首页 > 最新文献

arXiv - PHYS - Instrumentation and Detectors最新文献

英文 中文
ALICE ITS3: how to integrate a large dimension MAPS sensor in a bent configuration detector ALICE ITS3:如何在弯曲配置探测器中集成大尺寸 MAPS 传感器
Pub Date : 2024-08-02 DOI: arxiv-2408.01108
Domenico Colella
The ALICE Collaboration is developing a novel vertexing detector to extendthe heavy-flavour physics programme of the experiment during Run 4 by improvingthe pointing resolution of the tracking, particularly at low transversemomentum. It will be a detector with three truly cylindrical layers based onthin wafer scale MAPS, reaching less than 0.07% X/X0 per layer and with theinnermost layer located as close as 19 mm to the interaction point. Thiscontribution will describe the global detector integration concept, focusingon: the sensor bending procedure, the sensor electrical interconnection, thechoice of the best carbon foam for light mechanical supporting structures, thestudies of cooling by air flow, and the global structures mechanicalcharacterization.
ALICE 协作小组正在开发一种新型顶点探测器,通过提高跟踪的指向分辨率,特别是在低横动量情况下的指向分辨率,在运行 4 期间扩展实验的重味物理学计划。它将是一个具有三个真正圆柱形层的探测器,基于薄晶圆尺度的 MAPS,每层的 X/X0 小于 0.07%,最内层距离相互作用点近至 19 毫米。本文将介绍全局探测器集成概念,重点包括:传感器弯曲程序、传感器电气互连、轻型机械支撑结构最佳碳泡沫的选择、气流冷却研究以及全局结构的机械特性。
{"title":"ALICE ITS3: how to integrate a large dimension MAPS sensor in a bent configuration detector","authors":"Domenico Colella","doi":"arxiv-2408.01108","DOIUrl":"https://doi.org/arxiv-2408.01108","url":null,"abstract":"The ALICE Collaboration is developing a novel vertexing detector to extend\u0000the heavy-flavour physics programme of the experiment during Run 4 by improving\u0000the pointing resolution of the tracking, particularly at low transverse\u0000momentum. It will be a detector with three truly cylindrical layers based on\u0000thin wafer scale MAPS, reaching less than 0.07% X/X0 per layer and with the\u0000innermost layer located as close as 19 mm to the interaction point. This\u0000contribution will describe the global detector integration concept, focusing\u0000on: the sensor bending procedure, the sensor electrical interconnection, the\u0000choice of the best carbon foam for light mechanical supporting structures, the\u0000studies of cooling by air flow, and the global structures mechanical\u0000characterization.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, development, and construction of the new beam stoppers for CERN's injector complex 设计、开发和建造欧洲核子研究中心(CERN)喷射器综合设施的新光束止动器
Pub Date : 2024-08-02 DOI: arxiv-2408.01074
D. Baillard, E. Grenier-Boley, M. Dole, F. Deslande, R. Froeschl, T. Lorenzon, P. Moyret, R. Peron, A. Pilan Zanoni, C. Sharp, M. Timmins, M. Calviani
Beam stoppers are installed in the transfer lines of the CERN acceleratorcomplex; these components are used as part of the access safety system, whichguarantees the safety of workers in the accelerators. They are designed to stopone or at most a few pulses of the beam, where "stop" means the partial orcomplete absorption of the primary beam in such a way that the remainingunabsorbed primary or secondary beam remains below a specified threshold, asdefined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2;2018--2021), beam stoppers in the injector complex were dimensioned forbeam-pulse energies between 9.0 and 30~kJ. The upgrade of the acceleratorcomplex in the framework of the LHC Injectors Upgrade (LIU) project involvesbeam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are notable to fulfill the new functional specifications. To cope with the LIU beamparameters and fulfil requirements for safety, maintainability, efficiency, andreliability, a new generation of 28 beam stoppers has been designed, built, andinstalled. The aim of this paper is to demonstrate the requirements-drivendesign of these new beam stoppers, outlining the main requirements along with adescription of the design and structural assessments. This document presentsthe implementation and integration of a standardized but adaptable design usinga unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718diluter, taking into account radiological and infrastructure challenges. Theinstallation process is also described, and the first operational feedbackreceived since LS2 is presented.
欧洲核子研究中心加速器综合体的传输线上安装有光束阻挡器;这些组件是出入安全系统的一部分,用于保障加速器内工作人员的安全。它们的设计目的是停止一次或最多几次光束脉冲,其中 "停止 "是指部分或全部吸收一次光束,使剩余未吸收的一次光束或二次光束保持在特定阈值以下,该阈值由辐射防护需求确定。在长期停运 2 号(LS2;2018--2021 年)之前,注入器综合设施中的束流挡板是为 9.0 至 30~kJ 的束脉冲能量而设计的。在大型强子对撞机喷射器升级(LIU)项目框架内,加速器综合体的升级涉及高达 92.5~kJ 的束脉冲能量,这意味着这些光束阻挡器必须满足新的功能规格。为了应对 LIU 的束流参数,并满足安全性、可维护性、效率和可靠性的要求,我们设计、制造并安装了新一代的 28 个光束阻断器。本文旨在展示这些新型横梁止动器的需求驱动设计,概述主要需求,并对设计和结构评估进行说明。考虑到辐射和基础设施方面的挑战,本文件介绍了标准化但可调整的设计的实施和集成情况,该设计采用了独特的 564 毫米长的阻挡器核心,带有一个 CuCr1Zr 吸收器和一个 Inconel~718 二极管。此外,还介绍了安装过程,以及自 LS2 以来收到的第一批运行反馈。
{"title":"Design, development, and construction of the new beam stoppers for CERN's injector complex","authors":"D. Baillard, E. Grenier-Boley, M. Dole, F. Deslande, R. Froeschl, T. Lorenzon, P. Moyret, R. Peron, A. Pilan Zanoni, C. Sharp, M. Timmins, M. Calviani","doi":"arxiv-2408.01074","DOIUrl":"https://doi.org/arxiv-2408.01074","url":null,"abstract":"Beam stoppers are installed in the transfer lines of the CERN accelerator\u0000complex; these components are used as part of the access safety system, which\u0000guarantees the safety of workers in the accelerators. They are designed to stop\u0000one or at most a few pulses of the beam, where \"stop\" means the partial or\u0000complete absorption of the primary beam in such a way that the remaining\u0000unabsorbed primary or secondary beam remains below a specified threshold, as\u0000defined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2;\u00002018--2021), beam stoppers in the injector complex were dimensioned for\u0000beam-pulse energies between 9.0 and 30~kJ. The upgrade of the accelerator\u0000complex in the framework of the LHC Injectors Upgrade (LIU) project involves\u0000beam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are not\u0000able to fulfill the new functional specifications. To cope with the LIU beam\u0000parameters and fulfil requirements for safety, maintainability, efficiency, and\u0000reliability, a new generation of 28 beam stoppers has been designed, built, and\u0000installed. The aim of this paper is to demonstrate the requirements-driven\u0000design of these new beam stoppers, outlining the main requirements along with a\u0000description of the design and structural assessments. This document presents\u0000the implementation and integration of a standardized but adaptable design using\u0000a unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718\u0000diluter, taking into account radiological and infrastructure challenges. The\u0000installation process is also described, and the first operational feedback\u0000received since LS2 is presented.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV 在 5.0 和 7.5 GeV 之间的能量范围内首次测量氩上正电荷 Ka 子的总非弹性截面
Pub Date : 2024-08-01 DOI: arxiv-2408.00582
DUNE Collaboration, A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, D. Antic, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, M. B. Azam, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, D. Barbu, G. Barenboim, P. Barham~Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, A. Bodek, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, R. Bouet, J. Boza, J. Bracinik, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, A. Bundock, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, R. Calabrese, J. Calcutt, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, F. Chiapponi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, R. D'Amico, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell'Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani', C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, E. Fialova, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M~Gago, F. Galizzi, H. Gallagher, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, F. Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmüller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. M. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, P. Hellmuth, S. Henry, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, J. H. Jo, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. J. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, S. Kulagin, J. Kumar, P. Kumar, S. Kumaran, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, I. Lal{ă}u, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, P. Laycock, I. Lazanu, R. LaZur, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J. -Y~Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X. -G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, S. Mameli, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, A. Mefodiev, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, W. Metcalf, M. Mewes, H. Meyer, T. Miao, J. Micallef, A. Miccoli, G. Michna, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, P. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, A. Nowak, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. O'Sullivan, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, S. Pincha, J. Pinchault, K. Pitts, K. Plows, C. Pollack, T. Pollman, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, L. G. Porto Paix{ã}o, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. Queen, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, F. Raffaelli, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, Diego~Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, S. Sacerdoti, S. Saha, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, A. Sánchez-Castillo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, D. Senadheera, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, S. Sharma Poudel, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, J. Shi, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y. -T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, S. Turnberg, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. P. Vizcaya Hernandez, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, S. Westerdale, M. Wetstein, K. Whalen, A. White, A. White, L. H. Whitehead, D. Whittington, J. Wilhlemi, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, J. Yang, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon timeprojection chamber that operated in a hadron test beam at the CERN NeutrinoPlatform in 2018. We present a measurement of the total inelastic cross sectionof charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$beam momentum settings. The flux-weighted average of the extracted inelasticcross section at each beam momentum setting was measured to be 380$pm$26mbarns for the 6 GeV/$c$ setting and 379$pm$35 mbarns for the 7 GeV/$c$setting.
ProtoDUNE Single-Phase(ProtoDUNE-SP)是一个770吨的液氩定时投影室,2018年在欧洲核子研究中心中微子平台的强子测试束中运行。我们利用 6 GeV 和 7 GeV/$c$ 的束流动量设置,测量了氩上带电箜子的总非弹性截面与箜子能量的函数关系。在每种束流动量设置下提取的非弹性截面的通量加权平均值在6 GeV/$c$设置下为380$pm$26mbarns,在7 GeV/$c$设置下为379$pm$35 mbarns。
{"title":"First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV","authors":"DUNE Collaboration, A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, D. Antic, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, M. B. Azam, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, D. Barbu, G. Barenboim, P. Barham~Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, A. Bodek, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, R. Bouet, J. Boza, J. Bracinik, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, A. Bundock, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, R. Calabrese, J. Calcutt, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, F. Chiapponi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, R. D'Amico, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell'Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani', C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, E. Fialova, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M~Gago, F. Galizzi, H. Gallagher, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, F. Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmüller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. M. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, P. Hellmuth, S. Henry, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, J. H. Jo, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. J. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, S. Kulagin, J. Kumar, P. Kumar, S. Kumaran, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, I. Lal{ă}u, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, P. Laycock, I. Lazanu, R. LaZur, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J. -Y~Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X. -G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, S. Mameli, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, A. Mefodiev, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, W. Metcalf, M. Mewes, H. Meyer, T. Miao, J. Micallef, A. Miccoli, G. Michna, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, P. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, A. Nowak, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. O'Sullivan, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, S. Pincha, J. Pinchault, K. Pitts, K. Plows, C. Pollack, T. Pollman, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, L. G. Porto Paix{ã}o, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. Queen, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, F. Raffaelli, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, Diego~Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, S. Sacerdoti, S. Saha, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, A. Sánchez-Castillo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, D. Senadheera, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, S. Sharma Poudel, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, J. Shi, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y. -T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, S. Turnberg, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. P. Vizcaya Hernandez, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, S. Westerdale, M. Wetstein, K. Whalen, A. White, A. White, L. H. Whitehead, D. Whittington, J. Wilhlemi, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, J. Yang, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska","doi":"arxiv-2408.00582","DOIUrl":"https://doi.org/arxiv-2408.00582","url":null,"abstract":"ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time\u0000projection chamber that operated in a hadron test beam at the CERN Neutrino\u0000Platform in 2018. We present a measurement of the total inelastic cross section\u0000of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$\u0000beam momentum settings. The flux-weighted average of the extracted inelastic\u0000cross section at each beam momentum setting was measured to be 380$pm$26\u0000mbarns for the 6 GeV/$c$ setting and 379$pm$35 mbarns for the 7 GeV/$c$\u0000setting.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"364 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical modeling of SNSPD absorption utilizing optical conductivity with quantum corrections 利用带有量子修正的光导率对 SNSPD 吸收进行数值建模
Pub Date : 2024-08-01 DOI: arxiv-2408.00623
Martin Baránek, Pavol Neilinger, Samuel Kern, Miroslav Grajcar
Superconducting nanowire single-photon detectors are widely used in variousfields of physics and technology, due to their high efficiency and timingprecision. Although, in principle, their detection mechanism offers broadbandoperation, their wavelength range has to be optimized by the optical cavityparameters for a specific task. We present a study of the optical absorption ofa superconducting nanowire single photon detector (SNSPD) with an opticalcavity. The optical properties of the niobium nitride films, measured byspectroscopic ellipsometry, were modelled using the Drude-Lorentz model withquantum corrections. The numerical simulations of the optical response of thedetectors show that the wavelength range of the detector is not solelydetermined by its geometry, but the optical conductivity of the disordered thinmetallic films contributes considerably. This contribution can be convenientlyexpressed by the ratio of imaginary and real parts of the optical conductivity.This knowledge can be utilized in detector design.
超导纳米线单光子探测器因其高效率和定时精度而被广泛应用于物理学和技术的各个领域。虽然从原理上讲,它们的探测机制可提供宽带操作,但其波长范围必须根据特定任务的光腔参数进行优化。我们介绍了带光腔的超导纳米线单光子探测器(SNSPD)的光吸收研究。氮化铌薄膜的光学特性是通过光谱椭偏仪测量的,我们使用带有量子修正的德鲁德-洛伦兹模型对其进行了模拟。对检测器光学响应的数值模拟表明,检测器的波长范围并不完全由其几何形状决定,无序金属薄膜的光导率也有相当大的影响。这一贡献可以用光学电导率的虚部和实部之比方便地表示出来。
{"title":"Numerical modeling of SNSPD absorption utilizing optical conductivity with quantum corrections","authors":"Martin Baránek, Pavol Neilinger, Samuel Kern, Miroslav Grajcar","doi":"arxiv-2408.00623","DOIUrl":"https://doi.org/arxiv-2408.00623","url":null,"abstract":"Superconducting nanowire single-photon detectors are widely used in various\u0000fields of physics and technology, due to their high efficiency and timing\u0000precision. Although, in principle, their detection mechanism offers broadband\u0000operation, their wavelength range has to be optimized by the optical cavity\u0000parameters for a specific task. We present a study of the optical absorption of\u0000a superconducting nanowire single photon detector (SNSPD) with an optical\u0000cavity. The optical properties of the niobium nitride films, measured by\u0000spectroscopic ellipsometry, were modelled using the Drude-Lorentz model with\u0000quantum corrections. The numerical simulations of the optical response of the\u0000detectors show that the wavelength range of the detector is not solely\u0000determined by its geometry, but the optical conductivity of the disordered thin\u0000metallic films contributes considerably. This contribution can be conveniently\u0000expressed by the ratio of imaginary and real parts of the optical conductivity.\u0000This knowledge can be utilized in detector design.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical design concept version 2.0 for the miniBeBe subsystem of the Multi-Purpose Detector at the Nuclotron-based Ion Collider fAcility of the Joint Institute for Nuclear Research 联合核研究所基于核素光子的离子对撞机设施多用途探测器迷你贝贝子系统的机械设计概念 2.0 版
Pub Date : 2024-08-01 DOI: arxiv-2408.00556
M. Herrera, M. E. Patiño, Mauricio Alvarado, Ivonne Maldonado, Denis Andreev, Alejandro Ayala, Wolfgang Bietenholz, César Ceballos, Eleazar Cuáutle, Isabel Domínguez, L. A. Hernández, Israel Luna, Tuyana Lygdenova, Pablo Martínez-Torres, Alfredo Raya, Ulises Sáenz-Trujillo, M. E. Tejeda-Yeomans, Galileo Tinoco-Santillán
We present the design of the mechanical structure of the miniBeBe detector, asubsystem of the Multi-Purpose Detector, soon to enter into operation at theNuclotron based Ion Collider fAcility of the Joint Institute for NuclearResearch. The miniBeBe detector was designed and is currently being developedby the MexNICA Collaboration to contribute to the level-zero trigger of theTime of Flight. The mechanical structure meets the requirements of minimizingthe material budget and be free of ferromagnetic materials, withoutcompromising its robustness. The design also allows easy module replacement formaintenance and overall removal at the end of the first stage of theexperiment, without affecting the rest of the subsystems, to leave room for theinstallation of the Inner Tracking System. In addition, a Finite Element Methodanalysis of the mechanical components under load was performed. Based on thisanalysis, it was determined that the design meets the space constraints withinthe Multi-Purpose Detector, as well as a deformation of less than 1 mm withoverall stress of less than 2 MPa, such that no material used in the design isat risk of mechanical failure during operation. A cooling system heat transferanalysis was performed showing that the detector Silicon Photo-Multipliers canbe kept within a temperature range of 19$^{circ}$C to 23$^{circ}$C, which isadequate for their optimal performance.
我们介绍了微型BeBe探测器的机械结构设计,该探测器是多用途探测器的一个子系统,即将在核研究联合研究所的基于Nuclotron的离子对撞机设施投入运行。MexNICA合作组织设计并正在开发微型BeBe探测器,以便为飞行时间的零级触发做出贡献。该探测器的机械结构满足了最大限度减少材料预算和不使用铁磁材料的要求,同时又不影响其坚固性。该设计还允许在第一阶段试验结束时,在不影响其他子系统的情况下,方便地更换模块进行维护和整体拆卸,以便为安装内部跟踪系统留出空间。此外,还对负载下的机械部件进行了有限元法分析。根据分析结果,确定设计符合多用途探测器的空间限制,变形小于 1 毫米,总应力小于 2 兆帕,因此设计中使用的任何材料在运行期间都不会有机械故障的风险。进行的冷却系统热传导分析表明,探测器硅光电倍增管的温度可保持在 19^{circ}$C 至 23^{circ}$C 的范围内,这足以使其达到最佳性能。
{"title":"Mechanical design concept version 2.0 for the miniBeBe subsystem of the Multi-Purpose Detector at the Nuclotron-based Ion Collider fAcility of the Joint Institute for Nuclear Research","authors":"M. Herrera, M. E. Patiño, Mauricio Alvarado, Ivonne Maldonado, Denis Andreev, Alejandro Ayala, Wolfgang Bietenholz, César Ceballos, Eleazar Cuáutle, Isabel Domínguez, L. A. Hernández, Israel Luna, Tuyana Lygdenova, Pablo Martínez-Torres, Alfredo Raya, Ulises Sáenz-Trujillo, M. E. Tejeda-Yeomans, Galileo Tinoco-Santillán","doi":"arxiv-2408.00556","DOIUrl":"https://doi.org/arxiv-2408.00556","url":null,"abstract":"We present the design of the mechanical structure of the miniBeBe detector, a\u0000subsystem of the Multi-Purpose Detector, soon to enter into operation at the\u0000Nuclotron based Ion Collider fAcility of the Joint Institute for Nuclear\u0000Research. The miniBeBe detector was designed and is currently being developed\u0000by the MexNICA Collaboration to contribute to the level-zero trigger of the\u0000Time of Flight. The mechanical structure meets the requirements of minimizing\u0000the material budget and be free of ferromagnetic materials, without\u0000compromising its robustness. The design also allows easy module replacement for\u0000maintenance and overall removal at the end of the first stage of the\u0000experiment, without affecting the rest of the subsystems, to leave room for the\u0000installation of the Inner Tracking System. In addition, a Finite Element Method\u0000analysis of the mechanical components under load was performed. Based on this\u0000analysis, it was determined that the design meets the space constraints within\u0000the Multi-Purpose Detector, as well as a deformation of less than 1 mm with\u0000overall stress of less than 2 MPa, such that no material used in the design is\u0000at risk of mechanical failure during operation. A cooling system heat transfer\u0000analysis was performed showing that the detector Silicon Photo-Multipliers can\u0000be kept within a temperature range of 19$^{circ}$C to 23$^{circ}$C, which is\u0000adequate for their optimal performance.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Test-beam measurements of instrumented sensor planes for a highly compact and granular electromagnetic calorimeter 高紧凑型颗粒电磁热量计仪器传感器平面的测试光束测量
Pub Date : 2024-08-01 DOI: arxiv-2408.00551
Melissa Almanza Soto
The LUXE experiment is designed to explore the strong-field QED regime ininteractions of high-energy electrons from the European XFEL in a powerfullaser field. One of the crucial aims of this experiment is to measure theproduction of electron-positron pairs as a function of the laser field strengthwhere non-perturbative effects are expected to kick in above the Schwingerlimit. For the measurements of positron energy and multiplicity spectra, atracker and an electromagnetic calorimeter are foreseen. The expected number ofpositrons varies over ten orders of magnitude and has to be measured over awidely spread low-energy background. To overcome these challenges, a compactand finely segmented calorimeter is proposed. The concept of a sandwichcalorimeter made of tungsten absorber plates interspersed with thin sensorplanes is developed. The sensor planes comprise a silicon pad sensor, flexibleKapton printed circuit planes for bias voltage supply and signal transport tothe sensor edge, all embedded in a carbon fiber support. The thickness of asensor plane is less than 1 mm. A dedicated readout is developed comprisingfront-end ASICs in 130 nm technology and FPGAs to orchestrate the ASICs andperform data pre-processing. As an alternative, GaAs are considered withintegrated readout strips on the sensor. Prototypes of both sensor planes arestudied in an electron beam of 5 GeV. Results will be presented on thehomogeneity of the response and edge effects.
LUXE 实验旨在探索欧洲 XFEL 高能电子在强激光场中相互作用的强场 QED 机制。该实验的关键目标之一是测量电子-正电子对的产生与激光场强的函数关系,预计非微扰效应将在施温格极限以上开始起作用。为了测量正电子的能量和倍率谱,预计将使用一个跟踪器和一个电磁量热计。正电子的预期数量变化超过十个数量级,而且必须在广泛分布的低能背景下进行测量。为了克服这些挑战,我们提出了一种结构紧凑、分段精细的量热计。夹层量热计的概念是由穿插着薄传感器平面的钨吸收板构成的。传感器平面包括硅垫传感器、用于提供偏置电压和向传感器边缘传输信号的柔性卡普顿印刷电路平面,所有这些都嵌入碳纤维支架中。传感器平面的厚度小于 1 毫米。开发的专用读出器包括 130 纳米技术的前端 ASIC 和用于协调 ASIC 和执行数据预处理的 FPGA。作为替代方案,考虑在传感器上集成砷化镓读出条。在 5 GeV 的电子束中对两个传感器平面的原型进行了研究。研究结果将介绍响应的均匀性和边缘效应。
{"title":"Test-beam measurements of instrumented sensor planes for a highly compact and granular electromagnetic calorimeter","authors":"Melissa Almanza Soto","doi":"arxiv-2408.00551","DOIUrl":"https://doi.org/arxiv-2408.00551","url":null,"abstract":"The LUXE experiment is designed to explore the strong-field QED regime in\u0000interactions of high-energy electrons from the European XFEL in a powerful\u0000laser field. One of the crucial aims of this experiment is to measure the\u0000production of electron-positron pairs as a function of the laser field strength\u0000where non-perturbative effects are expected to kick in above the Schwinger\u0000limit. For the measurements of positron energy and multiplicity spectra, a\u0000tracker and an electromagnetic calorimeter are foreseen. The expected number of\u0000positrons varies over ten orders of magnitude and has to be measured over a\u0000widely spread low-energy background. To overcome these challenges, a compact\u0000and finely segmented calorimeter is proposed. The concept of a sandwich\u0000calorimeter made of tungsten absorber plates interspersed with thin sensor\u0000planes is developed. The sensor planes comprise a silicon pad sensor, flexible\u0000Kapton printed circuit planes for bias voltage supply and signal transport to\u0000the sensor edge, all embedded in a carbon fiber support. The thickness of a\u0000sensor plane is less than 1 mm. A dedicated readout is developed comprising\u0000front-end ASICs in 130 nm technology and FPGAs to orchestrate the ASICs and\u0000perform data pre-processing. As an alternative, GaAs are considered with\u0000integrated readout strips on the sensor. Prototypes of both sensor planes are\u0000studied in an electron beam of 5 GeV. Results will be presented on the\u0000homogeneity of the response and edge effects.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant Contributions of the Higgs Mode and Self-Energy Corrections to Low-Frequency Complex Conductivity in DC-Biased Superconducting Devices 希格斯模式和自能量修正对直流偏压超导器件低频复合电导率的重要贡献
Pub Date : 2024-08-01 DOI: arxiv-2408.00334
Takayuki Kubo
We investigate the complex conductivity of superconductors under a DC biasbased on the Keldysh-Eilenberger formalism of nonequilibrium superconductivity.This framework allows us to account for the Higgs mode and impurity scatteringself-energy corrections, which are known to significantly impact the complexconductivity under a bias DC, especially near the resonance frequency of theHiggs mode. The purpose of this paper is to explore the effects of thesecontributions on the low-frequency complex conductivity relevant tosuperconducting device technologies. Our approach enables us to derive thecomplex conductivity formula for superconductors ranging from clean to dirtylimits, applicable to any bias DC strength. Our calculations reveal that theHiggs mode and impurity scattering self-energy corrections significantly affectthe complex conductivity even at low frequencies, relevant to superconductingdevice technologies. Specifically, we find that the real part of thelow-frequency complex conductivity exhibits a bias-dependent reduction up to(hbar omega sim 0.1), a much higher frequency than previously considered.This finding allows for the suppression of dissipation in devices by tuning thebias DC. Additionally, through the calculation of the imaginary part of thecomplex conductivity, we evaluate the bias-dependent kinetic inductance forsuperconductors ranging from clean to dirty limits. The bias dependence becomesstronger as the mean free path decreases. Our dirty-limit results coincide withprevious studies based on the so-called slow experiment scenario. This widelyused scenario can be understood as a phenomenological implementation of theHiggs mode into the kinetic inductance calculation, now justified by ourcalculation based on the robust theory of nonequilibrium superconductivity,which microscopically treats the Higgs mode contribution.
我们基于非平衡超导的 Keldysh-Eilenberger 形式主义,研究了超导体在直流偏压下的复合电导率。这个框架允许我们解释希格斯模式和杂质散射自能修正,众所周知,它们会显著影响直流偏压下的复合电导率,尤其是在希格斯模式的共振频率附近。本文旨在探讨这些贡献对与超导器件技术相关的低频复合电导率的影响。我们的方法使我们能够推导出从清洁到肮脏极限的超导体的复合电导率公式,并适用于任何偏置直流强度。我们的计算揭示了希格斯模式和杂质散射自能修正会显著影响复合电导率,即使在与超导器件技术相关的低频下也是如此。具体地说,我们发现低频复合电导率的实部呈现出随偏压变化的降低,最高可达(hbar omega sim 0.1),这比以前考虑的频率要高得多。此外,通过计算复合电导率的虚部,我们评估了超导体从清洁到肮脏极限的偏置动电感。随着平均自由路径的减小,偏压依赖性变得越来越强。我们的脏极限结果与之前基于所谓慢实验情景的研究结果相吻合。这种被广泛使用的情况可以理解为希格斯模式在动力学电感计算中的现象学实现,现在我们基于非平衡超导的稳健理论进行的计算证明了这一点,该理论从微观上处理了希格斯模式的贡献。
{"title":"Significant Contributions of the Higgs Mode and Self-Energy Corrections to Low-Frequency Complex Conductivity in DC-Biased Superconducting Devices","authors":"Takayuki Kubo","doi":"arxiv-2408.00334","DOIUrl":"https://doi.org/arxiv-2408.00334","url":null,"abstract":"We investigate the complex conductivity of superconductors under a DC bias\u0000based on the Keldysh-Eilenberger formalism of nonequilibrium superconductivity.\u0000This framework allows us to account for the Higgs mode and impurity scattering\u0000self-energy corrections, which are known to significantly impact the complex\u0000conductivity under a bias DC, especially near the resonance frequency of the\u0000Higgs mode. The purpose of this paper is to explore the effects of these\u0000contributions on the low-frequency complex conductivity relevant to\u0000superconducting device technologies. Our approach enables us to derive the\u0000complex conductivity formula for superconductors ranging from clean to dirty\u0000limits, applicable to any bias DC strength. Our calculations reveal that the\u0000Higgs mode and impurity scattering self-energy corrections significantly affect\u0000the complex conductivity even at low frequencies, relevant to superconducting\u0000device technologies. Specifically, we find that the real part of the\u0000low-frequency complex conductivity exhibits a bias-dependent reduction up to\u0000(hbar omega sim 0.1), a much higher frequency than previously considered.\u0000This finding allows for the suppression of dissipation in devices by tuning the\u0000bias DC. Additionally, through the calculation of the imaginary part of the\u0000complex conductivity, we evaluate the bias-dependent kinetic inductance for\u0000superconductors ranging from clean to dirty limits. The bias dependence becomes\u0000stronger as the mean free path decreases. Our dirty-limit results coincide with\u0000previous studies based on the so-called slow experiment scenario. This widely\u0000used scenario can be understood as a phenomenological implementation of the\u0000Higgs mode into the kinetic inductance calculation, now justified by our\u0000calculation based on the robust theory of nonequilibrium superconductivity,\u0000which microscopically treats the Higgs mode contribution.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Construction of a Test-Stand for the Split and Delay Line at the European XFEL 欧洲 XFEL 分离和延迟线试验台的设计与建造
Pub Date : 2024-08-01 DOI: arxiv-2408.01472
Hong Xu
This work presents the design and construction of a test-stand for the Splitand Delay Line (SDL) at the European X-ray Free Electron Laser (XFEL) inHamburg, Germany. The advancements in Free Electron Laser technology have nowmade it possible to investigate ultra-fast dynamics in materials science,biology, chemistry, etc. In the SDL, an incident free electron laser pulse issplit into two parts by a beam splitter: one half travels along the upperbranch, and the other half travels along the lower branch. These two pulses caneither merge again in the collinear mode or travel along different opticalpaths toward the sample in the inclined mode. This setup achieves a temporalseparation of a few femtoseconds between the X-ray pulse pairs, which iscrucial for ultra-fast X-ray pump-probe experiments investigating rapiddynamics. This report provides detailed documentation of the mechanical andelectronic configuration of the test-stand, vacuum testing, the manufacturingof supporting cables, and the challenges encountered during the project.Finally, the SDL was successfully assembled and initially validated underultra-high vacuum (UHV) operating conditions.
本研究介绍了位于德国汉堡的欧洲 X 射线自由电子激光器(XFEL)的分裂延迟线(SDL)试验台的设计和建造。自由电子激光技术的进步使材料科学、生物学、化学等领域的超快动力学研究成为可能。在 SDL 中,入射的自由电子激光脉冲被分束器分成两部分:一半沿上支路传播,另一半沿下支路传播。这两个脉冲或在准直模式下再次合并,或在倾斜模式下沿着不同的光路走向样品。这种设置实现了 X 射线脉冲对之间几飞秒的时间间隔,这对于研究激流动力学的超快 X 射线泵浦探针实验至关重要。本报告详细记录了试验台的机械和电子配置、真空测试、支撑电缆的制造以及项目过程中遇到的挑战。最后,SDL 在超高真空 (UHV) 工作条件下成功组装并进行了初步验证。
{"title":"Design and Construction of a Test-Stand for the Split and Delay Line at the European XFEL","authors":"Hong Xu","doi":"arxiv-2408.01472","DOIUrl":"https://doi.org/arxiv-2408.01472","url":null,"abstract":"This work presents the design and construction of a test-stand for the Split\u0000and Delay Line (SDL) at the European X-ray Free Electron Laser (XFEL) in\u0000Hamburg, Germany. The advancements in Free Electron Laser technology have now\u0000made it possible to investigate ultra-fast dynamics in materials science,\u0000biology, chemistry, etc. In the SDL, an incident free electron laser pulse is\u0000split into two parts by a beam splitter: one half travels along the upper\u0000branch, and the other half travels along the lower branch. These two pulses can\u0000either merge again in the collinear mode or travel along different optical\u0000paths toward the sample in the inclined mode. This setup achieves a temporal\u0000separation of a few femtoseconds between the X-ray pulse pairs, which is\u0000crucial for ultra-fast X-ray pump-probe experiments investigating rapid\u0000dynamics. This report provides detailed documentation of the mechanical and\u0000electronic configuration of the test-stand, vacuum testing, the manufacturing\u0000of supporting cables, and the challenges encountered during the project.\u0000Finally, the SDL was successfully assembled and initially validated under\u0000ultra-high vacuum (UHV) operating conditions.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"444 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Inexpensive, Configurable Two-Tone Electron Spin Resonance Spectrometer 价格低廉、可配置的双音电子自旋共振频谱仪
Pub Date : 2024-07-31 DOI: arxiv-2407.21782
Charles A. Collett, Sofia M. Davvetas, Abdulelah Alsuhaymi, Grigore A. Timco
Electron spin resonance (ESR) is a powerful tool for characterizing andmanipulating spin systems, but commercial ESR spectrometers can be expensiveand designed to work in narrow frequency bands. This work presents aninexpensive spectrometer that, when coupled with easy-to-design resonators,enables ESR over a broad frequency range, including at frequencies outside thestandard bands. It can operate at either a single frequency or at twofrequencies simultaneously. The spectrometer is built from off-the-shelf partsand controlled by a field programmable gate array (FPGA), and new capabilitiescan be easily added by reconfiguring the FPGA and adding or swappingcomponents. We demonstrate the capabilities of the spectrometer using themolecular nanomagnet Cr$_7$Mn.
电子自旋共振(ESR)是表征和操纵自旋系统的强大工具,但商用 ESR 光谱仪可能价格昂贵,而且设计用于狭窄的频段。这项研究提出了一种价格低廉的光谱仪,与易于设计的谐振器配合使用时,可在宽广的频率范围内实现 ESR,包括标准频带以外的频率。它可以在单频或双频同时工作。频谱仪由现成的部件制成,并由现场可编程门阵列(FPGA)控制,通过重新配置 FPGA 和添加或交换部件,可以轻松增加新的功能。我们利用分子纳米磁体 Cr$_7$Mn 演示了光谱仪的功能。
{"title":"An Inexpensive, Configurable Two-Tone Electron Spin Resonance Spectrometer","authors":"Charles A. Collett, Sofia M. Davvetas, Abdulelah Alsuhaymi, Grigore A. Timco","doi":"arxiv-2407.21782","DOIUrl":"https://doi.org/arxiv-2407.21782","url":null,"abstract":"Electron spin resonance (ESR) is a powerful tool for characterizing and\u0000manipulating spin systems, but commercial ESR spectrometers can be expensive\u0000and designed to work in narrow frequency bands. This work presents an\u0000inexpensive spectrometer that, when coupled with easy-to-design resonators,\u0000enables ESR over a broad frequency range, including at frequencies outside the\u0000standard bands. It can operate at either a single frequency or at two\u0000frequencies simultaneously. The spectrometer is built from off-the-shelf parts\u0000and controlled by a field programmable gate array (FPGA), and new capabilities\u0000can be easily added by reconfiguring the FPGA and adding or swapping\u0000components. We demonstrate the capabilities of the spectrometer using the\u0000molecular nanomagnet Cr$_7$Mn.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"99 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles 模拟单片有源像素传感器:使用通用掺杂曲线的技术独立方法
Pub Date : 2024-07-31 DOI: arxiv-2408.00027
Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn
The optimisation of the sensitive region of CMOS sensors with complexnon-uniform electric fields requires precise simulations, and this can beachieved by a combination of electrostatic field simulations and Monte Carlomethods. This paper presents the guiding principles of such simulations, usinga CMOS pixel sensor with a small collection electrode and a high-resistivityepitaxial layer as an example. The full simulation workflow is described, alongwith possible pitfalls and how to avoid them. For commercial CMOS processes,detailed doping profiles are confidential, but the presented method provides anoptimisation tool that is sufficiently accurate to investigate sensor behaviourand trade-offs of different sensor designs without knowledge of proprietaryinformation. The workflow starts with detailed electric field finite element methodsimulations in TCAD, using generic doping profiles. Examples of the effect ofvarying different parameters of the simulated sensor are shown, as well as thecreation of weighting fields, and transient pulse simulations. The fieldsresulting from TCAD simulations can be imported into the Allpix Squared MonteCarlo simulation framework, which enables high-statistics simulations,including modelling of stochastic fluctuations from the underlying physicsprocesses of particle interaction. Example Monte Carlo simulation setups arepresented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors arepresented, and example results are shown for both single sensors and multiplesensors in a test beam telescope configuration. The studies shown are thosetypically performed on sensor prototypes in test beam campaigns, and acomparison is made to test beam data, showing a maximum deviation of 4% anddemonstrating that the approach is viable for generating realistic results.
要优化具有复杂非均匀电场的 CMOS 传感器的敏感区,就必须进行精确模拟,而这可以通过静电场模拟和蒙特卡洛方法的结合来实现。本文以具有小收集电极和高电阻率外延层的 CMOS 像素传感器为例,介绍了此类模拟的指导原则。本文介绍了完整的模拟工作流程,以及可能存在的误区和如何避免这些误区。对于商用 CMOS 工艺来说,详细的掺杂情况是保密的,但本文介绍的方法提供了一种优化工具,它具有足够的准确性,可以在不了解专有信息的情况下研究不同传感器设计的传感器行为和权衡。工作流程从 TCAD 中的详细电场有限元法模拟开始,使用通用掺杂曲线。示例显示了模拟传感器不同参数变化的影响,以及加权场和瞬态脉冲模拟的创建。TCAD 模拟产生的场可导入 Allpix Squared MonteCarlo 模拟框架,该框架可进行高统计模拟,包括粒子相互作用的基本物理过程的随机波动建模。本文介绍了蒙特卡罗模拟设置示例,并描述了模拟链的不同部分。介绍了小型集电极 CMOS 传感器的仿真研究,并展示了测试光束望远镜配置中单传感器和多传感器的示例结果。所示研究通常是在测试光束活动中的传感器原型上进行的,并与测试光束数据进行了比较,结果显示最大偏差为 4%,证明该方法可以生成真实的结果。
{"title":"Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles","authors":"Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn","doi":"arxiv-2408.00027","DOIUrl":"https://doi.org/arxiv-2408.00027","url":null,"abstract":"The optimisation of the sensitive region of CMOS sensors with complex\u0000non-uniform electric fields requires precise simulations, and this can be\u0000achieved by a combination of electrostatic field simulations and Monte Carlo\u0000methods. This paper presents the guiding principles of such simulations, using\u0000a CMOS pixel sensor with a small collection electrode and a high-resistivity\u0000epitaxial layer as an example. The full simulation workflow is described, along\u0000with possible pitfalls and how to avoid them. For commercial CMOS processes,\u0000detailed doping profiles are confidential, but the presented method provides an\u0000optimisation tool that is sufficiently accurate to investigate sensor behaviour\u0000and trade-offs of different sensor designs without knowledge of proprietary\u0000information. The workflow starts with detailed electric field finite element method\u0000simulations in TCAD, using generic doping profiles. Examples of the effect of\u0000varying different parameters of the simulated sensor are shown, as well as the\u0000creation of weighting fields, and transient pulse simulations. The fields\u0000resulting from TCAD simulations can be imported into the Allpix Squared Monte\u0000Carlo simulation framework, which enables high-statistics simulations,\u0000including modelling of stochastic fluctuations from the underlying physics\u0000processes of particle interaction. Example Monte Carlo simulation setups are\u0000presented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are\u0000presented, and example results are shown for both single sensors and multiple\u0000sensors in a test beam telescope configuration. The studies shown are those\u0000typically performed on sensor prototypes in test beam campaigns, and a\u0000comparison is made to test beam data, showing a maximum deviation of 4% and\u0000demonstrating that the approach is viable for generating realistic results.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Instrumentation and Detectors
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1