首页 > 最新文献

Journal of Process Control最新文献

英文 中文
Residual-based fault detection and isolation in control environment agriculture 基于残差的控制环境农业故障检测与隔离
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-12-13 DOI: 10.1016/j.jprocont.2025.103607
Lukas Munser , Ángeles Hoyo , Felix Petzke , Jaime A. Moreno , Stefan Streif
The detection and isolation of various faults in controlled environment agriculture is a notoriously complicated task, since various biological, sensory, and mechanical phenomena may interact with each other. In the present work, a residual-based approach is presented which enables the detection, isolation and quantification of different types of faults. For this purpose, observers are designed that can approximate the residuals despite model inaccuracies and measurement noise. The approach is demonstrated through experiments in a small-scale vertical farming unit whereby it is possible to distinguish between different fault types during operation.
由于各种生物、感官和机械现象可能相互作用,因此在受控环境农业中检测和隔离各种故障是一项非常复杂的任务。在本工作中,提出了一种基于残差的方法,可以检测、隔离和量化不同类型的故障。为此,设计了可以在模型不准确和测量噪声的情况下近似残差的观测器。该方法通过在小型垂直农业单位的实验证明,在操作过程中可以区分不同的故障类型。
{"title":"Residual-based fault detection and isolation in control environment agriculture","authors":"Lukas Munser ,&nbsp;Ángeles Hoyo ,&nbsp;Felix Petzke ,&nbsp;Jaime A. Moreno ,&nbsp;Stefan Streif","doi":"10.1016/j.jprocont.2025.103607","DOIUrl":"10.1016/j.jprocont.2025.103607","url":null,"abstract":"<div><div>The detection and isolation of various faults in controlled environment agriculture is a notoriously complicated task, since various biological, sensory, and mechanical phenomena may interact with each other. In the present work, a residual-based approach is presented which enables the detection, isolation and quantification of different types of faults. For this purpose, observers are designed that can approximate the residuals despite model inaccuracies and measurement noise. The approach is demonstrated through experiments in a small-scale vertical farming unit whereby it is possible to distinguish between different fault types during operation.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"157 ","pages":"Article 103607"},"PeriodicalIF":3.9,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145749776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-stage Economic Nonlinear Model Predictive Control of bioreactors using dynamic flux balance analysis models 基于动态通量平衡分析模型的生物反应器多阶段经济非线性模型预测控制
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-12-11 DOI: 10.1016/j.jprocont.2025.103595
Rafael D. de Oliveira, Johannes Jäschke
Dynamic Flux Balance Analysis (dFBA) models are powerful metabolic models that have a large potential for application in bioprocess control and optimisation. However, dFBA has an embedded linear FBA optimisation problem with degenerate solutions that give rise to multiple possible state trajectories that all satisfy the model. To address this uncertainty, we propose using a robust control approach based on Multi-stage Economic Nonlinear Model Predictive Control, which allows handling the degenerate solutions of the FBA problem without being too conservative. We propose to add a regularisation term to the FBA problem, to ensure a unique solution and generate the uncertainty scenarios by varying the regularization weights. The scenarios generated in that way then correspond to different solutions of the FBA problem. Then, the KKT conditions of the regularised FBA problem are imposed as equality constraints on the optimal control problem, which is solved using a direct collocation approach. Our methodology is evaluated through a case study on the optimal control of a fed-batch bioreactor for Escherichia coli growth, subject to a constraint on acetate concentration. The results demonstrate that the proposed MS-ENMPC approach, combined with the dFBA model, effectively satisfies the constraints despite uncertainties in the system trajectories.
动态通量平衡分析(dFBA)模型是一种功能强大的代谢模型,在生物过程控制和优化方面具有很大的应用潜力。然而,dFBA有一个嵌入式线性FBA优化问题,其退化解会产生多个可能的状态轨迹,这些轨迹都满足模型。为了解决这种不确定性,我们提出了一种基于多阶段经济非线性模型预测控制的鲁棒控制方法,该方法允许在不太保守的情况下处理FBA问题的退化解。我们建议在FBA问题中增加一个正则化项,以确保一个唯一的解,并通过改变正则化权重来生成不确定性场景。以这种方式生成的场景对应于FBA问题的不同解决方案。然后,将正则化FBA问题的KKT条件作为最优控制问题的等式约束,采用直接搭配法求解最优控制问题。我们的方法是通过一个案例研究,在醋酸盐浓度的限制下,对一个进料批式生物反应器进行大肠杆菌生长的最佳控制来评估的。结果表明,结合dFBA模型,提出的MS-ENMPC方法能够有效地满足系统轨迹存在不确定性的约束条件。
{"title":"Multi-stage Economic Nonlinear Model Predictive Control of bioreactors using dynamic flux balance analysis models","authors":"Rafael D. de Oliveira,&nbsp;Johannes Jäschke","doi":"10.1016/j.jprocont.2025.103595","DOIUrl":"10.1016/j.jprocont.2025.103595","url":null,"abstract":"<div><div>Dynamic Flux Balance Analysis (dFBA) models are powerful metabolic models that have a large potential for application in bioprocess control and optimisation. However, dFBA has an embedded linear FBA optimisation problem with degenerate solutions that give rise to multiple possible state trajectories that all satisfy the model. To address this uncertainty, we propose using a robust control approach based on Multi-stage Economic Nonlinear Model Predictive Control, which allows handling the degenerate solutions of the FBA problem without being too conservative. We propose to add a regularisation term to the FBA problem, to ensure a unique solution and generate the uncertainty scenarios by varying the regularization weights. The scenarios generated in that way then correspond to different solutions of the FBA problem. Then, the KKT conditions of the regularised FBA problem are imposed as equality constraints on the optimal control problem, which is solved using a direct collocation approach. Our methodology is evaluated through a case study on the optimal control of a fed-batch bioreactor for <em>Escherichia coli</em> growth, subject to a constraint on acetate concentration. The results demonstrate that the proposed MS-ENMPC approach, combined with the dFBA model, effectively satisfies the constraints despite uncertainties in the system trajectories.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"157 ","pages":"Article 103595"},"PeriodicalIF":3.9,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An incremental physics-informed neural network for rapid prediction of suspended sediment plume for deep-sea mining 用于深海采矿悬浮沉积物羽流快速预测的增量物理信息神经网络
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-12-05 DOI: 10.1016/j.jprocont.2025.103604
Yanxin Zhang, Shaoyuan Li
The dynamic evolution of suspended sediment plume for deep-sea mining poses significant challenges for long-term prediction, owing to its inherently nonlinear transport behavior, unknown key parameters, and changing monitoring conditions after mining. To address these issues, this study proposes a framework integrating prediction, sensing, and refinement. Specifically, an incremental Physics-Informed Neural Network (PINN) enhanced with the Learning without Forgetting (LwF) strategy is developed to enable adaptive parameter updates while preserving prior physical knowledge. Furthermore, the sensor layout is optimized to enhance local observability. Numerical results demonstrate that, compared with the traditional PINN model, the proposed method effectively reduces prediction errors by 18.6% and achieves accurate prediction of the dynamic suspended sediment plume.
由于深海采矿悬浮沉积物羽流本身的非线性运移特性、关键参数未知以及开采后监测条件的变化,给长期预测带来了重大挑战。为了解决这些问题,本研究提出了一个集预测、感知和细化于一体的框架。具体而言,开发了一种增量物理信息神经网络(PINN),该网络通过无遗忘学习(LwF)策略增强,在保留先验物理知识的同时实现自适应参数更新。此外,优化了传感器布局,增强了局部可观测性。数值结果表明,与传统的PINN模型相比,该方法有效地降低了18.6%的预测误差,实现了对动态悬沙羽流的准确预测。
{"title":"An incremental physics-informed neural network for rapid prediction of suspended sediment plume for deep-sea mining","authors":"Yanxin Zhang,&nbsp;Shaoyuan Li","doi":"10.1016/j.jprocont.2025.103604","DOIUrl":"10.1016/j.jprocont.2025.103604","url":null,"abstract":"<div><div>The dynamic evolution of suspended sediment plume for deep-sea mining poses significant challenges for long-term prediction, owing to its inherently nonlinear transport behavior, unknown key parameters, and changing monitoring conditions after mining. To address these issues, this study proposes a framework integrating prediction, sensing, and refinement. Specifically, an incremental Physics-Informed Neural Network (PINN) enhanced with the Learning without Forgetting (LwF) strategy is developed to enable adaptive parameter updates while preserving prior physical knowledge. Furthermore, the sensor layout is optimized to enhance local observability. Numerical results demonstrate that, compared with the traditional PINN model, the proposed method effectively reduces prediction errors by 18.6% and achieves accurate prediction of the dynamic suspended sediment plume.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"157 ","pages":"Article 103604"},"PeriodicalIF":3.9,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145694511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New design of two-dimensional model predictive iterative learning control with novel error compensation for batch processes 批处理误差补偿的二维模型预测迭代学习控制新设计
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-12-01 DOI: 10.1016/j.jprocont.2025.103592
Chonggao Hu , Ridong Zhang , Furong Gao
Traditional two-dimensional (2D) model predictive model iterative learning control strategies can only rely on feedback to passively deal with time delays, repetitive disturbances, and non-repetitive disturbances of batch processes. To address these shortcomings, this paper proposes a two-dimensional model predictive iterative learning control strategy using an improved state space model structure with new error compensation (2D-EC-MPILC). Firstly, a two-dimensional extended non-minimal state space (2D-ENMSS) model is established, which can provide more degrees of freedom for controller design. Secondly, a novel error compensation (EC) strategy is proposed to correct the tracking error value of the current batch. The novel 2D-EC-MPILC controller is designed with both additional tuning degrees and batch-wise error correction, ensuring an improved control performance. The proposed algorithm is tested on the holding pressure control system of an injection molding process and the temperature control system of a nonlinear batch reactor.
传统的二维(2D)模型预测模型迭代学习控制策略只能依靠反馈来被动处理批处理过程的时间延迟、重复干扰和非重复干扰。针对这些不足,本文提出了一种基于改进状态空间模型结构和新的误差补偿的二维模型预测迭代学习控制策略(2D-EC-MPILC)。首先,建立了二维扩展非最小状态空间(2D-ENMSS)模型,为控制器设计提供了更大的自由度;其次,提出了一种新的误差补偿策略来修正当前批次的跟踪误差值。新型2D-EC-MPILC控制器设计具有额外的调谐度和批量误差校正,确保了更好的控制性能。在注射成型过程保压控制系统和非线性间歇反应器温度控制系统上对该算法进行了验证。
{"title":"New design of two-dimensional model predictive iterative learning control with novel error compensation for batch processes","authors":"Chonggao Hu ,&nbsp;Ridong Zhang ,&nbsp;Furong Gao","doi":"10.1016/j.jprocont.2025.103592","DOIUrl":"10.1016/j.jprocont.2025.103592","url":null,"abstract":"<div><div>Traditional two-dimensional (2D) model predictive model iterative learning control strategies can only rely on feedback to passively deal with time delays, repetitive disturbances, and non-repetitive disturbances of batch processes. To address these shortcomings, this paper proposes a two-dimensional model predictive iterative learning control strategy using an improved state space model structure with new error compensation (2D-EC-MPILC). Firstly, a two-dimensional extended non-minimal state space (2D-ENMSS) model is established, which can provide more degrees of freedom for controller design. Secondly, a novel error compensation (EC) strategy is proposed to correct the tracking error value of the current batch. The novel 2D-EC-MPILC controller is designed with both additional tuning degrees and batch-wise error correction, ensuring an improved control performance. The proposed algorithm is tested on the holding pressure control system of an injection molding process and the temperature control system of a nonlinear batch reactor.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"157 ","pages":"Article 103592"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145646040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient computation for sample-based state estimators using deep neural networks 基于样本的深度神经网络状态估计器的高效计算
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-12-01 DOI: 10.1016/j.jprocont.2025.103591
Abhilash Dev, Sharad Bhartiya, Sachin Patwardhan
Sample-based nonlinear state estimation is an intensive problem to solve and significantly contributes to the computation delay in real-time applications. This paper explores a novel neural network (NN) based state estimation method in order to reduce the computation time required by sample-based state estimators during online deployment. The proposed method obtains estimates for the predicted as well as the filtered states, wherein the NN is trained using data obtained from simulations of constrained state estimators. The efficacy of the method is demonstrated by learning constrained Unscented Kalman Filter (UKF) on a six-state benchmark Williams Otto reactor with four measurements using a deep feedforward NN. The NN is then used as the proposal density in lieu of UKF for a Particle Filter (PF) implementation. Another example consists of exploring the role of the trained NN as a state estimator in a nonlinear internal model control (NIMC) application for tracking of economic setpoints in the benchmark Willaims-Otto reactor. Both these applications show that the proposed approach significantly outperforms the sample-based estimator in terms of the computation time while matching its performance, thereby reducing the latency related to sample-based state estimators.
在实时应用中,基于样本的非线性状态估计是一个需要大量解决的问题,对计算延迟有很大影响。为了减少基于样本的状态估计器在线部署时的计算时间,提出了一种基于神经网络的状态估计方法。该方法获得预测状态和过滤状态的估计,其中神经网络使用从约束状态估计器模拟中获得的数据进行训练。通过使用深度前馈神经网络在具有四个测量值的六状态基准Williams Otto反应器上学习约束无气味卡尔曼滤波器(UKF),证明了该方法的有效性。然后将NN用作提议密度,代替UKF用于粒子滤波(PF)实现。另一个例子包括探索在非线性内模控制(NIMC)应用中,训练好的神经网络作为状态估计器的作用,用于跟踪基准williams - otto反应堆的经济设定值。这两个应用都表明,所提出的方法在匹配其性能的同时,在计算时间方面显著优于基于样本的估计器,从而减少了与基于样本的状态估计器相关的延迟。
{"title":"Efficient computation for sample-based state estimators using deep neural networks","authors":"Abhilash Dev,&nbsp;Sharad Bhartiya,&nbsp;Sachin Patwardhan","doi":"10.1016/j.jprocont.2025.103591","DOIUrl":"10.1016/j.jprocont.2025.103591","url":null,"abstract":"<div><div>Sample-based nonlinear state estimation is an intensive problem to solve and significantly contributes to the computation delay in real-time applications. This paper explores a novel neural network (NN) based state estimation method in order to reduce the computation time required by sample-based state estimators during online deployment. The proposed method obtains estimates for the predicted as well as the filtered states, wherein the NN is trained using data obtained from simulations of constrained state estimators. The efficacy of the method is demonstrated by learning constrained Unscented Kalman Filter (UKF) on a six-state benchmark Williams Otto reactor with four measurements using a deep feedforward NN. The NN is then used as the proposal density in lieu of UKF for a Particle Filter (PF) implementation. Another example consists of exploring the role of the trained NN as a state estimator in a nonlinear internal model control (NIMC) application for tracking of economic setpoints in the benchmark Willaims-Otto reactor. Both these applications show that the proposed approach significantly outperforms the sample-based estimator in terms of the computation time while matching its performance, thereby reducing the latency related to sample-based state estimators.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"156 ","pages":"Article 103591"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145617872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical modeling of stability in enzyme-catalyzed cooperative reactions through deterministic and stochastic approaches 用确定性和随机方法建立酶催化协同反应稳定性的数学模型
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-12-01 DOI: 10.1016/j.jprocont.2025.103596
Akhtar Jan , Rehan Ali Shah , Ebraheem Alzahrani , Zehba Raizah
<div><div>Enzymatic reactions operate under a variety of biochemical responses in cellular systems and are frequently affected by intrinsic variations imposed by molecular uncertainty. This study examined both deterministic and stochastic models for a two-step enzymatic process in which the primary substrate <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and the inhibitory substrate <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> collaborate to generate intermediate complexes <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>. The overall dynamics of the reaction are represented by combining the enzyme–substrate kinetics and the resulting product production. The invariant region of the system, the existence and non-negativity of solutions, the classification of equilibrium states and their stability characteristics are the main issues of a qualitative investigation. For both the models, the threshold parameter <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is determined. The system’s sensitivity to stochastic influences is shown by the comparison analysis, which reveals that random perturbations typically lower the system’s effective activation threshold by <strong>25–35%</strong> when compared to the deterministic calculation. Additionally, sensitivity studies showed that stochastic noise parameters (<span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span>) generate around <strong>15–25%</strong> variation in the rates of complex formation; however, altering the initial enzyme level (<span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></math></span>) impacts the reaction progress by about <strong>40%</strong>. Numerical simulations, performed over <span><math><mrow><mi>t</mi><mo>=</mo><mn>150</mn></mrow></math></span> with rate constants <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></
酶促反应在细胞系统的各种生化反应下进行,并且经常受到分子不确定性所施加的内在变化的影响。本研究考察了两步酶促过程的确定性和随机模型,其中初级底物S1(t)和抑制底物S2(t)协同产生中间复合物C1(t)和C2(t)。反应的整体动力学由酶-底物动力学和产物生产相结合来表示。系统的不变域、解的存在性和非负性、平衡态的分类及其稳定性特征是定性研究的主要问题。对于这两种模型,确定了阈值参数T0。对比分析表明,系统对随机影响的敏感性表明,与确定性计算相比,随机扰动通常会使系统的有效激活阈值降低25-35%。此外,敏感性研究表明,随机噪声参数(σ3=σ4=0.1)对复杂地层速率的影响约为15-25%;然而,改变初始酶水平(E0=0.3)对反应进程的影响约为40%。在t=150,速率常数k1=0.3, k2=0.4, k3=0.2, k4=0.5条件下进行的数值模拟进一步表明,增强酶-底物结合(k1= 2.0)和酶-抑制剂相互作用参数(k2= 3.0)可以将整体反应效率提高30%以上。这些发现表明,为了有效地描述酶的行为,必须考虑随机波动。研究结果还表明,为了准确表征和提高生物系统中酶促过程的有效性,除了包括重要的变异性来源外,还需要修改结合关系和产物形成动力学。
{"title":"Mathematical modeling of stability in enzyme-catalyzed cooperative reactions through deterministic and stochastic approaches","authors":"Akhtar Jan ,&nbsp;Rehan Ali Shah ,&nbsp;Ebraheem Alzahrani ,&nbsp;Zehba Raizah","doi":"10.1016/j.jprocont.2025.103596","DOIUrl":"10.1016/j.jprocont.2025.103596","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Enzymatic reactions operate under a variety of biochemical responses in cellular systems and are frequently affected by intrinsic variations imposed by molecular uncertainty. This study examined both deterministic and stochastic models for a two-step enzymatic process in which the primary substrate &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and the inhibitory substrate &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; collaborate to generate intermediate complexes &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The overall dynamics of the reaction are represented by combining the enzyme–substrate kinetics and the resulting product production. The invariant region of the system, the existence and non-negativity of solutions, the classification of equilibrium states and their stability characteristics are the main issues of a qualitative investigation. For both the models, the threshold parameter &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is determined. The system’s sensitivity to stochastic influences is shown by the comparison analysis, which reveals that random perturbations typically lower the system’s effective activation threshold by &lt;strong&gt;25–35%&lt;/strong&gt; when compared to the deterministic calculation. Additionally, sensitivity studies showed that stochastic noise parameters (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) generate around &lt;strong&gt;15–25%&lt;/strong&gt; variation in the rates of complex formation; however, altering the initial enzyme level (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) impacts the reaction progress by about &lt;strong&gt;40%&lt;/strong&gt;. Numerical simulations, performed over &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;150&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with rate constants &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"156 ","pages":"Article 103596"},"PeriodicalIF":3.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145617871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprocess model-predictive control with physics-informed neural networks: Driving microbiome evolution toward high polyhydroxyalkanoates production capacity 生物过程模型预测控制与物理信息神经网络:推动微生物群向高聚羟基烷酸酯生产能力的进化
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-21 DOI: 10.1016/j.jprocont.2025.103594
Marta Catalão , José Pinto , Cristiana A.V. Torres , Filomena Freitas , Maria A.M. Reis , Rafael S. Costa , Rui Oliveira
Many previous studies have investigated the economic production of polyhydroxyalkanoates (PHA) by natural microbiomes. A key underlying strategy is the feast and famine (F/F) feeding regimen for bacteria selection. For this purpose, a sequencing batch reactor (SBR) is commonly operated in a sequence of F/F cycles until an evolved microbiome is attained with high PHA storage capacity. The effectiveness of this process is critically dependent on control parameters such as the hydraulic retention time (HRT), organic loading rate (OLR) and carbon-to-nitrogen ratio (C/N) applied at each cycle. This study evaluates for the first time a physics-informed neural network (PINN) for model predictive control (MPC) of microbiome evolution in a SBR. A PINN model was trained on historical data collected in a SBR operated over 93 days and 31 cycles. Carbon (acetate), Nitrogen (ammonium), Volatile Suspended Solids (VSS) and intracellular PHA concentration data were used to train and validate the PINN. Subsequently, a second SBR experiment was conducted under automatic control of the PINN over a period of 36 days and 12 cycles. A transfer learning method was implemented leverage on in-process data to minimize process-model mismatch. The results showed a systematic cycle-to-cycle prediction error decrease. The intracellular PHA concentration systematic increased from 0.51 % (w/w) to 16.5 % (w/w) at the 12th cycle (32-fold increase). The final evolved microbiome, collected at the 12th cycle, was inoculated in a production reactor yielding a final intracellular PHA content of 52.86 % (w/w) and volumetric concentration of 8.93 g PHA/L. Overall, the PINN-MPC method has shown high potential to efficiently explore the reactor design space and to implement in autonomy efficient strategies for natural microbiome evolution.
许多先前的研究已经研究了天然微生物群对聚羟基烷酸酯(PHA)的经济生产。一个关键的潜在策略是细菌选择的盛宴和饥荒(F/F)喂养方案。为此目的,测序间歇式反应器(SBR)通常以F/F循环的顺序运行,直到进化的微生物组达到具有高PHA存储能力。该工艺的有效性主要取决于控制参数,如水力停留时间(HRT)、有机载荷率(OLR)和碳氮比(C/N)。本研究首次评估了用于SBR微生物组进化模型预测控制(MPC)的物理信息神经网络(PINN)。根据SBR运行93天31个周期收集的历史数据,对PINN模型进行了训练。碳(乙酸)、氮(铵)、挥发性悬浮物(VSS)和细胞内PHA浓度数据用于训练和验证PINN。随后,在PINN自动控制下进行第二次SBR实验,为期36天,12个周期。利用进程内数据实现迁移学习方法,最大限度地减少过程模型不匹配。结果表明,系统的周期间预测误差减小。第12个循环时,细胞内PHA浓度从0.51 % (w/w)增加到16.5 % (w/w),增加了32倍。在第12个循环中收集最终进化的微生物组,在生产反应器中接种,最终细胞内PHA含量为52.86 % (w/w),体积浓度为8.93 g PHA/L。总体而言,PINN-MPC方法在有效探索反应器设计空间和实现自然微生物群进化的自主高效策略方面显示出很高的潜力。
{"title":"Bioprocess model-predictive control with physics-informed neural networks: Driving microbiome evolution toward high polyhydroxyalkanoates production capacity","authors":"Marta Catalão ,&nbsp;José Pinto ,&nbsp;Cristiana A.V. Torres ,&nbsp;Filomena Freitas ,&nbsp;Maria A.M. Reis ,&nbsp;Rafael S. Costa ,&nbsp;Rui Oliveira","doi":"10.1016/j.jprocont.2025.103594","DOIUrl":"10.1016/j.jprocont.2025.103594","url":null,"abstract":"<div><div>Many previous studies have investigated the economic production of polyhydroxyalkanoates (PHA) by natural microbiomes. A key underlying strategy is the feast and famine (F/F) feeding regimen for bacteria selection. For this purpose, a sequencing batch reactor (SBR) is commonly operated in a sequence of F/F cycles until an evolved microbiome is attained with high PHA storage capacity. The effectiveness of this process is critically dependent on control parameters such as the hydraulic retention time (HRT), organic loading rate (OLR) and carbon-to-nitrogen ratio (C/N) applied at each cycle. This study evaluates for the first time a physics-informed neural network (PINN) for model predictive control (MPC) of microbiome evolution in a SBR. A PINN model was trained on historical data collected in a SBR operated over 93 days and 31 cycles. Carbon (acetate), Nitrogen (ammonium), Volatile Suspended Solids (VSS) and intracellular PHA concentration data were used to train and validate the PINN. Subsequently, a second SBR experiment was conducted under automatic control of the PINN over a period of 36 days and 12 cycles. A transfer learning method was implemented leverage on in-process data to minimize process-model mismatch. The results showed a systematic cycle-to-cycle prediction error decrease. The intracellular PHA concentration systematic increased from 0.51 % (w/w) to 16.5 % (w/w) at the 12th cycle (32-fold increase). The final evolved microbiome, collected at the 12th cycle, was inoculated in a production reactor yielding a final intracellular PHA content of 52.86 % (w/w) and volumetric concentration of 8.93 g PHA/L. Overall, the PINN-MPC method has shown high potential to efficiently explore the reactor design space and to implement in autonomy efficient strategies for natural microbiome evolution.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"156 ","pages":"Article 103594"},"PeriodicalIF":3.9,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145571421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Least squares and marginal log-likelihood model predictive control using normalizing flows 使用归一化流的最小二乘和边际对数似然模型预测控制
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-21 DOI: 10.1016/j.jprocont.2025.103593
Eike Cramer
Real-world (bio)chemical processes often exhibit stochastic dynamics with non-trivial correlations and state-dependent fluctuations. Model predictive control (MPC) often must consider these fluctuations to achieve reliable performance. However, most process models simply add stationary noise terms to a deterministic prediction. This work proposes using conditional normalizing flows as discrete-time models to learn stochastic dynamics. Normalizing flows learn the probability density function (PDF) of the states explicitly, given prior states and control inputs. In addition to standard least squares (LSQ) objectives, this work derives a marginal log-likelihood (MLL) objective based on the explicit PDF and Markov chain simulations. In a reactor study, the normalizing flow MPC setpoint errors in open and closed-loop cases are competitive with a full model-based stochastic MPC. Furthermore, the chance constraints lead to fewer constraint violations than the benchmark controller. The MLL objective yields slightly more stable optimization results than the LSQ, particularly for small scenario sets.
现实世界(生物)化学过程通常表现出具有非平凡相关性和状态依赖波动的随机动力学。模型预测控制(MPC)通常必须考虑这些波动才能获得可靠的性能。然而,大多数过程模型只是将平稳噪声项添加到确定性预测中。这项工作提出使用条件归一化流作为离散时间模型来学习随机动力学。在给定先验状态和控制输入的情况下,规范化流明确地学习状态的概率密度函数(PDF)。除了标准最小二乘(LSQ)目标之外,本工作还基于显式PDF和马尔可夫链模拟导出了边际对数似然(MLL)目标。在反应器研究中,开环和闭环情况下的归一化流MPC设定值误差与基于全模型的随机MPC具有竞争性。此外,机会约束比基准控制器导致更少的约束违规。MLL目标比LSQ产生更稳定的优化结果,特别是对于小场景集。
{"title":"Least squares and marginal log-likelihood model predictive control using normalizing flows","authors":"Eike Cramer","doi":"10.1016/j.jprocont.2025.103593","DOIUrl":"10.1016/j.jprocont.2025.103593","url":null,"abstract":"<div><div>Real-world (bio)chemical processes often exhibit stochastic dynamics with non-trivial correlations and state-dependent fluctuations. Model predictive control (MPC) often must consider these fluctuations to achieve reliable performance. However, most process models simply add stationary noise terms to a deterministic prediction. This work proposes using conditional normalizing flows as discrete-time models to learn stochastic dynamics. Normalizing flows learn the probability density function (PDF) of the states explicitly, given prior states and control inputs. In addition to standard least squares (LSQ) objectives, this work derives a marginal log-likelihood (MLL) objective based on the explicit PDF and Markov chain simulations. In a reactor study, the normalizing flow MPC setpoint errors in open and closed-loop cases are competitive with a full model-based stochastic MPC. Furthermore, the chance constraints lead to fewer constraint violations than the benchmark controller. The MLL objective yields slightly more stable optimization results than the LSQ, particularly for small scenario sets.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"156 ","pages":"Article 103593"},"PeriodicalIF":3.9,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145571423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential admissibility and control for singular LPV-PDE systems with application to chemical tubular reactor 广义LPV-PDE系统的指数容许性与控制及其在化工管式反应器中的应用
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-15 DOI: 10.1016/j.jprocont.2025.103590
Xiaona Song , Ao Shang , Shuai Song , Danjing Zheng , Choon Ki Ahn
In this work, the issue of exponential admissibility analysis and controller designs for the singular linear parameter-varying partial differential equation (LPV-PDE) system is investigated. First, the reaction process in the chemical tubular reactor is described by a singular LPV-PDE, and the definition for the singular LPV-PDE system to be exponentially admissible is established by the Galerkin method, energy estimates, etc. Second, the parameter-dependent fuzzy dynamic event-triggered mechanism is developed to alleviate communication pressure by reducing the amount of transmitted data. Furthermore, a sliding surface is constructed, then a suitable control law is designed to ensure the reachability of system states, and sufficient conditions for the singular LPV-PDE system to be exponentially admissible are given during the sliding phase. Finally, the effectiveness of the proposed method is verified through simulation studies.
本文研究奇异线性变参数偏微分方程(LPV-PDE)系统的指数容许性分析和控制器设计问题。首先,用奇异LPV-PDE来描述化学管式反应器中的反应过程,并通过伽辽金方法、能量估计等建立了奇异LPV-PDE系统指数可容许的定义。其次,提出了参数依赖模糊动态事件触发机制,通过减少传输数据量来缓解通信压力。在此基础上,构造了一个滑动曲面,设计了适当的控制律以保证系统状态的可达性,并给出了在滑动阶段奇异LPV-PDE系统指数可容许的充分条件。最后,通过仿真研究验证了所提方法的有效性。
{"title":"Exponential admissibility and control for singular LPV-PDE systems with application to chemical tubular reactor","authors":"Xiaona Song ,&nbsp;Ao Shang ,&nbsp;Shuai Song ,&nbsp;Danjing Zheng ,&nbsp;Choon Ki Ahn","doi":"10.1016/j.jprocont.2025.103590","DOIUrl":"10.1016/j.jprocont.2025.103590","url":null,"abstract":"<div><div>In this work, the issue of exponential admissibility analysis and controller designs for the singular linear parameter-varying partial differential equation (LPV-PDE) system is investigated. First, the reaction process in the chemical tubular reactor is described by a singular LPV-PDE, and the definition for the singular LPV-PDE system to be exponentially admissible is established by the Galerkin method, energy estimates, etc. Second, the parameter-dependent fuzzy dynamic event-triggered mechanism is developed to alleviate communication pressure by reducing the amount of transmitted data. Furthermore, a sliding surface is constructed, then a suitable control law is designed to ensure the reachability of system states, and sufficient conditions for the singular LPV-PDE system to be exponentially admissible are given during the sliding phase. Finally, the effectiveness of the proposed method is verified through simulation studies.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"156 ","pages":"Article 103590"},"PeriodicalIF":3.9,"publicationDate":"2025-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145571422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The flotation grade prediction model based on mechanism-guided and data-driven approaches 基于机制导向和数据驱动的浮选品位预测模型
IF 3.9 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-11-11 DOI: 10.1016/j.jprocont.2025.103588
Ming Lu , Yingcong Li , Xianke He , Lei He , Ying Zou , Zunhui Yi , Pei Li
In the flotation cell, the flotation process involves complex physicochemical reactions and exhibits unknown, intricate nonlinear dynamic characteristics, making it difficult to establish an accurate model or predict froth flotation grade. To address this issue, this paper proposes a mechanism-based modeling approach for predicting froth flotation grade. First, the working mechanism of the flotation cell is analyzed, the concentrate grade is redefined, and a simplified mechanistic model is derived. Next, preprocessed flotation process data is integrated with an intelligent optimization algorithm to conduct mechanism-guided data-driven modeling. This identifies the optimal system matrix parameters in the mechanistic model under current working conditions, thereby enhancing its adaptability to the actual flotation environment. Finally, the optimized system matrix parameters are incorporated into the mechanistic flotation grade model to construct an online prediction model. The predicted values are used to guide parameter settings during the flotation process. Experiments show that this method has high measurement accuracy, good generalization performance, and strong robustness.
在浮选池中,浮选过程涉及复杂的物理化学反应,呈现出未知的、复杂的非线性动态特性,给建立准确的泡沫浮选模型或预测泡沫浮选品位带来困难。针对这一问题,本文提出了一种基于机理的泡沫浮选品位预测模型方法。首先,分析了浮选机的工作机理,重新定义了精矿品位,并推导了简化的机理模型。然后,将预处理后的浮选过程数据与智能优化算法相结合,进行机理导向的数据驱动建模。确定了当前工况下机理模型中最优的系统矩阵参数,增强了其对实际浮选环境的适应性。最后,将优化后的系统矩阵参数纳入机械浮选品位模型,构建在线预测模型。预测值用于指导浮选过程中的参数设置。实验表明,该方法测量精度高,泛化性能好,鲁棒性强。
{"title":"The flotation grade prediction model based on mechanism-guided and data-driven approaches","authors":"Ming Lu ,&nbsp;Yingcong Li ,&nbsp;Xianke He ,&nbsp;Lei He ,&nbsp;Ying Zou ,&nbsp;Zunhui Yi ,&nbsp;Pei Li","doi":"10.1016/j.jprocont.2025.103588","DOIUrl":"10.1016/j.jprocont.2025.103588","url":null,"abstract":"<div><div>In the flotation cell, the flotation process involves complex physicochemical reactions and exhibits unknown, intricate nonlinear dynamic characteristics, making it difficult to establish an accurate model or predict froth flotation grade. To address this issue, this paper proposes a mechanism-based modeling approach for predicting froth flotation grade. First, the working mechanism of the flotation cell is analyzed, the concentrate grade is redefined, and a simplified mechanistic model is derived. Next, preprocessed flotation process data is integrated with an intelligent optimization algorithm to conduct mechanism-guided data-driven modeling. This identifies the optimal system matrix parameters in the mechanistic model under current working conditions, thereby enhancing its adaptability to the actual flotation environment. Finally, the optimized system matrix parameters are incorporated into the mechanistic flotation grade model to construct an online prediction model. The predicted values are used to guide parameter settings during the flotation process. Experiments show that this method has high measurement accuracy, good generalization performance, and strong robustness.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"156 ","pages":"Article 103588"},"PeriodicalIF":3.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145520306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Process Control
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1