DarkSide-20k Collaboration, :, F. Acerbi, P. Adhikari, P. Agnes, I. Ahmad, S. Albergo, I. F. M. Albuquerque, T. Alexander, A. K. Alton, P. Amaudruz, M. Angiolilli, E. Aprile, R. Ardito, M. Atzori Corona, D. J. Auty, M. Ave, I. C. Avetisov, O. Azzolini, H. O. Back, Z. Balmforth, A. Barrado Olmedo, P. Barrillon, G. Batignani, P. Bhowmick, S. Blua, V. Bocci, W. Bonivento, B. Bottino, M. G. Boulay, A. Buchowicz, S. Bussino, J. Busto, M. Cadeddu, M. Cadoni, R. Calabrese, V. Camillo, A. Caminata, N. Canci, A. Capra, M. Caravati, M. Cárdenas-Montes, N. Cargioli, M. Carlini, A. Castellani, P. Castello, P. Cavalcante, S. Cebrian, J. Cela Ruiz, S. Chashin, A. Chepurnov, L. Cifarelli, D. Cintas, M. Citterio, B. Cleveland, Y. Coadou, V. Cocco, D. Colaiuda, E. Conde Vilda, L. Consiglio, B. S. Costa, M. Czubak, M. D'Aniello, S. D'Auria, M. D. Da Rocha Rolo, G. Darbo, S. Davini, S. De Cecco, G. De Guido, G. Dellacasa, A. V. Derbin, A. Devoto, F. Di Capua, A. Di Ludovico, L. Di Noto, P. Di Stefano, L. K. Dias, D. Díaz Mairena, X. Ding, C. Dionisi, G. Dolganov, F. Dordei, V. Dronik, A. Elersich, E. Ellingwood, T. Erjavec, M. Fernandez Diaz, A. Ficorella, G. Fiorillo, P. Franchini, D. Franco, H. Frandini Gatti, E. Frolov, F. Gabriele, D. Gahan, C. Galbiati, G. Galiński, G. Gallina, G. Gallus, M. Garbini, P. Garcia Abia, A. Gawdzik, A. Gendotti, A. Ghisi, G. K. Giovanetti, V. Goicoechea Casanueva, A. Gola, L. Grandi, G. Grauso, G. Grilli di Cortona, A. Grobov, M. Gromov, M. Guerzoni, M. Gulino, C. Guo, B. R. Hackett, A. Hallin, A. Hamer, M. Haranczyk, B. Harrop, T. Hessel, S. Hill, S. Horikawa, J. Hu, F. Hubaut, J. Hucker, T. Hugues, E. V. Hungerford, A. Ianni, V. Ippolito, A. Jamil, C. Jillings, S. Jois, P. Kachru, R. Keloth, N. Kemmerich, A. Kemp, C. L. Kendziora, M. Kimura, A. Kish, K. Kondo, G. Korga, L. Kotsiopoulou, S. Koulosousas, A. Kubankin, P. Kunzé, M. Kuss, M. Kuźniak, M. Kuzwa, M. La Commara, M. Lai, E. Le Guirriec, E. Leason, A. Leoni, L. Lidey, M. Lissia, L. Luzzi, O. Lychagina, O. Macfadyen, I. N. Machulin, S. Manecki, I. Manthos, L. Mapelli, A. Marasciulli, S. M. Mari, C. Mariani, J. Maricic, M. Martinez, C. J. Martoff, G. Matteucci, K. Mavrokoridis, A. B. McDonald, J. Mclaughlin, S. Merzi, A. Messina, R. Milincic, S. Minutoli, A. Mitra, A. Moharana, S. Moioli, J. Monroe, E. Moretti, M. Morrocchi, T. Mroz, V. N. Muratova, M. Murphy, M. Murra, C. Muscas, P. Musico, R. Nania, M. Nessi, G. Nieradka, K. Nikolopoulos, E. Nikoloudaki, J. Nowak, K. Olchanski, A. Oleinik, V. Oleynikov, P. Organtini, A. Ortiz de Solórzano, M. Pallavicini, L. Pandola, E. Pantic, E. Paoloni, D. Papi, G. Pastuszak, G. Paternoster, A. Peck, P. A. Pegoraro, K. Pelczar, L. A. Pellegrini, R. Perez, F. Perotti, V. Pesudo, S. I. Piacentini, N. Pino, G. Plante, A. Pocar, M. Poehlmann, S. Pordes, P. Pralavorio, D. Price, S. Puglia, M. Queiroga Bazetto, F. Ragusa, Y. Ramachers, A. Ramirez, S. Ravinthiran, M. Razeti, A. L. Renshaw, M. Rescigno, F. Retiere, L. P. Rignanese, A. Rivetti, A. Roberts, C. Roberts, G. Rogers, L. Romero, M. Rossi, A. Rubbia, D. Rudik, M. Sabia, P. Salomone, O. Samoylov, E. Sandford, S. Sanfilippo, D. Santone, R. Santorelli, E. M. Santos, C. Savarese, E. Scapparone, G. Schillaci, F. G. Schuckman II, G. Scioli, D. A. Semenov, V. Shalamova, A. Sheshukov, M. Simeone, P. Skensved, M. D. Skorokhvatov, O. Smirnov, T. Smirnova, B. Smith, A. Sotnikov, F. Spadoni, M. Spangenberg, R. Stefanizzi, A. Steri, V. Stornelli, S. Stracka, S. Sulis, A. Sung, C. Sunny, Y. Suvorov, A. M. Szelc, O. Taborda, R. Tartaglia, A. Taylor, J. Taylor, S. Tedesco, G. Testera, K. Thieme, A. Thompson, T. N. Thorpe, A. Tonazzo, S. Torres-Lara, A. Tricomi, E. V. Unzhakov, T. J. Vallivilayil, M. Van Uffelen, L. Velazquez-Fernandez, T. Viant, S. Viel, A. Vishneva, R. B. Vogelaar, J. Vossebeld, B. Vyas, M. Wada, M. B. Walczak, H. Wang, Y. Wang, S. Westerdale, L. Williams, R. Wojaczyński, M. Wojcik, M. M. Wojcik, T. Wright, X. Xiao, Y. Xie, C. Yang, J. Yin, A. Zabihi, P. Zakhary, A. Zani, Y. Zhang, T. Zhu, A. Zichichi, G. Zuzel, M. P. Zykova
DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of >10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of >8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within $pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities.
{"title":"Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k","authors":"DarkSide-20k Collaboration, :, F. Acerbi, P. Adhikari, P. Agnes, I. Ahmad, S. Albergo, I. F. M. Albuquerque, T. Alexander, A. K. Alton, P. Amaudruz, M. Angiolilli, E. Aprile, R. Ardito, M. Atzori Corona, D. J. Auty, M. Ave, I. C. Avetisov, O. Azzolini, H. O. Back, Z. Balmforth, A. Barrado Olmedo, P. Barrillon, G. Batignani, P. Bhowmick, S. Blua, V. Bocci, W. Bonivento, B. Bottino, M. G. Boulay, A. Buchowicz, S. Bussino, J. Busto, M. Cadeddu, M. Cadoni, R. Calabrese, V. Camillo, A. Caminata, N. Canci, A. Capra, M. Caravati, M. Cárdenas-Montes, N. Cargioli, M. Carlini, A. Castellani, P. Castello, P. Cavalcante, S. Cebrian, J. Cela Ruiz, S. Chashin, A. Chepurnov, L. Cifarelli, D. Cintas, M. Citterio, B. Cleveland, Y. Coadou, V. Cocco, D. Colaiuda, E. Conde Vilda, L. Consiglio, B. S. Costa, M. Czubak, M. D'Aniello, S. D'Auria, M. D. Da Rocha Rolo, G. Darbo, S. Davini, S. De Cecco, G. De Guido, G. Dellacasa, A. V. Derbin, A. Devoto, F. Di Capua, A. Di Ludovico, L. Di Noto, P. Di Stefano, L. K. Dias, D. Díaz Mairena, X. Ding, C. Dionisi, G. Dolganov, F. Dordei, V. Dronik, A. Elersich, E. Ellingwood, T. Erjavec, M. Fernandez Diaz, A. Ficorella, G. Fiorillo, P. Franchini, D. Franco, H. Frandini Gatti, E. Frolov, F. Gabriele, D. Gahan, C. Galbiati, G. Galiński, G. Gallina, G. Gallus, M. Garbini, P. Garcia Abia, A. Gawdzik, A. Gendotti, A. Ghisi, G. K. Giovanetti, V. Goicoechea Casanueva, A. Gola, L. Grandi, G. Grauso, G. Grilli di Cortona, A. Grobov, M. Gromov, M. Guerzoni, M. Gulino, C. Guo, B. R. Hackett, A. Hallin, A. Hamer, M. Haranczyk, B. Harrop, T. Hessel, S. Hill, S. Horikawa, J. Hu, F. Hubaut, J. Hucker, T. Hugues, E. V. Hungerford, A. Ianni, V. Ippolito, A. Jamil, C. Jillings, S. Jois, P. Kachru, R. Keloth, N. Kemmerich, A. Kemp, C. L. Kendziora, M. Kimura, A. Kish, K. Kondo, G. Korga, L. Kotsiopoulou, S. Koulosousas, A. Kubankin, P. Kunzé, M. Kuss, M. Kuźniak, M. Kuzwa, M. La Commara, M. Lai, E. Le Guirriec, E. Leason, A. Leoni, L. Lidey, M. Lissia, L. Luzzi, O. Lychagina, O. Macfadyen, I. N. Machulin, S. Manecki, I. Manthos, L. Mapelli, A. Marasciulli, S. M. Mari, C. Mariani, J. Maricic, M. Martinez, C. J. Martoff, G. Matteucci, K. Mavrokoridis, A. B. McDonald, J. Mclaughlin, S. Merzi, A. Messina, R. Milincic, S. Minutoli, A. Mitra, A. Moharana, S. Moioli, J. Monroe, E. Moretti, M. Morrocchi, T. Mroz, V. N. Muratova, M. Murphy, M. Murra, C. Muscas, P. Musico, R. Nania, M. Nessi, G. Nieradka, K. Nikolopoulos, E. Nikoloudaki, J. Nowak, K. Olchanski, A. Oleinik, V. Oleynikov, P. Organtini, A. Ortiz de Solórzano, M. Pallavicini, L. Pandola, E. Pantic, E. Paoloni, D. Papi, G. Pastuszak, G. Paternoster, A. Peck, P. A. Pegoraro, K. Pelczar, L. A. Pellegrini, R. Perez, F. Perotti, V. Pesudo, S. I. Piacentini, N. Pino, G. Plante, A. Pocar, M. Poehlmann, S. Pordes, P. Pralavorio, D. Price, S. Puglia, M. Queiroga Bazetto, F. Ragusa, Y. Ramachers, A. Ramirez, S. Ravinthiran, M. Razeti, A. L. Renshaw, M. Rescigno, F. Retiere, L. P. Rignanese, A. Rivetti, A. Roberts, C. Roberts, G. Rogers, L. Romero, M. Rossi, A. Rubbia, D. Rudik, M. Sabia, P. Salomone, O. Samoylov, E. Sandford, S. Sanfilippo, D. Santone, R. Santorelli, E. M. Santos, C. Savarese, E. Scapparone, G. Schillaci, F. G. Schuckman II, G. Scioli, D. A. Semenov, V. Shalamova, A. Sheshukov, M. Simeone, P. Skensved, M. D. Skorokhvatov, O. Smirnov, T. Smirnova, B. Smith, A. Sotnikov, F. Spadoni, M. Spangenberg, R. Stefanizzi, A. Steri, V. Stornelli, S. Stracka, S. Sulis, A. Sung, C. Sunny, Y. Suvorov, A. M. Szelc, O. Taborda, R. Tartaglia, A. Taylor, J. Taylor, S. Tedesco, G. Testera, K. Thieme, A. Thompson, T. N. Thorpe, A. Tonazzo, S. Torres-Lara, A. Tricomi, E. V. Unzhakov, T. J. Vallivilayil, M. Van Uffelen, L. Velazquez-Fernandez, T. Viant, S. Viel, A. Vishneva, R. B. Vogelaar, J. Vossebeld, B. Vyas, M. Wada, M. B. Walczak, H. Wang, Y. Wang, S. Westerdale, L. Williams, R. Wojaczyński, M. Wojcik, M. M. Wojcik, T. Wright, X. Xiao, Y. Xie, C. Yang, J. Yin, A. Zabihi, P. Zakhary, A. Zani, Y. Zhang, T. Zhu, A. Zichichi, G. Zuzel, M. P. Zykova","doi":"arxiv-2408.14071","DOIUrl":"https://doi.org/arxiv-2408.14071","url":null,"abstract":"DarkSide-20k (DS-20k) is a dark matter detection experiment under\u0000construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It\u0000utilises ~100 t of low radioactivity argon from an underground source (UAr) in\u0000its inner detector, with half serving as target in a dual-phase time projection\u0000chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic\u0000conditions throughout the experiment's lifetime of >10 years. Continuous\u0000removal of impurities and radon from the UAr is essential for maximising signal\u0000yield and mitigating background. We are developing an efficient and powerful\u0000cryogenics system with a gas purification loop with a target circulation rate\u0000of 1000 slpm. Central to its design is a condenser operated with liquid\u0000nitrogen which is paired with a gas heat exchanger cascade, delivering a\u0000combined cooling power of >8 kW. Here we present the design choices in view of\u0000the DS-20k requirements, in particular the condenser's working principle and\u0000the cooling control, and we show test results obtained with a dedicated\u0000benchmarking platform at CERN and LNGS. We find that the thermal efficiency of\u0000the recirculation loop, defined in terms of nitrogen consumption per argon flow\u0000rate, is 95 % and the pressure in the test cryostat can be maintained within\u0000$pm$(0.1-0.2) mbar. We further detail a 5-day cool-down procedure of the test\u0000cryostat, maintaining a cooling rate typically within -2 K/h, as required for\u0000the DS-20k inner detector. Additionally, we assess the circuit's flow\u0000resistance, and the heat transfer capabilities of two heat exchanger geometries\u0000for argon phase change, used to provide gas for recirculation. We conclude by\u0000discussing how our findings influence the finalisation of the system design,\u0000including necessary modifications to meet requirements and ongoing testing\u0000activities.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Zhan, Jianglai Liu, Yang Liu, Weihao Wu, Binbin Yan, Zhou Wang
The scale of liquid xenon experiments for rare events searching is expanding, which is planned even to fifty tons level. The detector and distillation tower require a reliable cooling source with large cooling power at liquid xenon temperature range. Pulse tube refrigerators and GM refrigerators, which were widely used in previous detectors, have the disadvantages of small cooling power, large space occupation, and non-standby mutuality, which become bottlenecks of the experiment scale expansion. In this study, an auto-cascade refrigerator with ethanol coolant is developed, and the heat transfer effect is improved by adopting the concentric shaft heat exchanger and after-pumping heat transfer scheme. The 2.5 kW stable cooling power is obtained at 155 K. Further, the feasibility and key technology of the centralized cooling system of 5 kw at 160 K is discussed. The study can simplify liquid xenon experimental auxiliary devices, which will be helpful for the PandaX-xT experiment scheme and its laboratory infrastructure design.
{"title":"Thermal Management Design and Key Technology Validation for PandaX Underground Experiment","authors":"Tao Zhan, Jianglai Liu, Yang Liu, Weihao Wu, Binbin Yan, Zhou Wang","doi":"arxiv-2408.13433","DOIUrl":"https://doi.org/arxiv-2408.13433","url":null,"abstract":"The scale of liquid xenon experiments for rare events searching is expanding,\u0000which is planned even to fifty tons level. The detector and distillation tower\u0000require a reliable cooling source with large cooling power at liquid xenon\u0000temperature range. Pulse tube refrigerators and GM refrigerators, which were\u0000widely used in previous detectors, have the disadvantages of small cooling\u0000power, large space occupation, and non-standby mutuality, which become\u0000bottlenecks of the experiment scale expansion. In this study, an auto-cascade\u0000refrigerator with ethanol coolant is developed, and the heat transfer effect is\u0000improved by adopting the concentric shaft heat exchanger and after-pumping heat\u0000transfer scheme. The 2.5 kW stable cooling power is obtained at 155 K. Further,\u0000the feasibility and key technology of the centralized cooling system of 5 kw at\u0000160 K is discussed. The study can simplify liquid xenon experimental auxiliary\u0000devices, which will be helpful for the PandaX-xT experiment scheme and its\u0000laboratory infrastructure design.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"189 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Hernandez-Morquecho, R. Acciarri, J. Asaadi, M. Backfish, W. Badgett, V. Basque, F. d. M. Blaszczyk, W. Foreman, R. Gomes, E. Gramellini, J. Ho, E. Kearns, E. Kemp, T. Kobilarcik, M. King, B. R. Littlejohn, X. Luo, A. Marchionni, C. A. Moura, J. L. Raaf, D. W. Schmitz, M. Soderberg, J. M. St. John, A. M. Szelc, T. Yang
We report the measurement of the final-state products of negative pion and muon nuclear capture at rest on argon by the LArIAT experiment at the Fermilab Test Beam Facility. We measure a population of isolated MeV-scale energy depositions, or blips, in 296 LArIAT events containing tracks from stopping low-momentum pions and muons. The average numbers of visible blips are measured to be 0.74 $pm$ 0.19 and 1.86 $pm$ 0.17 near muon and pion track endpoints, respectively. The 3.6$sigma$ statistically significant difference in blip content between muons and pions provides the first demonstration of a new method of pion-muon discrimination in neutrino liquid argon time projection chamber experiments. LArIAT Monte Carlo simulations predict substantially higher average blip counts for negative muon (1.22 $pm$ 0.08) and pion (2.34 $pm$ 0.09) nuclear captures. We attribute this difference to Geant4's inaccurate simulation of the nuclear capture process.
{"title":"Measurements of Pion and Muon Nuclear Capture at Rest on Argon in the LArIAT Experiment","authors":"M. A. Hernandez-Morquecho, R. Acciarri, J. Asaadi, M. Backfish, W. Badgett, V. Basque, F. d. M. Blaszczyk, W. Foreman, R. Gomes, E. Gramellini, J. Ho, E. Kearns, E. Kemp, T. Kobilarcik, M. King, B. R. Littlejohn, X. Luo, A. Marchionni, C. A. Moura, J. L. Raaf, D. W. Schmitz, M. Soderberg, J. M. St. John, A. M. Szelc, T. Yang","doi":"arxiv-2408.05133","DOIUrl":"https://doi.org/arxiv-2408.05133","url":null,"abstract":"We report the measurement of the final-state products of negative pion and\u0000muon nuclear capture at rest on argon by the LArIAT experiment at the Fermilab\u0000Test Beam Facility. We measure a population of isolated MeV-scale energy\u0000depositions, or blips, in 296 LArIAT events containing tracks from stopping\u0000low-momentum pions and muons. The average numbers of visible blips are measured\u0000to be 0.74 $pm$ 0.19 and 1.86 $pm$ 0.17 near muon and pion track endpoints,\u0000respectively. The 3.6$sigma$ statistically significant difference in blip\u0000content between muons and pions provides the first demonstration of a new\u0000method of pion-muon discrimination in neutrino liquid argon time projection\u0000chamber experiments. LArIAT Monte Carlo simulations predict substantially\u0000higher average blip counts for negative muon (1.22 $pm$ 0.08) and pion (2.34\u0000$pm$ 0.09) nuclear captures. We attribute this difference to Geant4's\u0000inaccurate simulation of the nuclear capture process.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Kemp, M. P. Albuquerque, J. C. Anjos, P. Chimenti, L. F. G. Gonzalez, G. P. Guedes, P. V. Guillaumon, H. P. Lima Jr., A. Massafferri, L. M. Domingues Mendes, R. A. Nóbrega, I. M. Pepe, W. V. Santos
Operating on a surface with high noise rates and requiring susceptible, yet small-scale detectors, the Neutrinos-Angra detector is an excellent platform for technological development and expertise in new detection methods. This report details the primary features of the detector, the electronics involved, and preliminary physics results from the operational phase, particularly the ON-OFF analysis comparing the signals with the reactor in operation (ON) and during the maintenance shut-down (OFF), demonstrating the detector's capability to monitor reactor activity. Additionally, we will briefly discuss the prospects of using a cryogenic calorimeter to detect neutrinos via Coherent Elastic Neutrino-Nucleus Scattering (CEvNS), highlighting potential advancements in neutrino detection technology. Looking ahead, the project promises to play a crucial role in the integration of Latin American scientists and engineers into global scientific collaborations, significantly contributing to the LASF4RI and the broader HECAP strategic framework.
{"title":"From Safeguards Application to Fundamental Physics: Advancements in Reactor Neutrino Detection with the ν-Angra Experiment","authors":"E. Kemp, M. P. Albuquerque, J. C. Anjos, P. Chimenti, L. F. G. Gonzalez, G. P. Guedes, P. V. Guillaumon, H. P. Lima Jr., A. Massafferri, L. M. Domingues Mendes, R. A. Nóbrega, I. M. Pepe, W. V. Santos","doi":"arxiv-2408.04180","DOIUrl":"https://doi.org/arxiv-2408.04180","url":null,"abstract":"Operating on a surface with high noise rates and requiring susceptible, yet\u0000small-scale detectors, the Neutrinos-Angra detector is an excellent platform\u0000for technological development and expertise in new detection methods. This\u0000report details the primary features of the detector, the electronics involved,\u0000and preliminary physics results from the operational phase, particularly the\u0000ON-OFF analysis comparing the signals with the reactor in operation (ON) and\u0000during the maintenance shut-down (OFF), demonstrating the detector's capability\u0000to monitor reactor activity. Additionally, we will briefly discuss the\u0000prospects of using a cryogenic calorimeter to detect neutrinos via Coherent\u0000Elastic Neutrino-Nucleus Scattering (CEvNS), highlighting potential\u0000advancements in neutrino detection technology. Looking ahead, the project\u0000promises to play a crucial role in the integration of Latin American scientists\u0000and engineers into global scientific collaborations, significantly contributing\u0000to the LASF4RI and the broader HECAP strategic framework.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"370 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extensive efforts over the past number of years have been applied to develop workflows for sample preparation of specimens for atom probe tomography at cryogenic temperatures. This is primarily due to the difficulty involved in preparing site specific lift out samples at cryogenic temperatures without the assistance of the gas injection system (GIS) as using it under cryogenic conditions leads to nonuniform and difficult to control deposition. Building on the efforts of previously developed GIS free workflows utilising redeposition techniques, this work provides an alternative approach using SEMGluTM, which is an electron beam curing adhesive that remains usable at cryogenic temperatures, to both lift out cryogenically frozen samples, and mount these samples to Si microarray posts for subsequent redeposition welding. This approach is applicable for a full cryogenic workflow but is particularly useful for non-fully cryogenic workflows such as beam sensitive samples, samples that mill easily, and samples with challenging geometries. We demonstrate atom probe analysis of silicon samples in both laser pulsing and voltage mode prepared using this workflow, with comparable analytical performance to a pre-sharpened microtip coupon. An application-based example which directly benefits from this approach, correlative Liquid Cell Transmission Electron Microscopy and cryogenic Atom Probe Tomography sample preparation, is also shown.
{"title":"Look What You Made Me Glue: SEMGluTM Enabled Alternative Cryogenic Sample Preparation Process for Cryogenic Atom Probe Tomography Studies","authors":"Neil Mulcahy, James O Douglas, Michele Conroy","doi":"arxiv-2408.03566","DOIUrl":"https://doi.org/arxiv-2408.03566","url":null,"abstract":"Extensive efforts over the past number of years have been applied to develop\u0000workflows for sample preparation of specimens for atom probe tomography at\u0000cryogenic temperatures. This is primarily due to the difficulty involved in\u0000preparing site specific lift out samples at cryogenic temperatures without the\u0000assistance of the gas injection system (GIS) as using it under cryogenic\u0000conditions leads to nonuniform and difficult to control deposition. Building on\u0000the efforts of previously developed GIS free workflows utilising redeposition\u0000techniques, this work provides an alternative approach using SEMGluTM, which is\u0000an electron beam curing adhesive that remains usable at cryogenic temperatures,\u0000to both lift out cryogenically frozen samples, and mount these samples to Si\u0000microarray posts for subsequent redeposition welding. This approach is\u0000applicable for a full cryogenic workflow but is particularly useful for\u0000non-fully cryogenic workflows such as beam sensitive samples, samples that mill\u0000easily, and samples with challenging geometries. We demonstrate atom probe\u0000analysis of silicon samples in both laser pulsing and voltage mode prepared\u0000using this workflow, with comparable analytical performance to a pre-sharpened\u0000microtip coupon. An application-based example which directly benefits from this\u0000approach, correlative Liquid Cell Transmission Electron Microscopy and\u0000cryogenic Atom Probe Tomography sample preparation, is also shown.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past five decades, solar neutrino research has been pivotal in driving significant scientific advancements, enriching our comprehension of both neutrino characteristics and solar processes. Despite numerous experiments dedicated to solar neutrino detection, a segment of the lower pp spectrum remains unexplored, while the precision of measurements from the CNO cycle remains insufficient to resolve the solar abundance problem determined by the discrepancy between the data gathered from helioseismology and the forecasts generated by stellar interior models for the Sun. The CYGNO/INITIUM experiment aims to deploy a large 30 m3 directional detector for rare event searches focusing on Dark Matter. Recently, in the CYGNUS collaboration, there has been consideration for employing these time projection chamber technology in solar neutrino directional detection trough neutrino-electron elastic scattering. This is due to their potential to conduct low-threshold, high-precision measurements with spectroscopic neutrino energy reconstruction on an event-by-event basis driven by the kinematic. However, so far, no experiments have been investigated on the feasibility of this measurement using actual detector performances and background levels. Such a detector already with a volume of O(10) m3 could perform an observation of solar neutrino from the pp chain with an unprecedented low threshold, while with larger volumes it could measure the CNO cycle eventually solving the solar metallicity problem.
{"title":"Feasibility of a directional solar neutrino measurement with the CYGNO/INITIUM experiment","authors":"Samuele Torelli","doi":"arxiv-2408.03760","DOIUrl":"https://doi.org/arxiv-2408.03760","url":null,"abstract":"Over the past five decades, solar neutrino research has been pivotal in\u0000driving significant scientific advancements, enriching our comprehension of\u0000both neutrino characteristics and solar processes. Despite numerous experiments\u0000dedicated to solar neutrino detection, a segment of the lower pp spectrum\u0000remains unexplored, while the precision of measurements from the CNO cycle\u0000remains insufficient to resolve the solar abundance problem determined by the\u0000discrepancy between the data gathered from helioseismology and the forecasts\u0000generated by stellar interior models for the Sun. The CYGNO/INITIUM experiment\u0000aims to deploy a large 30 m3 directional detector for rare event searches\u0000focusing on Dark Matter. Recently, in the CYGNUS collaboration, there has been\u0000consideration for employing these time projection chamber technology in solar\u0000neutrino directional detection trough neutrino-electron elastic scattering.\u0000This is due to their potential to conduct low-threshold, high-precision\u0000measurements with spectroscopic neutrino energy reconstruction on an\u0000event-by-event basis driven by the kinematic. However, so far, no experiments\u0000have been investigated on the feasibility of this measurement using actual\u0000detector performances and background levels. Such a detector already with a\u0000volume of O(10) m3 could perform an observation of solar neutrino from the pp\u0000chain with an unprecedented low threshold, while with larger volumes it could\u0000measure the CNO cycle eventually solving the solar metallicity problem.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samantha M. Lewis, Dillon T. Goulart, Mirelys Carcana Barbosa, Alexander F. Leder, Aarav M. Sindhwad, Isabella Urdinaran, Karl van Bibber
Axions are a well-motivated dark matter candidate particle. Haloscopes aim to detect axions in the galactic halo by measuring the photon signal resulting from axions interacting with a strong magnetic field. Existing haloscopes are primarily targeting axion masses which produce microwave-range photons and rely on microwave resonators to enhance the signal power. Only a limited subset of resonator modes are useful for this process, and current cylindrical-style cavities suffer from mode mixing and crowding from other fundamental modes. The majority of these modes can be eliminated by using photonic band gap (PBG) resonators. The band gap behavior of these structures allows for a resonator with mode selectivity based on frequency. We present results from the first tunable PBG resonator, a proof-of-concept design with a footprint compatible with axion haloscopes. We have thoroughly characterized the tuning range of two versions of the structure and report the successful confinement of the operating TM$_{010}$ mode and the elimination of all TE modes within the tuning range.
轴子是一种动机明确的暗物质候选粒子。哈洛普旨在通过测量轴子与强磁场相互作用产生的光子信号来探测银河系晕中的轴子。现有的哈洛镜主要以轴子质量为目标,轴子质量会产生微波范围的光子,并依靠微波谐振器来增强信号功率。只有有限的谐振器模式子集对这一过程有用,而且目前的圆柱形腔受到其他基本模式的模式混合和排挤的影响。使用光子带隙(PBG)谐振器可以消除大部分这些模式。这些结构的带隙行为使谐振器具有基于频率的模式选择性。我们展示了首个可调谐 PBG 谐振器的研究成果,这是一种概念验证设计,其占地面积与轴子光镜兼容。我们对该结构的两个反转的调谐范围进行了全面鉴定,并报告了成功限制了工作中的 TM$_{010}$ 模式并消除了调谐范围内的所有 TE 模式。
{"title":"A tunable photonic band gap resonator for axion dark matter searches","authors":"Samantha M. Lewis, Dillon T. Goulart, Mirelys Carcana Barbosa, Alexander F. Leder, Aarav M. Sindhwad, Isabella Urdinaran, Karl van Bibber","doi":"arxiv-2408.03861","DOIUrl":"https://doi.org/arxiv-2408.03861","url":null,"abstract":"Axions are a well-motivated dark matter candidate particle. Haloscopes aim to\u0000detect axions in the galactic halo by measuring the photon signal resulting\u0000from axions interacting with a strong magnetic field. Existing haloscopes are\u0000primarily targeting axion masses which produce microwave-range photons and rely\u0000on microwave resonators to enhance the signal power. Only a limited subset of\u0000resonator modes are useful for this process, and current cylindrical-style\u0000cavities suffer from mode mixing and crowding from other fundamental modes. The\u0000majority of these modes can be eliminated by using photonic band gap (PBG)\u0000resonators. The band gap behavior of these structures allows for a resonator\u0000with mode selectivity based on frequency. We present results from the first\u0000tunable PBG resonator, a proof-of-concept design with a footprint compatible\u0000with axion haloscopes. We have thoroughly characterized the tuning range of two\u0000versions of the structure and report the successful confinement of the\u0000operating TM$_{010}$ mode and the elimination of all TE modes within the tuning\u0000range.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The TUCAN nEDM experiment characterizes the QuSpin Zero-Field Magnetometer (QZFM) to accurately map residual fields within a large magnetically shielded room. The magnetometer's intrinsic offset was measured to be within 3 nT and stable over a period of one year. The response was shown to be within 2 percent of linearity in the zero-field regime, up to 2 nTpp, and then follows a smooth dispersion curve. Crosstalk effects induced by multisensor operation were determined to have a small effect, and inconsequential with a separation above 6 cm. These results enable the QZFM for accurate measurement of DC fields, increase the operational range of QZFM by a factor of more than an order of magnitude, and allow for higher efficiency and flexibility by green-lighting simultaneous operation of multiple QZFMs.
{"title":"QuSpin Zero-Field Magnetometer Characterization for the TUCAN Experiment","authors":"Michael Zhao, Russell Mammei, Derek Fujimoto","doi":"arxiv-2408.02941","DOIUrl":"https://doi.org/arxiv-2408.02941","url":null,"abstract":"The TUCAN nEDM experiment characterizes the QuSpin Zero-Field Magnetometer\u0000(QZFM) to accurately map residual fields within a large magnetically shielded\u0000room. The magnetometer's intrinsic offset was measured to be within 3 nT and\u0000stable over a period of one year. The response was shown to be within 2 percent\u0000of linearity in the zero-field regime, up to 2 nTpp, and then follows a smooth\u0000dispersion curve. Crosstalk effects induced by multisensor operation were\u0000determined to have a small effect, and inconsequential with a separation above\u00006 cm. These results enable the QZFM for accurate measurement of DC fields,\u0000increase the operational range of QZFM by a factor of more than an order of\u0000magnitude, and allow for higher efficiency and flexibility by green-lighting\u0000simultaneous operation of multiple QZFMs.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Aprile, J. Aalbers, K. Abe, S. Ahmed Maouloud, L. Althueser, B. Andrieu, E. Angelino, D. Antón Martin, F. Arneodo, L. Baudis, M. Bazyk, L. Bellagamba, R. Biondi, A. Bismark, K. Boese, A. Brown, G. Bruno, R. Budnik, C. Cai, C. Capelli, J. M. R. Cardoso, A. P. Cimental Chávez, A. P. Colijn, J. Conrad, J. J. Cuenca-García, V. D'Andrea, L. C. Daniel Garcia, M. P. Decowski, A. Deisting, C. Di Donato, P. Di Gangi, S. Diglio, K. Eitel, A. Elykov, A. D. Ferella, C. Ferrari, H. Fischer, T. Flehmke, M. Flierman, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, M. Galloway, F. Gao, S. Ghosh, R. Giacomobono, R. Glade-Beucke, L. Grandi, J. Grigat, H. Guan, M. Guida, P. Gyorgy, R. Hammann, A. Higuera, C. Hils, L. Hoetzsch, N. F. Hood, M. Iacovacci, Y. Itow, J. Jakob, F. Joerg, Y. Kaminaga, M. Kara, P. Kavrigin, S. Kazama, M. Kobayashi, D. Koke, A. Kopec, F. Kuger, H. Landsman, R. F. Lang, L. Levinson, I. Li, S. Li, S. Liang, Y. -T. Lin, S. Lindemann, M. Lindner, K. Liu, M. Liu, J. Loizeau, F. Lombardi, J. Long, J. A. M. Lopes, T. Luce, Y. Ma, C. Macolino, J. Mahlstedt, A. Mancuso, L. Manenti, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, E. Masson, S. Mastroianni, A. Melchiorre, J. Merz, M. Messina, A. Michael, K. Miuchi, A. Molinario, S. Moriyama, K. Morå, Y. Mosbacher, M. Murra, J. Müller, K. Ni, U. Oberlack, B. Paetsch, Y. Pan, Q. Pellegrini, R. Peres, C. Peters, J. Pienaar, M. Pierre, G. Plante, T. R. Pollmann, L. Principe, J. Qi, J. Qin, D. Ramírez García, M. Rajado, R. Singh, L. Sanchez, J. M. F. dos Santos, I. Sarnoff, G. Sartorelli, J. Schreiner, P. Schulte, H. Schulze Eißing, M. Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, S. Shi, J. Shi, M. Silva, H. Simgen, A. Takeda, P. -L. Tan, D. Thers, F. Toschi, G. Trinchero, C. D. Tunnell, F. Tönnies, K. Valerius, S. Vecchi, S. Vetter, F. I. Villazon Solar, G. Volta, C. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, V. H. S. Wu, Y. Xing, D. Xu, Z. Xu, M. Yamashita, L. Yang, J. Ye, L. Yuan, G. Zavattini, M. Zhong
We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9,t sensitive liquid xenon target. A blind analysis with an exposure of 3.51,t$times$y resulted in 37 observed events above 0.5,keV, with ($26.4^{+1.4}_{-1.3}$) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73,$sigma$. The measured $^8$B solar neutrino flux of $(4.7_{-2.3}^{+3.6})times 10^6,mathrm{cm}^{-2}mathrm{s}^{-1}$ is consistent with results from dedicated solar neutrino experiments. The measured neutrino flux-weighted CE$nu$NS cross-section on Xe of $(1.1^{+0.8}_{-0.5})times10^{-39},mathrm{cm}^2$ is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector.
{"title":"First Measurement of Solar $^8$B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT","authors":"E. Aprile, J. Aalbers, K. Abe, S. Ahmed Maouloud, L. Althueser, B. Andrieu, E. Angelino, D. Antón Martin, F. Arneodo, L. Baudis, M. Bazyk, L. Bellagamba, R. Biondi, A. Bismark, K. Boese, A. Brown, G. Bruno, R. Budnik, C. Cai, C. Capelli, J. M. R. Cardoso, A. P. Cimental Chávez, A. P. Colijn, J. Conrad, J. J. Cuenca-García, V. D'Andrea, L. C. Daniel Garcia, M. P. Decowski, A. Deisting, C. Di Donato, P. Di Gangi, S. Diglio, K. Eitel, A. Elykov, A. D. Ferella, C. Ferrari, H. Fischer, T. Flehmke, M. Flierman, W. Fulgione, C. Fuselli, P. Gaemers, R. Gaior, M. Galloway, F. Gao, S. Ghosh, R. Giacomobono, R. Glade-Beucke, L. Grandi, J. Grigat, H. Guan, M. Guida, P. Gyorgy, R. Hammann, A. Higuera, C. Hils, L. Hoetzsch, N. F. Hood, M. Iacovacci, Y. Itow, J. Jakob, F. Joerg, Y. Kaminaga, M. Kara, P. Kavrigin, S. Kazama, M. Kobayashi, D. Koke, A. Kopec, F. Kuger, H. Landsman, R. F. Lang, L. Levinson, I. Li, S. Li, S. Liang, Y. -T. Lin, S. Lindemann, M. Lindner, K. Liu, M. Liu, J. Loizeau, F. Lombardi, J. Long, J. A. M. Lopes, T. Luce, Y. Ma, C. Macolino, J. Mahlstedt, A. Mancuso, L. Manenti, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, E. Masson, S. Mastroianni, A. Melchiorre, J. Merz, M. Messina, A. Michael, K. Miuchi, A. Molinario, S. Moriyama, K. Morå, Y. Mosbacher, M. Murra, J. Müller, K. Ni, U. Oberlack, B. Paetsch, Y. Pan, Q. Pellegrini, R. Peres, C. Peters, J. Pienaar, M. Pierre, G. Plante, T. R. Pollmann, L. Principe, J. Qi, J. Qin, D. Ramírez García, M. Rajado, R. Singh, L. Sanchez, J. M. F. dos Santos, I. Sarnoff, G. Sartorelli, J. Schreiner, P. Schulte, H. Schulze Eißing, M. Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, S. Shi, J. Shi, M. Silva, H. Simgen, A. Takeda, P. -L. Tan, D. Thers, F. Toschi, G. Trinchero, C. D. Tunnell, F. Tönnies, K. Valerius, S. Vecchi, S. Vetter, F. I. Villazon Solar, G. Volta, C. Weinheimer, M. Weiss, D. Wenz, C. Wittweg, V. H. S. Wu, Y. Xing, D. Xu, Z. Xu, M. Yamashita, L. Yang, J. Ye, L. Yuan, G. Zavattini, M. Zhong","doi":"arxiv-2408.02877","DOIUrl":"https://doi.org/arxiv-2408.02877","url":null,"abstract":"We present the first measurement of nuclear recoils from solar $^8$B\u0000neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT\u0000dark matter experiment. The central detector of XENONnT is a low-background,\u0000two-phase time projection chamber with a 5.9,t sensitive liquid xenon target.\u0000A blind analysis with an exposure of 3.51,t$times$y resulted in 37 observed\u0000events above 0.5,keV, with ($26.4^{+1.4}_{-1.3}$) events expected from\u0000backgrounds. The background-only hypothesis is rejected with a statistical\u0000significance of 2.73,$sigma$. The measured $^8$B solar neutrino flux of\u0000$(4.7_{-2.3}^{+3.6})times 10^6,mathrm{cm}^{-2}mathrm{s}^{-1}$ is consistent\u0000with results from dedicated solar neutrino experiments. The measured neutrino\u0000flux-weighted CE$nu$NS cross-section on Xe of\u0000$(1.1^{+0.8}_{-0.5})times10^{-39},mathrm{cm}^2$ is consistent with the\u0000Standard Model prediction. This is the first direct measurement of nuclear\u0000recoils from solar neutrinos with a dark matter detector.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"161 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monolithic Active Pixel Sensors (MAPS) combine the sensing part and the front-end electronics in the same silicon layer, making use of CMOS technology. Profiting from the progresses of this commercial process, MAPS have been undergoing significant advances over the last decade in terms of integration densities, radiation hardness and readout speed. The first application of MAPS in high energy physics has been the PXL detector, installed in 2014 as the vertexer of the STAR experiment at BNL. In the same years, ALICE Collaboration started the development of a new MAPS with improved performances, to assemble a new detector to replace the Inner Tracking System used during LHC Run 1 and 2. This effort lead to the ALPIDE sensor, today successfully equipped in a large variety of systems. Starting from 2019, profiting from the experience acquired during the design of the ALPIDE sensor, the ALICE Collaboration embarked on a new development phase, the ITS3 project. Here the goal is to design the first truly cylindrical detector based on wafer-size sensors in 65 nm CMOS node. This new detector is expected to take data during LHC Run 4. ALICE Collaboration submitted a proposal for a new experiment, to be installed in place of the present detector system before the LHC Run 5. Building on the experience on MAPS acquired in the recent years, the idea is to design a compact all silicon detector, that will give unprecedented insight into the quark-gluon plasma characterization.
{"title":"Applications of CMOS technology at the ALICE experiment","authors":"Domenico Colella","doi":"arxiv-2408.02448","DOIUrl":"https://doi.org/arxiv-2408.02448","url":null,"abstract":"Monolithic Active Pixel Sensors (MAPS) combine the sensing part and the\u0000front-end electronics in the same silicon layer, making use of CMOS technology.\u0000Profiting from the progresses of this commercial process, MAPS have been\u0000undergoing significant advances over the last decade in terms of integration\u0000densities, radiation hardness and readout speed. The first application of MAPS\u0000in high energy physics has been the PXL detector, installed in 2014 as the\u0000vertexer of the STAR experiment at BNL. In the same years, ALICE Collaboration\u0000started the development of a new MAPS with improved performances, to assemble a\u0000new detector to replace the Inner Tracking System used during LHC Run 1 and 2.\u0000This effort lead to the ALPIDE sensor, today successfully equipped in a large\u0000variety of systems. Starting from 2019, profiting from the experience acquired\u0000during the design of the ALPIDE sensor, the ALICE Collaboration embarked on a\u0000new development phase, the ITS3 project. Here the goal is to design the first\u0000truly cylindrical detector based on wafer-size sensors in 65 nm CMOS node. This\u0000new detector is expected to take data during LHC Run 4. ALICE Collaboration\u0000submitted a proposal for a new experiment, to be installed in place of the\u0000present detector system before the LHC Run 5. Building on the experience on\u0000MAPS acquired in the recent years, the idea is to design a compact all silicon\u0000detector, that will give unprecedented insight into the quark-gluon plasma\u0000characterization.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}