The ALICE Collaboration is developing a novel vertexing detector to extend the heavy-flavour physics programme of the experiment during Run 4 by improving the pointing resolution of the tracking, particularly at low transverse momentum. It will be a detector with three truly cylindrical layers based on thin wafer scale MAPS, reaching less than 0.07% X/X0 per layer and with the innermost layer located as close as 19 mm to the interaction point. This contribution will describe the global detector integration concept, focusing on: the sensor bending procedure, the sensor electrical interconnection, the choice of the best carbon foam for light mechanical supporting structures, the studies of cooling by air flow, and the global structures mechanical characterization.
ALICE 协作小组正在开发一种新型顶点探测器,通过提高跟踪的指向分辨率,特别是在低横动量情况下的指向分辨率,在运行 4 期间扩展实验的重味物理学计划。它将是一个具有三个真正圆柱形层的探测器,基于薄晶圆尺度的 MAPS,每层的 X/X0 小于 0.07%,最内层距离相互作用点近至 19 毫米。本文将介绍全局探测器集成概念,重点包括:传感器弯曲程序、传感器电气互连、轻型机械支撑结构最佳碳泡沫的选择、气流冷却研究以及全局结构的机械特性。
{"title":"ALICE ITS3: how to integrate a large dimension MAPS sensor in a bent configuration detector","authors":"Domenico Colella","doi":"arxiv-2408.01108","DOIUrl":"https://doi.org/arxiv-2408.01108","url":null,"abstract":"The ALICE Collaboration is developing a novel vertexing detector to extend\u0000the heavy-flavour physics programme of the experiment during Run 4 by improving\u0000the pointing resolution of the tracking, particularly at low transverse\u0000momentum. It will be a detector with three truly cylindrical layers based on\u0000thin wafer scale MAPS, reaching less than 0.07% X/X0 per layer and with the\u0000innermost layer located as close as 19 mm to the interaction point. This\u0000contribution will describe the global detector integration concept, focusing\u0000on: the sensor bending procedure, the sensor electrical interconnection, the\u0000choice of the best carbon foam for light mechanical supporting structures, the\u0000studies of cooling by air flow, and the global structures mechanical\u0000characterization.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Baillard, E. Grenier-Boley, M. Dole, F. Deslande, R. Froeschl, T. Lorenzon, P. Moyret, R. Peron, A. Pilan Zanoni, C. Sharp, M. Timmins, M. Calviani
Beam stoppers are installed in the transfer lines of the CERN accelerator complex; these components are used as part of the access safety system, which guarantees the safety of workers in the accelerators. They are designed to stop one or at most a few pulses of the beam, where "stop" means the partial or complete absorption of the primary beam in such a way that the remaining unabsorbed primary or secondary beam remains below a specified threshold, as defined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2; 2018--2021), beam stoppers in the injector complex were dimensioned for beam-pulse energies between 9.0 and 30~kJ. The upgrade of the accelerator complex in the framework of the LHC Injectors Upgrade (LIU) project involves beam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are not able to fulfill the new functional specifications. To cope with the LIU beam parameters and fulfil requirements for safety, maintainability, efficiency, and reliability, a new generation of 28 beam stoppers has been designed, built, and installed. The aim of this paper is to demonstrate the requirements-driven design of these new beam stoppers, outlining the main requirements along with a description of the design and structural assessments. This document presents the implementation and integration of a standardized but adaptable design using a unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718 diluter, taking into account radiological and infrastructure challenges. The installation process is also described, and the first operational feedback received since LS2 is presented.
{"title":"Design, development, and construction of the new beam stoppers for CERN's injector complex","authors":"D. Baillard, E. Grenier-Boley, M. Dole, F. Deslande, R. Froeschl, T. Lorenzon, P. Moyret, R. Peron, A. Pilan Zanoni, C. Sharp, M. Timmins, M. Calviani","doi":"arxiv-2408.01074","DOIUrl":"https://doi.org/arxiv-2408.01074","url":null,"abstract":"Beam stoppers are installed in the transfer lines of the CERN accelerator\u0000complex; these components are used as part of the access safety system, which\u0000guarantees the safety of workers in the accelerators. They are designed to stop\u0000one or at most a few pulses of the beam, where \"stop\" means the partial or\u0000complete absorption of the primary beam in such a way that the remaining\u0000unabsorbed primary or secondary beam remains below a specified threshold, as\u0000defined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2;\u00002018--2021), beam stoppers in the injector complex were dimensioned for\u0000beam-pulse energies between 9.0 and 30~kJ. The upgrade of the accelerator\u0000complex in the framework of the LHC Injectors Upgrade (LIU) project involves\u0000beam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are not\u0000able to fulfill the new functional specifications. To cope with the LIU beam\u0000parameters and fulfil requirements for safety, maintainability, efficiency, and\u0000reliability, a new generation of 28 beam stoppers has been designed, built, and\u0000installed. The aim of this paper is to demonstrate the requirements-driven\u0000design of these new beam stoppers, outlining the main requirements along with a\u0000description of the design and structural assessments. This document presents\u0000the implementation and integration of a standardized but adaptable design using\u0000a unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718\u0000diluter, taking into account radiological and infrastructure challenges. The\u0000installation process is also described, and the first operational feedback\u0000received since LS2 is presented.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DUNE Collaboration, A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, D. Antic, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, M. B. Azam, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, D. Barbu, G. Barenboim, P. Barham~Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, A. Bodek, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, R. Bouet, J. Boza, J. Bracinik, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, A. Bundock, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, R. Calabrese, J. Calcutt, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, F. Chiapponi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, R. D'Amico, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell'Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani', C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, E. Fialova, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M~Gago, F. Galizzi, H. Gallagher, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, F. Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmüller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. M. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, P. Hellmuth, S. Henry, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, J. H. Jo, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. J. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, S. Kulagin, J. Kumar, P. Kumar, S. Kumaran, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, I. Lal{ă}u, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, P. Laycock, I. Lazanu, R. LaZur, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J. -Y~Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X. -G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, S. Mameli, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, A. Mefodiev, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, W. Metcalf, M. Mewes, H. Meyer, T. Miao, J. Micallef, A. Miccoli, G. Michna, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, P. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, A. Nowak, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. O'Sullivan, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, S. Pincha, J. Pinchault, K. Pitts, K. Plows, C. Pollack, T. Pollman, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, L. G. Porto Paix{ã}o, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. Queen, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, F. Raffaelli, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, Diego~Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, S. Sacerdoti, S. Saha, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, A. Sánchez-Castillo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, D. Senadheera, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, S. Sharma Poudel, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, J. Shi, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y. -T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, S. Turnberg, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. P. Vizcaya Hernandez, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, S. Westerdale, M. Wetstein, K. Whalen, A. White, A. White, L. H. Whitehead, D. Whittington, J. Wilhlemi, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, J. Yang, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska
ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time projection chamber that operated in a hadron test beam at the CERN Neutrino Platform in 2018. We present a measurement of the total inelastic cross section of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$ beam momentum settings. The flux-weighted average of the extracted inelastic cross section at each beam momentum setting was measured to be 380$pm$26 mbarns for the 6 GeV/$c$ setting and 379$pm$35 mbarns for the 7 GeV/$c$ setting.
{"title":"First Measurement of the Total Inelastic Cross-Section of Positively-Charged Kaons on Argon at Energies Between 5.0 and 7.5 GeV","authors":"DUNE Collaboration, A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, F. Akbar, K. Allison, S. Alonso Monsalve, M. Alrashed, A. Alton, R. Alvarez, T. Alves, H. Amar, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, D. Antic, M. Antoniassi, M. Antonova, A. Antoshkin, A. Aranda-Fernandez, L. Arellano, E. Arrieta Diaz, M. A. Arroyave, J. Asaadi, A. Ashkenazi, D. Asner, L. Asquith, E. Atkin, D. Auguste, A. Aurisano, V. Aushev, D. Autiero, M. B. Azam, F. Azfar, A. Back, H. Back, J. J. Back, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, W. Baldini, J. Baldonedo, B. Baller, B. Bambah, R. Banerjee, F. Barao, D. Barbu, G. Barenboim, P. Barham~Alzás, G. J. Barker, W. Barkhouse, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, D. Barrow, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, L. Bathe-Peters, J. B. R. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior, G. Bell, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, D. Benjamin, F. Bento Neves, J. Berger, S. Berkman, J. Bernal, P. Bernardini, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhat, V. Bhatnagar, J. Bhatt, M. Bhattacharjee, M. Bhattacharya, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. Blaszczyk, G. C. Blazey, E. Blucher, A. Bodek, J. Bogenschuetz, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, R. Borges Merlo, A. Borkum, N. Bostan, R. Bouet, J. Boza, J. Bracinik, B. Brahma, D. Brailsford, F. Bramati, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, V. Brio, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, J. Buergi, A. Bundock, D. Burgardt, S. Butchart, G. Caceres V., I. Cagnoli, T. Cai, R. Calabrese, R. Calabrese, J. Calcutt, L. Calivers, E. Calvo, A. Caminata, A. F. Camino, W. Campanelli, A. Campani, A. Campos Benitez, N. Canci, J. Capó, I. Caracas, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, N. Carrara, L. Carroll, T. Carroll, A. Carter, E. Casarejos, D. Casazza, J. F. Castaño Forero, F. A. Castaño, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, C. Cerna, A. Cervelli, A. Cervera Villanueva, K. Chakraborty, S. Chakraborty, M. Chalifour, A. Chappell, N. Charitonidis, A. Chatterjee, H. Chen, M. Chen, W. C. Chen, Y. Chen, Z. Chen-Wishart, D. Cherdack, C. Chi, F. Chiapponi, R. Chirco, N. Chitirasreemadam, K. Cho, S. Choate, D. Chokheli, P. S. Chong, B. Chowdhury, D. Christian, A. Chukanov, M. Chung, E. Church, M. F. Cicala, M. Cicerchia, V. Cicero, R. Ciolini, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. A. B. Coelho, A. Cohen, J. Collazo, J. Collot, E. Conley, J. M. Conrad, M. Convery, S. Copello, P. Cova, C. Cox, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, G. Crone, R. Cross, A. Cudd, C. Cuesta, Y. Cui, F. Curciarello, D. Cussans, J. Dai, O. Dalager, R. Dallavalle, W. Dallaway, R. D'Amico, H. da Motta, Z. A. Dar, R. Darby, L. Da Silva Peres, Q. David, G. S. Davies, S. Davini, J. Dawson, R. De Aguiar, P. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, P. De Jong, P. Del Amo Sanchez, A. De la Torre, G. De Lauretis, A. Delbart, D. Delepine, M. Delgado, A. Dell'Acqua, G. Delle Monache, N. Delmonte, P. De Lurgio, R. Demario, G. De Matteis, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, P. Denton, G. W. Deptuch, A. De Roeck, V. De Romeri, J. P. Detje, J. Devine, R. Dharmapalan, M. Dias, A. Diaz, J. S. Díaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, S. Di Falco, L. Di Giulio, P. Ding, L. Di Noto, E. Diociaiuti, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. J. Dolinski, D. Domenici, L. Domine, S. Donati, Y. Donon, S. Doran, D. Douglas, T. A. Doyle, A. Dragone, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, K. Dugas, P. Dunne, B. Dutta, H. Duyang, D. A. Dwyer, A. S. Dyshkant, S. Dytman, M. Eads, A. Earle, S. Edayath, D. Edmunds, J. Eisch, P. Englezos, A. Ereditato, T. Erjavec, C. O. Escobar, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, L. Fajt, A. Falcone, M. Fani', C. Farnese, S. Farrell, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, G. Ferry, E. Fialova, L. Fields, P. Filip, A. Filkins, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, S. Fogarty, W. Foreman, J. Fowler, J. Franc, K. Francis, D. Franco, J. Franklin, J. Freeman, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, R. Gaba, A. Gabrielli, A. M~Gago, F. Galizzi, H. Gallagher, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, F. Gardim, S. Gardiner, D. Gastler, A. Gauch, J. Gauvreau, P. Gauzzi, S. Gazzana, G. Ge, N. Geffroy, B. Gelli, S. Gent, L. Gerlach, Z. Ghorbani-Moghaddam, T. Giammaria, D. Gibin, I. Gil-Botella, S. Gilligan, A. Gioiosa, S. Giovannella, C. Girerd, A. K. Giri, C. Giugliano, V. Giusti, D. Gnani, O. Gogota, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, S. Goswami, C. Gotti, J. Goudeau, E. Goudzovski, C. Grace, E. Gramellini, R. Gran, E. Granados, P. Granger, C. Grant, D. R. Gratieri, G. Grauso, P. Green, S. Greenberg, J. Greer, W. C. Griffith, F. T. Groetschla, K. Grzelak, L. Gu, W. Gu, V. Guarino, M. Guarise, R. Guenette, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, F. Y. Guo, A. Gupta, V. Gupta, G. Gurung, D. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, L. Haegel, R. Haenni, L. Hagaman, A. Hahn, J. Haiston, J. Hakenmüller, T. Hamernik, P. Hamilton, J. Hancock, F. Happacher, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. M. Hasnip, R. Hatcher, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, P. Hellmuth, S. Henry, K. Herner, V. Hewes, A. Higuera, C. Hilgenberg, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, T. Holvey, E. Hoppe, S. Horiuchi, G. A. Horton-Smith, T. Houdy, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, R. G. Huang, Z. Hulcher, M. Ibrahim, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, M. Ismerio Oliveira, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, D. Jena, I. Jentz, X. Ji, C. Jiang, J. Jiang, L. Jiang, A. Jipa, J. H. Jo, F. R. Joaquim, W. Johnson, C. Jollet, B. Jones, R. Jones, N. Jovancevic, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. C. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, M. Kandemir, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, I. Katsioulas, A. Kauther, N. Kazaryan, L. Ke, E. Kearns, P. T. Keener, K. J. Kelly, E. Kemp, O. Kemularia, Y. Kermaidic, W. Ketchum, S. H. Kettell, M. Khabibullin, N. Khan, A. Khvedelidze, D. Kim, J. Kim, M. J. Kim, B. King, B. Kirby, M. Kirby, A. Kish, J. Klein, J. Kleykamp, A. Klustova, T. Kobilarcik, L. Koch, K. Koehler, L. W. Koerner, D. H. Koh, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, I. Kotler, M. Kovalcuk, V. Kozhukalov, W. Krah, R. Kralik, M. Kramer, L. Kreczko, F. Krennrich, I. Kreslo, T. Kroupova, S. Kubota, M. Kubu, Y. Kudenko, V. A. Kudryavtsev, G. Kufatty, S. Kuhlmann, S. Kulagin, J. Kumar, P. Kumar, S. Kumaran, J. Kunzmann, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, T. Labree, T. Lackey, I. Lal{ă}u, A. Lambert, B. J. Land, C. E. Lane, N. Lane, K. Lang, T. Langford, M. Langstaff, F. Lanni, O. Lantwin, J. Larkin, P. Lasorak, D. Last, A. Laudrain, A. Laundrie, G. Laurenti, E. Lavaut, P. Laycock, I. Lazanu, R. LaZur, M. Lazzaroni, T. Le, S. Leardini, J. Learned, T. LeCompte, V. Legin, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, D. Leon Silverio, L. M. Lepin, J. -Y~Li, S. W. Li, Y. Li, H. Liao, C. S. Lin, D. Lindebaum, S. Linden, R. A. Lineros, A. Lister, B. R. Littlejohn, H. Liu, J. Liu, Y. Liu, S. Lockwitz, M. Lokajicek, I. Lomidze, K. Long, T. V. Lopes, J. Lopez, I. López de Rego, N. López-March, T. Lord, J. M. LoSecco, W. C. Louis, A. Lozano Sanchez, X. -G. Lu, K. B. Luk, B. Lunday, X. Luo, E. Luppi, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, M. MacMahon, A. Maddalena, A. Madera, P. Madigan, S. Magill, C. Magueur, K. Mahn, A. Maio, A. Major, K. Majumdar, S. Mameli, M. Man, R. C. Mandujano, J. Maneira, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, S. Manthey Corchado, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, F. Marinho, A. D. Marino, T. Markiewicz, F. Das Chagas Marques, C. Marquet, M. Marshak, C. M. Marshall, J. Marshall, L. Martina, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, F. Martínez López, P. Martínez Miravé, S. Martynenko, V. Mascagna, C. Massari, A. Mastbaum, F. Matichard, S. Matsuno, G. Matteucci, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, T. McAskill, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, L. Meazza, V. C. N. Meddage, A. Mefodiev, B. Mehta, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, A. C. E. A. Mercuri, A. Meregaglia, M. D. Messier, S. Metallo, W. Metcalf, M. Mewes, H. Meyer, T. Miao, J. Micallef, A. Miccoli, G. Michna, R. Milincic, F. Miller, G. Miller, W. Miller, O. Mineev, A. Minotti, L. Miralles, O. G. Miranda, C. Mironov, S. Miryala, S. Miscetti, C. S. Mishra, P. Mishra, S. R. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, A. Mogan, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, M. Mooney, A. F. Moor, Z. Moore, D. Moreno, O. Moreno-Palacios, L. Morescalchi, D. Moretti, R. Moretti, C. Morris, C. Mossey, C. A. Moura, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, F. Muheim, A. Muir, M. Mulhearn, D. Munford, L. J. Munteanu, H. Muramatsu, J. Muraz, M. Murphy, T. Murphy, J. Muse, A. Mytilinaki, J. Nachtman, Y. Nagai, S. Nagu, R. Nandakumar, D. Naples, S. Narita, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, A. Nehm, J. K. Nelson, O. Neogi, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, J. Nikolov, E. Niner, K. Nishimura, A. Norman, A. Norrick, P. Novella, A. Nowak, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, S. Oh, S. B. Oh, A. Olivier, A. Olshevskiy, T. Olson, Y. Onel, Y. Onishchuk, A. Oranday, M. Osbiston, J. A. Osorio Vélez, L. O'Sullivan, L. Otiniano Ormachea, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, S. Pan, P. Panda, W. Panduro Vazquez, E. Pantic, V. Paolone, R. Papaleo, A. Papanestis, D. Papoulias, S. Paramesvaran, A. Paris, S. Parke, E. Parozzi, S. Parsa, Z. Parsa, S. Parveen, M. Parvu, D. Pasciuto, S. Pascoli, L. Pasqualini, J. Pasternak, C. Patrick, L. Patrizii, R. B. Patterson, T. Patzak, A. Paudel, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, E. Pedreschi, S. J. M. Peeters, W. Pellico, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. G. Peres, Y. F. Perez Gonzalez, L. Pérez-Molina, C. Pernas, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, M. Pfaff, V. Pia, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, S. Pincha, J. Pinchault, K. Pitts, K. Plows, C. Pollack, T. Pollman, F. Pompa, X. Pons, N. Poonthottathil, V. Popov, F. Poppi, J. Porter, L. G. Porto Paix{ã}o, M. Potekhin, R. Potenza, J. Pozimski, M. Pozzato, T. Prakash, C. Pratt, M. Prest, F. Psihas, D. Pugnere, X. Qian, J. Queen, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, F. Raffaelli, A. Rafique, E. Raguzin, M. Rai, S. Rajagopalan, M. Rajaoalisoa, I. Rakhno, L. Rakotondravohitra, L. Ralte, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, R. Ray, H. Razafinime, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, E. Renner, A. Renshaw, S. Rescia, F. Resnati, Diego~Restrepo, C. Reynolds, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, J. S. Ricol, M. Rigan, E. V. Rincón, A. Ritchie-Yates, S. Ritter, D. Rivera, R. Rivera, A. Robert, J. L. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, D. Ross, M. Rossella, M. Rossi, M. Ross-Lonergan, N. Roy, P. Roy, C. Rubbia, A. Ruggeri, G. Ruiz Ferreira, B. Russell, D. Ruterbories, A. Rybnikov, S. Sacerdoti, S. Saha, S. K. Sahoo, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, A. Sánchez Bravo, A. Sánchez-Castillo, P. Sanchez-Lucas, V. Sandberg, D. A. Sanders, S. Sanfilippo, D. Sankey, D. Santoro, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, I. Sarra, G. Savage, V. Savinov, G. Scanavini, A. Scaramelli, A. Scarff, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, B. Schuld, A. Segade, E. Segreto, A. Selyunin, D. Senadheera, C. R. Senise, J. Sensenig, M. H. Shaevitz, P. Shanahan, P. Sharma, R. Kumar, S. Sharma Poudel, K. Shaw, T. Shaw, K. Shchablo, J. Shen, C. Shepherd-Themistocleous, A. Sheshukov, J. Shi, W. Shi, S. Shin, S. Shivakoti, I. Shoemaker, D. Shooltz, R. Shrock, B. Siddi, M. Siden, J. Silber, L. Simard, J. Sinclair, G. Sinev, Jaydip Singh, J. Singh, L. Singh, P. Singh, V. Singh, S. Singh Chauhan, R. Sipos, C. Sironneau, G. Sirri, K. Siyeon, K. Skarpaas, J. Smedley, E. Smith, J. Smith, P. Smith, J. Smolik, M. Smy, M. Snape, E. L. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spinella, J. Spitz, N. J. C. Spooner, K. Spurgeon, D. Stalder, M. Stancari, L. Stanco, J. Steenis, R. Stein, H. M. Steiner, A. F. Steklain Lisbôa, A. Stepanova, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Subash, A. Surdo, L. Suter, C. M. Sutera, K. Sutton, Y. Suvorov, R. Svoboda, S. K. Swain, B. Szczerbinska, A. M. Szelc, A. Sztuc, A. Taffara, N. Talukdar, J. Tamara, H. A. Tanaka, S. Tang, N. Taniuchi, A. M. Tapia Casanova, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, E. Tatar, R. Tayloe, D. Tedeschi, A. M. Teklu, J. Tena Vidal, P. Tennessen, M. Tenti, K. Terao, F. Terranova, G. Testera, T. Thakore, A. Thea, S. Thomas, A. Thompson, C. Thorn, S. C. Timm, E. Tiras, V. Tishchenko, N. Todorović, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, D. Tran, R. Travaglini, J. Trevor, E. Triller, S. Trilov, J. Truchon, D. Truncali, W. H. Trzaska, Y. Tsai, Y. -T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tunnell, S. Turnberg, J. Turner, M. Tuzi, J. Tyler, E. Tyley, M. Tzanov, M. A. Uchida, J. Ureña González, J. Urheim, T. Usher, H. Utaegbulam, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. A. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. F. Valle, R. Van Berg, R. G. Van de Water, D. V. Forero, A. Vannozzi, M. Van Nuland-Troost, F. Varanini, D. Vargas Oliva, S. Vasina, N. Vaughan, K. Vaziri, A. Vázquez-Ramos, J. Vega, S. Ventura, A. Verdugo, S. Vergani, M. Verzocchi, K. Vetter, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, E. Villa, S. Viola, B. Viren, A. P. Vizcaya Hernandez, Q. Vuong, A. V. Waldron, M. Wallbank, J. Walsh, T. Walton, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, X. Wang, Y. Wang, K. Warburton, D. Warner, L. Warsame, M. O. Wascko, D. Waters, A. Watson, K. Wawrowska, A. Weber, C. M. Weber, M. Weber, H. Wei, A. Weinstein, S. Westerdale, M. Wetstein, K. Whalen, A. White, A. White, L. H. Whitehead, D. Whittington, J. Wilhlemi, M. J. Wilking, A. Wilkinson, C. Wilkinson, F. Wilson, R. J. Wilson, P. Winter, W. Wisniewski, J. Wolcott, J. Wolfs, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, M. Wospakrik, K. Wresilo, C. Wret, S. Wu, W. Wu, W. Wu, M. Wurm, J. Wyenberg, Y. Xiao, I. Xiotidis, B. Yaeggy, N. Yahlali, E. Yandel, J. Yang, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, O. Zapata, L. Zazueta, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, M. Zhao, E. Zhivun, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska","doi":"arxiv-2408.00582","DOIUrl":"https://doi.org/arxiv-2408.00582","url":null,"abstract":"ProtoDUNE Single-Phase (ProtoDUNE-SP) is a 770-ton liquid argon time\u0000projection chamber that operated in a hadron test beam at the CERN Neutrino\u0000Platform in 2018. We present a measurement of the total inelastic cross section\u0000of charged kaons on argon as a function of kaon energy using 6 and 7 GeV/$c$\u0000beam momentum settings. The flux-weighted average of the extracted inelastic\u0000cross section at each beam momentum setting was measured to be 380$pm$26\u0000mbarns for the 6 GeV/$c$ setting and 379$pm$35 mbarns for the 7 GeV/$c$\u0000setting.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"364 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Baránek, Pavol Neilinger, Samuel Kern, Miroslav Grajcar
Superconducting nanowire single-photon detectors are widely used in various fields of physics and technology, due to their high efficiency and timing precision. Although, in principle, their detection mechanism offers broadband operation, their wavelength range has to be optimized by the optical cavity parameters for a specific task. We present a study of the optical absorption of a superconducting nanowire single photon detector (SNSPD) with an optical cavity. The optical properties of the niobium nitride films, measured by spectroscopic ellipsometry, were modelled using the Drude-Lorentz model with quantum corrections. The numerical simulations of the optical response of the detectors show that the wavelength range of the detector is not solely determined by its geometry, but the optical conductivity of the disordered thin metallic films contributes considerably. This contribution can be conveniently expressed by the ratio of imaginary and real parts of the optical conductivity. This knowledge can be utilized in detector design.
{"title":"Numerical modeling of SNSPD absorption utilizing optical conductivity with quantum corrections","authors":"Martin Baránek, Pavol Neilinger, Samuel Kern, Miroslav Grajcar","doi":"arxiv-2408.00623","DOIUrl":"https://doi.org/arxiv-2408.00623","url":null,"abstract":"Superconducting nanowire single-photon detectors are widely used in various\u0000fields of physics and technology, due to their high efficiency and timing\u0000precision. Although, in principle, their detection mechanism offers broadband\u0000operation, their wavelength range has to be optimized by the optical cavity\u0000parameters for a specific task. We present a study of the optical absorption of\u0000a superconducting nanowire single photon detector (SNSPD) with an optical\u0000cavity. The optical properties of the niobium nitride films, measured by\u0000spectroscopic ellipsometry, were modelled using the Drude-Lorentz model with\u0000quantum corrections. The numerical simulations of the optical response of the\u0000detectors show that the wavelength range of the detector is not solely\u0000determined by its geometry, but the optical conductivity of the disordered thin\u0000metallic films contributes considerably. This contribution can be conveniently\u0000expressed by the ratio of imaginary and real parts of the optical conductivity.\u0000This knowledge can be utilized in detector design.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Herrera, M. E. Patiño, Mauricio Alvarado, Ivonne Maldonado, Denis Andreev, Alejandro Ayala, Wolfgang Bietenholz, César Ceballos, Eleazar Cuáutle, Isabel Domínguez, L. A. Hernández, Israel Luna, Tuyana Lygdenova, Pablo Martínez-Torres, Alfredo Raya, Ulises Sáenz-Trujillo, M. E. Tejeda-Yeomans, Galileo Tinoco-Santillán
We present the design of the mechanical structure of the miniBeBe detector, a subsystem of the Multi-Purpose Detector, soon to enter into operation at the Nuclotron based Ion Collider fAcility of the Joint Institute for Nuclear Research. The miniBeBe detector was designed and is currently being developed by the MexNICA Collaboration to contribute to the level-zero trigger of the Time of Flight. The mechanical structure meets the requirements of minimizing the material budget and be free of ferromagnetic materials, without compromising its robustness. The design also allows easy module replacement for maintenance and overall removal at the end of the first stage of the experiment, without affecting the rest of the subsystems, to leave room for the installation of the Inner Tracking System. In addition, a Finite Element Method analysis of the mechanical components under load was performed. Based on this analysis, it was determined that the design meets the space constraints within the Multi-Purpose Detector, as well as a deformation of less than 1 mm with overall stress of less than 2 MPa, such that no material used in the design is at risk of mechanical failure during operation. A cooling system heat transfer analysis was performed showing that the detector Silicon Photo-Multipliers can be kept within a temperature range of 19$^{circ}$C to 23$^{circ}$C, which is adequate for their optimal performance.
{"title":"Mechanical design concept version 2.0 for the miniBeBe subsystem of the Multi-Purpose Detector at the Nuclotron-based Ion Collider fAcility of the Joint Institute for Nuclear Research","authors":"M. Herrera, M. E. Patiño, Mauricio Alvarado, Ivonne Maldonado, Denis Andreev, Alejandro Ayala, Wolfgang Bietenholz, César Ceballos, Eleazar Cuáutle, Isabel Domínguez, L. A. Hernández, Israel Luna, Tuyana Lygdenova, Pablo Martínez-Torres, Alfredo Raya, Ulises Sáenz-Trujillo, M. E. Tejeda-Yeomans, Galileo Tinoco-Santillán","doi":"arxiv-2408.00556","DOIUrl":"https://doi.org/arxiv-2408.00556","url":null,"abstract":"We present the design of the mechanical structure of the miniBeBe detector, a\u0000subsystem of the Multi-Purpose Detector, soon to enter into operation at the\u0000Nuclotron based Ion Collider fAcility of the Joint Institute for Nuclear\u0000Research. The miniBeBe detector was designed and is currently being developed\u0000by the MexNICA Collaboration to contribute to the level-zero trigger of the\u0000Time of Flight. The mechanical structure meets the requirements of minimizing\u0000the material budget and be free of ferromagnetic materials, without\u0000compromising its robustness. The design also allows easy module replacement for\u0000maintenance and overall removal at the end of the first stage of the\u0000experiment, without affecting the rest of the subsystems, to leave room for the\u0000installation of the Inner Tracking System. In addition, a Finite Element Method\u0000analysis of the mechanical components under load was performed. Based on this\u0000analysis, it was determined that the design meets the space constraints within\u0000the Multi-Purpose Detector, as well as a deformation of less than 1 mm with\u0000overall stress of less than 2 MPa, such that no material used in the design is\u0000at risk of mechanical failure during operation. A cooling system heat transfer\u0000analysis was performed showing that the detector Silicon Photo-Multipliers can\u0000be kept within a temperature range of 19$^{circ}$C to 23$^{circ}$C, which is\u0000adequate for their optimal performance.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The LUXE experiment is designed to explore the strong-field QED regime in interactions of high-energy electrons from the European XFEL in a powerful laser field. One of the crucial aims of this experiment is to measure the production of electron-positron pairs as a function of the laser field strength where non-perturbative effects are expected to kick in above the Schwinger limit. For the measurements of positron energy and multiplicity spectra, a tracker and an electromagnetic calorimeter are foreseen. The expected number of positrons varies over ten orders of magnitude and has to be measured over a widely spread low-energy background. To overcome these challenges, a compact and finely segmented calorimeter is proposed. The concept of a sandwich calorimeter made of tungsten absorber plates interspersed with thin sensor planes is developed. The sensor planes comprise a silicon pad sensor, flexible Kapton printed circuit planes for bias voltage supply and signal transport to the sensor edge, all embedded in a carbon fiber support. The thickness of a sensor plane is less than 1 mm. A dedicated readout is developed comprising front-end ASICs in 130 nm technology and FPGAs to orchestrate the ASICs and perform data pre-processing. As an alternative, GaAs are considered with integrated readout strips on the sensor. Prototypes of both sensor planes are studied in an electron beam of 5 GeV. Results will be presented on the homogeneity of the response and edge effects.
{"title":"Test-beam measurements of instrumented sensor planes for a highly compact and granular electromagnetic calorimeter","authors":"Melissa Almanza Soto","doi":"arxiv-2408.00551","DOIUrl":"https://doi.org/arxiv-2408.00551","url":null,"abstract":"The LUXE experiment is designed to explore the strong-field QED regime in\u0000interactions of high-energy electrons from the European XFEL in a powerful\u0000laser field. One of the crucial aims of this experiment is to measure the\u0000production of electron-positron pairs as a function of the laser field strength\u0000where non-perturbative effects are expected to kick in above the Schwinger\u0000limit. For the measurements of positron energy and multiplicity spectra, a\u0000tracker and an electromagnetic calorimeter are foreseen. The expected number of\u0000positrons varies over ten orders of magnitude and has to be measured over a\u0000widely spread low-energy background. To overcome these challenges, a compact\u0000and finely segmented calorimeter is proposed. The concept of a sandwich\u0000calorimeter made of tungsten absorber plates interspersed with thin sensor\u0000planes is developed. The sensor planes comprise a silicon pad sensor, flexible\u0000Kapton printed circuit planes for bias voltage supply and signal transport to\u0000the sensor edge, all embedded in a carbon fiber support. The thickness of a\u0000sensor plane is less than 1 mm. A dedicated readout is developed comprising\u0000front-end ASICs in 130 nm technology and FPGAs to orchestrate the ASICs and\u0000perform data pre-processing. As an alternative, GaAs are considered with\u0000integrated readout strips on the sensor. Prototypes of both sensor planes are\u0000studied in an electron beam of 5 GeV. Results will be presented on the\u0000homogeneity of the response and edge effects.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the complex conductivity of superconductors under a DC bias based on the Keldysh-Eilenberger formalism of nonequilibrium superconductivity. This framework allows us to account for the Higgs mode and impurity scattering self-energy corrections, which are known to significantly impact the complex conductivity under a bias DC, especially near the resonance frequency of the Higgs mode. The purpose of this paper is to explore the effects of these contributions on the low-frequency complex conductivity relevant to superconducting device technologies. Our approach enables us to derive the complex conductivity formula for superconductors ranging from clean to dirty limits, applicable to any bias DC strength. Our calculations reveal that the Higgs mode and impurity scattering self-energy corrections significantly affect the complex conductivity even at low frequencies, relevant to superconducting device technologies. Specifically, we find that the real part of the low-frequency complex conductivity exhibits a bias-dependent reduction up to (hbar omega sim 0.1), a much higher frequency than previously considered. This finding allows for the suppression of dissipation in devices by tuning the bias DC. Additionally, through the calculation of the imaginary part of the complex conductivity, we evaluate the bias-dependent kinetic inductance for superconductors ranging from clean to dirty limits. The bias dependence becomes stronger as the mean free path decreases. Our dirty-limit results coincide with previous studies based on the so-called slow experiment scenario. This widely used scenario can be understood as a phenomenological implementation of the Higgs mode into the kinetic inductance calculation, now justified by our calculation based on the robust theory of nonequilibrium superconductivity, which microscopically treats the Higgs mode contribution.
{"title":"Significant Contributions of the Higgs Mode and Self-Energy Corrections to Low-Frequency Complex Conductivity in DC-Biased Superconducting Devices","authors":"Takayuki Kubo","doi":"arxiv-2408.00334","DOIUrl":"https://doi.org/arxiv-2408.00334","url":null,"abstract":"We investigate the complex conductivity of superconductors under a DC bias\u0000based on the Keldysh-Eilenberger formalism of nonequilibrium superconductivity.\u0000This framework allows us to account for the Higgs mode and impurity scattering\u0000self-energy corrections, which are known to significantly impact the complex\u0000conductivity under a bias DC, especially near the resonance frequency of the\u0000Higgs mode. The purpose of this paper is to explore the effects of these\u0000contributions on the low-frequency complex conductivity relevant to\u0000superconducting device technologies. Our approach enables us to derive the\u0000complex conductivity formula for superconductors ranging from clean to dirty\u0000limits, applicable to any bias DC strength. Our calculations reveal that the\u0000Higgs mode and impurity scattering self-energy corrections significantly affect\u0000the complex conductivity even at low frequencies, relevant to superconducting\u0000device technologies. Specifically, we find that the real part of the\u0000low-frequency complex conductivity exhibits a bias-dependent reduction up to\u0000(hbar omega sim 0.1), a much higher frequency than previously considered.\u0000This finding allows for the suppression of dissipation in devices by tuning the\u0000bias DC. Additionally, through the calculation of the imaginary part of the\u0000complex conductivity, we evaluate the bias-dependent kinetic inductance for\u0000superconductors ranging from clean to dirty limits. The bias dependence becomes\u0000stronger as the mean free path decreases. Our dirty-limit results coincide with\u0000previous studies based on the so-called slow experiment scenario. This widely\u0000used scenario can be understood as a phenomenological implementation of the\u0000Higgs mode into the kinetic inductance calculation, now justified by our\u0000calculation based on the robust theory of nonequilibrium superconductivity,\u0000which microscopically treats the Higgs mode contribution.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents the design and construction of a test-stand for the Split and Delay Line (SDL) at the European X-ray Free Electron Laser (XFEL) in Hamburg, Germany. The advancements in Free Electron Laser technology have now made it possible to investigate ultra-fast dynamics in materials science, biology, chemistry, etc. In the SDL, an incident free electron laser pulse is split into two parts by a beam splitter: one half travels along the upper branch, and the other half travels along the lower branch. These two pulses can either merge again in the collinear mode or travel along different optical paths toward the sample in the inclined mode. This setup achieves a temporal separation of a few femtoseconds between the X-ray pulse pairs, which is crucial for ultra-fast X-ray pump-probe experiments investigating rapid dynamics. This report provides detailed documentation of the mechanical and electronic configuration of the test-stand, vacuum testing, the manufacturing of supporting cables, and the challenges encountered during the project. Finally, the SDL was successfully assembled and initially validated under ultra-high vacuum (UHV) operating conditions.
本研究介绍了位于德国汉堡的欧洲 X 射线自由电子激光器(XFEL)的分裂延迟线(SDL)试验台的设计和建造。自由电子激光技术的进步使材料科学、生物学、化学等领域的超快动力学研究成为可能。在 SDL 中,入射的自由电子激光脉冲被分束器分成两部分:一半沿上支路传播,另一半沿下支路传播。这两个脉冲或在准直模式下再次合并,或在倾斜模式下沿着不同的光路走向样品。这种设置实现了 X 射线脉冲对之间几飞秒的时间间隔,这对于研究激流动力学的超快 X 射线泵浦探针实验至关重要。本报告详细记录了试验台的机械和电子配置、真空测试、支撑电缆的制造以及项目过程中遇到的挑战。最后,SDL 在超高真空 (UHV) 工作条件下成功组装并进行了初步验证。
{"title":"Design and Construction of a Test-Stand for the Split and Delay Line at the European XFEL","authors":"Hong Xu","doi":"arxiv-2408.01472","DOIUrl":"https://doi.org/arxiv-2408.01472","url":null,"abstract":"This work presents the design and construction of a test-stand for the Split\u0000and Delay Line (SDL) at the European X-ray Free Electron Laser (XFEL) in\u0000Hamburg, Germany. The advancements in Free Electron Laser technology have now\u0000made it possible to investigate ultra-fast dynamics in materials science,\u0000biology, chemistry, etc. In the SDL, an incident free electron laser pulse is\u0000split into two parts by a beam splitter: one half travels along the upper\u0000branch, and the other half travels along the lower branch. These two pulses can\u0000either merge again in the collinear mode or travel along different optical\u0000paths toward the sample in the inclined mode. This setup achieves a temporal\u0000separation of a few femtoseconds between the X-ray pulse pairs, which is\u0000crucial for ultra-fast X-ray pump-probe experiments investigating rapid\u0000dynamics. This report provides detailed documentation of the mechanical and\u0000electronic configuration of the test-stand, vacuum testing, the manufacturing\u0000of supporting cables, and the challenges encountered during the project.\u0000Finally, the SDL was successfully assembled and initially validated under\u0000ultra-high vacuum (UHV) operating conditions.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"444 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles A. Collett, Sofia M. Davvetas, Abdulelah Alsuhaymi, Grigore A. Timco
Electron spin resonance (ESR) is a powerful tool for characterizing and manipulating spin systems, but commercial ESR spectrometers can be expensive and designed to work in narrow frequency bands. This work presents an inexpensive spectrometer that, when coupled with easy-to-design resonators, enables ESR over a broad frequency range, including at frequencies outside the standard bands. It can operate at either a single frequency or at two frequencies simultaneously. The spectrometer is built from off-the-shelf parts and controlled by a field programmable gate array (FPGA), and new capabilities can be easily added by reconfiguring the FPGA and adding or swapping components. We demonstrate the capabilities of the spectrometer using the molecular nanomagnet Cr$_7$Mn.
{"title":"An Inexpensive, Configurable Two-Tone Electron Spin Resonance Spectrometer","authors":"Charles A. Collett, Sofia M. Davvetas, Abdulelah Alsuhaymi, Grigore A. Timco","doi":"arxiv-2407.21782","DOIUrl":"https://doi.org/arxiv-2407.21782","url":null,"abstract":"Electron spin resonance (ESR) is a powerful tool for characterizing and\u0000manipulating spin systems, but commercial ESR spectrometers can be expensive\u0000and designed to work in narrow frequency bands. This work presents an\u0000inexpensive spectrometer that, when coupled with easy-to-design resonators,\u0000enables ESR over a broad frequency range, including at frequencies outside the\u0000standard bands. It can operate at either a single frequency or at two\u0000frequencies simultaneously. The spectrometer is built from off-the-shelf parts\u0000and controlled by a field programmable gate array (FPGA), and new capabilities\u0000can be easily added by reconfiguring the FPGA and adding or swapping\u0000components. We demonstrate the capabilities of the spectrometer using the\u0000molecular nanomagnet Cr$_7$Mn.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"99 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn
The optimisation of the sensitive region of CMOS sensors with complex non-uniform electric fields requires precise simulations, and this can be achieved by a combination of electrostatic field simulations and Monte Carlo methods. This paper presents the guiding principles of such simulations, using a CMOS pixel sensor with a small collection electrode and a high-resistivity epitaxial layer as an example. The full simulation workflow is described, along with possible pitfalls and how to avoid them. For commercial CMOS processes, detailed doping profiles are confidential, but the presented method provides an optimisation tool that is sufficiently accurate to investigate sensor behaviour and trade-offs of different sensor designs without knowledge of proprietary information. The workflow starts with detailed electric field finite element method simulations in TCAD, using generic doping profiles. Examples of the effect of varying different parameters of the simulated sensor are shown, as well as the creation of weighting fields, and transient pulse simulations. The fields resulting from TCAD simulations can be imported into the Allpix Squared Monte Carlo simulation framework, which enables high-statistics simulations, including modelling of stochastic fluctuations from the underlying physics processes of particle interaction. Example Monte Carlo simulation setups are presented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are presented, and example results are shown for both single sensors and multiple sensors in a test beam telescope configuration. The studies shown are those typically performed on sensor prototypes in test beam campaigns, and a comparison is made to test beam data, showing a maximum deviation of 4% and demonstrating that the approach is viable for generating realistic results.
{"title":"Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles","authors":"Håkan WennlöfDeutsches Elektronen-Synchrotron DESY, Dominik DannheimCERN, Manuel Del Rio VieraDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Katharina DortCERNUniversity of Giessen, Doris EcksteinDeutsches Elektronen-Synchrotron DESY, Finn FeindtDeutsches Elektronen-Synchrotron DESY, Ingrid-Maria GregorDeutsches Elektronen-Synchrotron DESY, Lennart HuthDeutsches Elektronen-Synchrotron DESY, Stephan LachnitDeutsches Elektronen-Synchrotron DESYUniversity of Hamburg, Larissa MendesDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Daniil RastorguevDeutsches Elektronen-Synchrotron DESYUniversity of Wuppertal, Sara Ruiz DazaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Paul SchützeDeutsches Elektronen-Synchrotron DESY, Adriana SimancasDeutsches Elektronen-Synchrotron DESYUniversity of Bonn, Walter SnoeysCERN, Simon SpannagelDeutsches Elektronen-Synchrotron DESY, Marcel StanitzkiDeutsches Elektronen-Synchrotron DESY, Alessandra TomalUniversity of Campinas, Anastasiia VelykaDeutsches Elektronen-Synchrotron DESY, Gianpiero VignolaDeutsches Elektronen-Synchrotron DESYUniversity of Bonn","doi":"arxiv-2408.00027","DOIUrl":"https://doi.org/arxiv-2408.00027","url":null,"abstract":"The optimisation of the sensitive region of CMOS sensors with complex\u0000non-uniform electric fields requires precise simulations, and this can be\u0000achieved by a combination of electrostatic field simulations and Monte Carlo\u0000methods. This paper presents the guiding principles of such simulations, using\u0000a CMOS pixel sensor with a small collection electrode and a high-resistivity\u0000epitaxial layer as an example. The full simulation workflow is described, along\u0000with possible pitfalls and how to avoid them. For commercial CMOS processes,\u0000detailed doping profiles are confidential, but the presented method provides an\u0000optimisation tool that is sufficiently accurate to investigate sensor behaviour\u0000and trade-offs of different sensor designs without knowledge of proprietary\u0000information. The workflow starts with detailed electric field finite element method\u0000simulations in TCAD, using generic doping profiles. Examples of the effect of\u0000varying different parameters of the simulated sensor are shown, as well as the\u0000creation of weighting fields, and transient pulse simulations. The fields\u0000resulting from TCAD simulations can be imported into the Allpix Squared Monte\u0000Carlo simulation framework, which enables high-statistics simulations,\u0000including modelling of stochastic fluctuations from the underlying physics\u0000processes of particle interaction. Example Monte Carlo simulation setups are\u0000presented and the different parts of a simulation chain are described. Simulation studies from small collection electrode CMOS sensors are\u0000presented, and example results are shown for both single sensors and multiple\u0000sensors in a test beam telescope configuration. The studies shown are those\u0000typically performed on sensor prototypes in test beam campaigns, and a\u0000comparison is made to test beam data, showing a maximum deviation of 4% and\u0000demonstrating that the approach is viable for generating realistic results.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}