constructed, in which knowledge and data are organically integrated through qualitative knowledge and quantitative data calculations to enhance the interpretability and accuracy of the graph. Second, spatiotemporal features are extracted from the temporal knowledge graph at multiple levels through differentiable graph pooling. Finally, a monitoring statistic is constructed, and fault information is introduced into the statistic through supervised contrastive learning, using fault information to enhance monitoring performance of the model. The fault detection rate on the float-glass production process reaches 95%.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103283"},"PeriodicalIF":3.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.jprocont.2024.103270
H.A. Krog, J. Jäschke
A new robust nonlinear model predictive control (RNMPC) heuristic is proposed, specifically developed to be i) easy to implement, ii) robust against constraint violations and iii) fast to solve. Our proposed heuristic samples from the disturbance distributions and performs -steps-ahead Monte Carlo (MC) simulations to calculate the back-off where is a small number, typically one. We show two implementations of our heuristic. The Automatic Back-off Calculation NMPC (ABC-NMPC) uses MC simulations on a process model to calculate the back-off, and explicitly states the back-off in a standard NMPC problem. Our second implementation, the MC Single-Stage NMPC (MCSS-NMPC), directly includes the disturbance distribution in the optimization problem, making it an implicit back-off method. Our methods are robust against constraint violation in the next time-step, under certain assumptions. In the presented case-study, our proposed RNMPC methods outperform the popular multi-stage NMPC in terms of robustness and/or computational cost. We suggest several further modifications to our RNMPC methods to improve performance, at the cost of increased complexity.
本文提出了一种新的鲁棒非线性模型预测控制(RNMPC)启发式,其具体特点是:i)易于实施;ii)对违反约束具有鲁棒性;iii)求解速度快。我们提出的启发式从扰动分布中采样,并执行提前一步的蒙特卡洛(MC)模拟,以计算偏移量,其中偏移量是一个小数,通常为 1。我们展示了启发式的两种实现方法。自动偏置计算 NMPC(ABC-NMPC)使用对过程模型的 MC 仿真来计算偏置,并在标准 NMPC 问题中说明偏置。我们的第二种实现方法是 MC 单级 NMPC (MCSS-NMPC),它直接将扰动分布纳入优化问题,使其成为一种后退方法。在某些假设条件下,我们的方法对下一时间步的约束条件违反具有鲁棒性。在案例研究中,我们提出的 RNMPC 方法在鲁棒性和/或计算成本方面优于流行的多阶段 NMPC。我们建议进一步修改 RNMPC 方法,以提高性能,但代价是增加复杂性。
{"title":"A simple and fast robust nonlinear model predictive control heuristic using n-steps-ahead uncertainty predictions for back-off calculations","authors":"H.A. Krog, J. Jäschke","doi":"10.1016/j.jprocont.2024.103270","DOIUrl":"10.1016/j.jprocont.2024.103270","url":null,"abstract":"<div><p>A new robust nonlinear model predictive control (RNMPC) heuristic is proposed, specifically developed to be i) easy to implement, ii) robust against constraint violations and iii) fast to solve. Our proposed heuristic samples from the disturbance distributions and performs <span><math><mi>n</mi></math></span>-steps-ahead Monte Carlo (MC) simulations to calculate the back-off where <span><math><mi>n</mi></math></span> is a small number, typically one. We show two implementations of our heuristic. The Automatic Back-off Calculation NMPC (ABC-NMPC) uses MC simulations on a process model to calculate the back-off, and <em>explicitly</em> states the back-off in a standard NMPC problem. Our second implementation, the MC Single-Stage NMPC (MCSS-NMPC), directly includes the disturbance distribution in the optimization problem, making it an <em>implicit</em> back-off method. Our methods are robust against constraint violation in the next time-step, under certain assumptions. In the presented case-study, our proposed RNMPC methods outperform the popular multi-stage NMPC in terms of robustness and/or computational cost. We suggest several further modifications to our RNMPC methods to improve performance, at the cost of increased complexity.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103270"},"PeriodicalIF":3.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.jprocont.2024.103281
Ze Ying , Yuqing Chang , Yuchen He , Fuli Wang
The application of multivariate statistical analysis in process monitoring has emerged as a significant research topic, with a focus on consideration of data correlations. The present study investigates an anomaly detection method based on autoregressive double latent variables probabilistic (ADLVP) model for industrial dynamic processes. Specifically, the ADLVP model incorporates two distinct types of latent variables (LVs) to capture the internal relationships within the data from both quality-correlated and uncorrelated perspectives. Moreover, the model employs autoregressive modeling to characterize the double latent variables with time-dependence, enabling them to unveil more intricate higher-order autocorrelations between industrial measurements. The model parameters and the double latent variables can be iteratively determined using the expectation maximization (EM) algorithm, upon which the statistics for process monitoring are devised. Finally, the proposed method is validated in two industrial studies, and experimental results demonstrate that the ADLVP model outperforms its counterparts in dynamic processes monitoring.
{"title":"Autoregressive double latent variables probabilistic model for higher-order dynamic process monitoring","authors":"Ze Ying , Yuqing Chang , Yuchen He , Fuli Wang","doi":"10.1016/j.jprocont.2024.103281","DOIUrl":"10.1016/j.jprocont.2024.103281","url":null,"abstract":"<div><p>The application of multivariate statistical analysis in process monitoring has emerged as a significant research topic, with a focus on consideration of data correlations. The present study investigates an anomaly detection method based on autoregressive double latent variables probabilistic (ADLVP) model for industrial dynamic processes. Specifically, the ADLVP model incorporates two distinct types of latent variables (LVs) to capture the internal relationships within the data from both quality-correlated and uncorrelated perspectives. Moreover, the model employs autoregressive modeling to characterize the double latent variables with time-dependence, enabling them to unveil more intricate higher-order autocorrelations between industrial measurements. The model parameters and the double latent variables can be iteratively determined using the expectation maximization (EM) algorithm, upon which the statistics for process monitoring are devised. Finally, the proposed method is validated in two industrial studies, and experimental results demonstrate that the ADLVP model outperforms its counterparts in dynamic processes monitoring.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103281"},"PeriodicalIF":3.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zero-shot learning (ZSL) can diagnose unseen faults without corresponding training data, which has aroused the researchers’ interest. However, a prevailing challenge in most existing ZSL approaches is their limited effectiveness in distinguishing similar unseen faults. This paper proposed a category-tree-guided hierarchical knowledge transfer zero-shot fault diagnosis (CTZSD) method, which is a coarse-to-fine zero-shot fault diagnosis framework to alleviate this problem. To embody the similarities between fault categories, the concept of fault category tree is proposed, for which a data-attribute collaborative tree construction mechanism (DATC) is designed. Rather than relying solely on semantic knowledge, DATC involves data, which carries richer information, to complement the category similarity evaluation. A hierarchical knowledge transfer zero-shot fault diagnosis mechanism (HKT) is subsequently developed, utilizing the established category tree to gradually narrow down the options, thereby promoting the recognition of similar unseen faults. The mechanism treats the diagnostic outcomes and model parameters from coarse-grained tasks as knowledge and transfers them to fine-grained tasks for guidance, realizing a coarse-to-fine diagnosis. Aiming at providing discriminative information to further distinguish similar unseen faults, attention modules are integrated within HKT. These modules assess attribute weight, thereby directing the model’s focus toward the discriminative attributes of similar unseen faults. Experiments on a real TPP industrial process demonstrate that the proposed CTZSD outperforms other traditional ZSL methods in distinguishing similar unseen faults, improving the average accuracy by at least 19.7%.
{"title":"Category-tree-guided hierarchical knowledge transfer framework for zero-shot fault diagnosis","authors":"Baolin Zhang , Jiancheng Zhao , Xu Chen , Jiaqi Yue , Chunhui Zhao","doi":"10.1016/j.jprocont.2024.103267","DOIUrl":"10.1016/j.jprocont.2024.103267","url":null,"abstract":"<div><p>Zero-shot learning (ZSL) can diagnose unseen faults without corresponding training data, which has aroused the researchers’ interest. However, a prevailing challenge in most existing ZSL approaches is their limited effectiveness in distinguishing similar unseen faults. This paper proposed a category-tree-guided hierarchical knowledge transfer zero-shot fault diagnosis (CTZSD) method, which is a coarse-to-fine zero-shot fault diagnosis framework to alleviate this problem. To embody the similarities between fault categories, the concept of fault category tree is proposed, for which a data-attribute collaborative tree construction mechanism (DATC) is designed. Rather than relying solely on semantic knowledge, DATC involves data, which carries richer information, to complement the category similarity evaluation. A hierarchical knowledge transfer zero-shot fault diagnosis mechanism (HKT) is subsequently developed, utilizing the established category tree to gradually narrow down the options, thereby promoting the recognition of similar unseen faults. The mechanism treats the diagnostic outcomes and model parameters from coarse-grained tasks as knowledge and transfers them to fine-grained tasks for guidance, realizing a coarse-to-fine diagnosis. Aiming at providing discriminative information to further distinguish similar unseen faults, attention modules are integrated within HKT. These modules assess attribute weight, thereby directing the model’s focus toward the discriminative attributes of similar unseen faults. Experiments on a real TPP industrial process demonstrate that the proposed CTZSD outperforms other traditional ZSL methods in distinguishing similar unseen faults, improving the average accuracy by at least 19.7%.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103267"},"PeriodicalIF":3.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.jprocont.2024.103282
Yuchen Zhao , Chunjie Yang , Yaoyao Bao , Siwei Lou , Genius B. Machingura , Hang Xiao , Zhe Liu , Bo Huang , Jiayun Mao , Pengwei Tian
The accurate soft sensing of f-CaO content in cement clinker is crucial for the cement industry. However, existing methods require improvements in terms of effectiveness, practicality, and computational efficiency for industrial applications. Responding to these needs, this paper proposes a self-adaptive multisource information fusion framework (SA-MSIFF) for f-CaO content soft sensing. The SA-MSIFF utilizes a dynamic rotary kiln model for independent and real-time calcination state estimation and mechanistic feature generation, along with a dilated 3D convolution and attention-based network for direct feature extraction from flame image sequences. Subsequently, a temporal–spatial feature extraction and fusion (TSFE&F) network is introduced to utilize the multisource feature series for f-CaO content soft sensing. Offline experiments validate the SA-MSIFF’s ability to adaptively extract features from multisource information. Compared to its previous version, MSIFF, the SA-MSIFF achieves a considerable 89.65% reduction in framework training time and an 8.22% decrease in soft sensing error. The SA-MSIFF’s effectiveness is also demonstrated in its engineering applications.
{"title":"SA-MSIFF: Soft sensing the cement f-CaO content with a self-adaptive multisource information fusion framework in clinker burning process","authors":"Yuchen Zhao , Chunjie Yang , Yaoyao Bao , Siwei Lou , Genius B. Machingura , Hang Xiao , Zhe Liu , Bo Huang , Jiayun Mao , Pengwei Tian","doi":"10.1016/j.jprocont.2024.103282","DOIUrl":"10.1016/j.jprocont.2024.103282","url":null,"abstract":"<div><p>The accurate soft sensing of f-CaO content in cement clinker is crucial for the cement industry. However, existing methods require improvements in terms of effectiveness, practicality, and computational efficiency for industrial applications. Responding to these needs, this paper proposes a self-adaptive multisource information fusion framework (SA-MSIFF) for f-CaO content soft sensing. The SA-MSIFF utilizes a dynamic rotary kiln model for independent and real-time calcination state estimation and mechanistic feature generation, along with a dilated 3D convolution and attention-based network for direct feature extraction from flame image sequences. Subsequently, a temporal–spatial feature extraction and fusion (TSFE&F) network is introduced to utilize the multisource feature series for f-CaO content soft sensing. Offline experiments validate the SA-MSIFF’s ability to adaptively extract features from multisource information. Compared to its previous version, MSIFF, the SA-MSIFF achieves a considerable 89.65% reduction in framework training time and an 8.22% decrease in soft sensing error. The SA-MSIFF’s effectiveness is also demonstrated in its engineering applications.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103282"},"PeriodicalIF":3.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.jprocont.2024.103278
Shumei Zhang , Sirui Du , Feng Dong
Momentum wheel bearing is a critical component within satellite systems, and its condition monitoring not only extends the operational lifespan of the satellite but also ensures the seamless fulfillment of its mission objectives. Various data-driven techniques have been introduced to assimilate health-related information. However, these techniques neglect the significant challenges posed by robust disturbance and volatility of degradation process, resulting in suboptimal evaluation performance. To address these issues comprehensively, this paper proposes a novel approach named canonical variable fluctuation analysis (CVFA) to facilitate precise health monitoring of momentum wheel bearings by concurrent analysis of static deviation and dynamic oscillation. Firstly, three quantifiable standards of consistency, accuracy and sensitivity are defined to select the degradation trend-related indices from multi-domain features, which provides an automatic and objective feature selection method. Subsequently, CVFA is developed to realize feature reduction and extracts the dynamic information from the features with strong disturbance and high fluctuation. Two Fluctuation (F) statistics are defined to characterize the health degradation trend by integrating both static deviation and dynamic volatility within a sliding window. Afterwards, autoregressive moving average (ARMA) model is constructed on the basis of F statistics for short-term prognostication, which enables proactive detection of degradation trends. Lastly, by integrating two F statistics, a health degree (HD), which is independent of parameter adjustments, is defined to intuitively represent bearing health status. The efficacy and superiority of the proposed method are substantiated through validation and analysis conducted using accelerated life tests of bearings.
动量轮轴承是卫星系统中的一个关键部件,对其进行状态监测不仅能延长卫星的运行寿命,还能确保其任务目标的顺利实现。为了吸收与健康相关的信息,已经引入了各种数据驱动技术。然而,这些技术忽视了衰减过程的鲁棒性干扰和不稳定性所带来的重大挑战,导致评估性能不尽如人意。为了全面解决这些问题,本文提出了一种名为 "典型变量波动分析(CVFA)"的新方法,通过同时分析静态偏差和动态振荡来促进动量轮轴承的精确健康监测。首先,定义了一致性、准确性和灵敏度三个可量化的标准,从多领域特征中选择退化趋势相关指数,提供了一种自动、客观的特征选择方法。随后,利用 CVFA 实现特征还原,从干扰强、波动大的特征中提取动态信息。通过整合滑动窗口内的静态偏差和动态波动,定义了两个波动(F)统计量来描述健康退化趋势。然后,在 F 统计量的基础上构建自回归移动平均(ARMA)模型,用于短期预报,从而实现对退化趋势的主动检测。最后,通过整合两个 F 统计量,定义了独立于参数调整的健康度(HD),直观地表示轴承的健康状况。通过对轴承的加速寿命测试进行验证和分析,证明了所提方法的有效性和优越性。
{"title":"Concurrent analysis of static deviation and dynamic oscillation for momentum wheel bearing health monitoring and prognostication","authors":"Shumei Zhang , Sirui Du , Feng Dong","doi":"10.1016/j.jprocont.2024.103278","DOIUrl":"10.1016/j.jprocont.2024.103278","url":null,"abstract":"<div><p>Momentum wheel bearing is a critical component within satellite systems, and its condition monitoring not only extends the operational lifespan of the satellite but also ensures the seamless fulfillment of its mission objectives. Various data-driven techniques have been introduced to assimilate health-related information. However, these techniques neglect the significant challenges posed by robust disturbance and volatility of degradation process, resulting in suboptimal evaluation performance. To address these issues comprehensively, this paper proposes a novel approach named canonical variable fluctuation analysis (CVFA) to facilitate precise health monitoring of momentum wheel bearings by concurrent analysis of static deviation and dynamic oscillation. Firstly, three quantifiable standards of consistency, accuracy and sensitivity are defined to select the degradation trend-related indices from multi-domain features, which provides an automatic and objective feature selection method. Subsequently, CVFA is developed to realize feature reduction and extracts the dynamic information from the features with strong disturbance and high fluctuation. Two Fluctuation (<em>F</em>) statistics are defined to characterize the health degradation trend by integrating both static deviation and dynamic volatility within a sliding window. Afterwards, autoregressive moving average (ARMA) model is constructed on the basis of <em>F</em> statistics for short-term prognostication, which enables proactive detection of degradation trends. Lastly, by integrating two <em>F</em> statistics, a health degree (HD), which is independent of parameter adjustments, is defined to intuitively represent bearing health status. The efficacy and superiority of the proposed method are substantiated through validation and analysis conducted using accelerated life tests of bearings.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103278"},"PeriodicalIF":3.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.jprocont.2024.103277
Chao Jiang , Xin Peng , Biao Huang , Weimin Zhong
Predicting quality-relevant process variables is of paramount importance in optimizing and controlling chemical processes. Probabilistic Slow Feature Analysis (PSFA), a potent data-driven technique, plays a pivotal role in deducing quality indices by abstracting gradual variations in processes distinctly characterized by pronounced inertia. Nevertheless, PSFA’s predictive efficacy encounters a substantial bottleneck due to the assumption of a single operating condition, compromising its accuracy, particularly in industries represented by switching operating conditions. To surmount this limitation, this study proposes an innovative approach that enriches PSFA with multi-operating condition process data and limited labels within a Bayesian framework, effectively combining continuous and discrete first-order Markov chains to capture the processes’ inertia and dynamic shifts. The proposed method updates latent posterior distributions and model parameters iteratively via the Expectation–Maximization algorithm. The effectiveness of the proposed methodology is verified through a numerical case and industrial hydrocracking process data.
{"title":"Switching probabilistic slow feature extraction for semisupervised industrial inferential modeling","authors":"Chao Jiang , Xin Peng , Biao Huang , Weimin Zhong","doi":"10.1016/j.jprocont.2024.103277","DOIUrl":"10.1016/j.jprocont.2024.103277","url":null,"abstract":"<div><p>Predicting quality-relevant process variables is of paramount importance in optimizing and controlling chemical processes. Probabilistic Slow Feature Analysis (PSFA), a potent data-driven technique, plays a pivotal role in deducing quality indices by abstracting gradual variations in processes distinctly characterized by pronounced inertia. Nevertheless, PSFA’s predictive efficacy encounters a substantial bottleneck due to the assumption of a single operating condition, compromising its accuracy, particularly in industries represented by switching operating conditions. To surmount this limitation, this study proposes an innovative approach that enriches PSFA with multi-operating condition process data and limited labels within a Bayesian framework, effectively combining continuous and discrete first-order Markov chains to capture the processes’ inertia and dynamic shifts. The proposed method updates latent posterior distributions and model parameters iteratively via the Expectation–Maximization algorithm. The effectiveness of the proposed methodology is verified through a numerical case and industrial hydrocracking process data.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103277"},"PeriodicalIF":3.3,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.jprocont.2024.103280
A. Gharib, W. Djema, F. Casagli, O. Bernard
Microalgae cultivation for energy production is a promising avenue for converting solar light into sustainable biofuel. Solar processes are however subjected to the permanent fluctuations of light and medium temperature. Accurate temperature prediction of the culture medium turns out to be critical for optimising growth conditions. In this study, we introduce a reduced-model approach derived from existing models, turning the complex heat transfer modelling problem into an identification problem. The resulting generic model, called the Simplified Auto Tuning Heat Exchange (SATHE) model, has a clear and simple structure, offering a balance between accuracy and computational complexity. The SATHE model is versatile and contains the necessary terms to catch a large variety of heat transfer problems, while the parameters can be identified from experimental data. We first prove the parameter identifiability and then propose an identification strategy, based on the gradient computation, to identify the model’s underlying parameters. We further validate the SATHE model performance in two distinct reactors across various seasons. Finally, we discuss the potential of online applications with a continuous self-tuning strategy to keep optimal predictive performances. This work lays the foundation for enhanced control strategies in large-scale cultivation systems.
{"title":"Adaptive temperature model for microalgae cultivation systems","authors":"A. Gharib, W. Djema, F. Casagli, O. Bernard","doi":"10.1016/j.jprocont.2024.103280","DOIUrl":"10.1016/j.jprocont.2024.103280","url":null,"abstract":"<div><p>Microalgae cultivation for energy production is a promising avenue for converting solar light into sustainable biofuel. Solar processes are however subjected to the permanent fluctuations of light and medium temperature. Accurate temperature prediction of the culture medium turns out to be critical for optimising growth conditions. In this study, we introduce a reduced-model approach derived from existing models, turning the complex heat transfer modelling problem into an identification problem. The resulting generic model, called the Simplified Auto Tuning Heat Exchange (SATHE) model, has a clear and simple structure, offering a balance between accuracy and computational complexity. The SATHE model is versatile and contains the necessary terms to catch a large variety of heat transfer problems, while the parameters can be identified from experimental data. We first prove the parameter identifiability and then propose an identification strategy, based on the gradient computation, to identify the model’s underlying parameters. We further validate the SATHE model performance in two distinct reactors across various seasons. Finally, we discuss the potential of online applications with a continuous self-tuning strategy to keep optimal predictive performances. This work lays the foundation for enhanced control strategies in large-scale cultivation systems.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"141 ","pages":"Article 103280"},"PeriodicalIF":3.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}