Background
It remains unclear whether alterations in brain function occur in the early stage of pediatric type 1 diabetes mellitus(T1DM). We aimed to examine changes in spontaneous brain activity and functional connectivity (FC) in children with T1DM using resting-state functional magnetic resonance imaging (rs-fMRI), and to pinpoint potential links between neural changes and cognitive performance.
Methods
In this study, 22 T1DM children and 21 age-, sex-matched healthy controls underwent rs-fMRI. The amplitude of low frequency fluctuations (ALFF) and seed-based FC analysis were performed to examine changes in intrinsic brain activity and functional networks in T1DM children. Partial correlation analyses were utilized to explore the correlations between ALFF values and clinical parameters.
Results
The ALFF values were significantly lower in the lingual gyrus (LG) and higher in the left medial superior frontal gyrus (MSFG) in T1DM children compared to controls. Subsequent FC analysis indicated that the LG had decreased FC with bilateral inferior occipital gyrus, and the left MSFG had decreased FC with right precentral gyrus, right inferior parietal gyrus and right postcentral gyrus in children with T1DM. The ALFF values of LG were positively correlated with full-scale intelligence quotient and age at disease onset in T1DM children, while the ALFF values of left MSFG were positively correlated with working memory scores.
Conclusion
Our findings revealed abnormal spontaneous activity and FC in brain regions related to visual, memory, default mode network, and sensorimotor network in the early stage of T1DM children, which may aid in further understanding the mechanisms underlying T1DM-associated cognitive dysfunction.