Pub Date : 2022-11-17DOI: 10.1080/20464177.2022.2143312
Jevon P. Chan, K. Pazouki, R. Norman
Autonomy has allowed the maritime industry to design integrated systems leading to the concept of maritime autonomous surface ships. As research towards autonomous operations increases seafarers must be equipped with the knowledge of how to react to onboard system faults and threats to the safety of crew, vessel and cargo. Consequently, the maritime industry may utilise bridge simulators to train seafarers in autonomous operations. By integrating simulation into navigational officer training, it is possible to aid the development of seafarers fault recognition patterns. Moreover, simulation training can provide seafarers with the knowledge to be proactive in fault finding over reactive. Therefore, this study is conducted in a navigational simulator and investigates the fault recognition patterns of seafarers during realistic watch conditions with alternative tasks i.e. paperwork. Moreover, a novel Event Tree Analysis method is proposed to analyse the performance of seafarers and effectiveness of human machine relationship. The study found a low percentage of candidates successfully reacted to all faults and without additional alarms the vessel may have resulted in further danger. Applying the methodology and data assimilated from the study could aid the development of navigational officer short courses, developing seafarers behavioural skills which complement their technical talents.
{"title":"An experimental study into the fault recognition of onboard systems by navigational officers","authors":"Jevon P. Chan, K. Pazouki, R. Norman","doi":"10.1080/20464177.2022.2143312","DOIUrl":"https://doi.org/10.1080/20464177.2022.2143312","url":null,"abstract":"Autonomy has allowed the maritime industry to design integrated systems leading to the concept of maritime autonomous surface ships. As research towards autonomous operations increases seafarers must be equipped with the knowledge of how to react to onboard system faults and threats to the safety of crew, vessel and cargo. Consequently, the maritime industry may utilise bridge simulators to train seafarers in autonomous operations. By integrating simulation into navigational officer training, it is possible to aid the development of seafarers fault recognition patterns. Moreover, simulation training can provide seafarers with the knowledge to be proactive in fault finding over reactive. Therefore, this study is conducted in a navigational simulator and investigates the fault recognition patterns of seafarers during realistic watch conditions with alternative tasks i.e. paperwork. Moreover, a novel Event Tree Analysis method is proposed to analyse the performance of seafarers and effectiveness of human machine relationship. The study found a low percentage of candidates successfully reacted to all faults and without additional alarms the vessel may have resulted in further danger. Applying the methodology and data assimilated from the study could aid the development of navigational officer short courses, developing seafarers behavioural skills which complement their technical talents.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"101 - 110"},"PeriodicalIF":2.6,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49058875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-04DOI: 10.1080/20464177.2022.2138093
T. Toshon, M. Faruque
The unfolding of MVDC (Medium Voltage DC) systems has the prospects to enable the incorporation of power electronic converters with higher power density and reliability. A tool with an integrated design approach is required to minimise the overall system volume by identifying optimal components. In this paper, a component-level early-stage design tool has been developed to attain the minimum achievable volume and failure rate for MVDC power converters. The developed tool optimises the choice of semiconductor switching devices, required heatsink, and other passive components (including dc-link filters and inductors) to minimise failure rate and overall converter volume. The optimisation algorithm employs the non-dominated sorting genetic algorithm (NSGA-II) to evaluate designs based on developed fitness functions. The design tool demonstrates the trade-off when evaluating multiple converter topologies and helps make an informed decision. A comparative study between two converter topologies shows the outcomes in terms of targeted metrics (volume and failure rate). This tool is expected to benefit early-stage design to perform trade-off studies among power electronic converter topologies based on key metrics like volume and failure rate.
{"title":"A design optimisation tool to minimise volume and failure rate of the modular multilevel converter and the thyristor-controlled rectifier","authors":"T. Toshon, M. Faruque","doi":"10.1080/20464177.2022.2138093","DOIUrl":"https://doi.org/10.1080/20464177.2022.2138093","url":null,"abstract":"The unfolding of MVDC (Medium Voltage DC) systems has the prospects to enable the incorporation of power electronic converters with higher power density and reliability. A tool with an integrated design approach is required to minimise the overall system volume by identifying optimal components. In this paper, a component-level early-stage design tool has been developed to attain the minimum achievable volume and failure rate for MVDC power converters. The developed tool optimises the choice of semiconductor switching devices, required heatsink, and other passive components (including dc-link filters and inductors) to minimise failure rate and overall converter volume. The optimisation algorithm employs the non-dominated sorting genetic algorithm (NSGA-II) to evaluate designs based on developed fitness functions. The design tool demonstrates the trade-off when evaluating multiple converter topologies and helps make an informed decision. A comparative study between two converter topologies shows the outcomes in terms of targeted metrics (volume and failure rate). This tool is expected to benefit early-stage design to perform trade-off studies among power electronic converter topologies based on key metrics like volume and failure rate.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"189 - 198"},"PeriodicalIF":2.6,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47536211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-28DOI: 10.1080/20464177.2022.2138736
Lode Huijgens, A. Vrijdag, Hans Hopman
The interaction between ship propulsion machinery, propellers and the highly dynamic environment which is the sea is a complex yet highly relevant subject. During a storm, for example, waves and ship motions may cause the propeller to draw air, or ventilate, resulting in rapid changes in propeller thrust and load torque. These fluctuations propagate through the propulsion system, potentially causing excessive loads on propulsion machinery, while also reducing the ship's manoeuvrability. A profound understanding of these complex interactions still lacks. One result of this knowledge gap is the limited acceptance of new technologies for ship propulsion, especially those technologies known to have limited transient capabilities. In this paper, hardware in the loop (HIL) is proposed as a solution to this knowledge gap. Paying specific attention to propeller ventilation, HIL is used to identify new aspects of interaction between engine and propeller, thus demonstrating the added value of HIL for ventilation studies.
{"title":"Hardware in the loop experiments on the interaction between a diesel-mechanical propulsion system and a ventilating propeller","authors":"Lode Huijgens, A. Vrijdag, Hans Hopman","doi":"10.1080/20464177.2022.2138736","DOIUrl":"https://doi.org/10.1080/20464177.2022.2138736","url":null,"abstract":"The interaction between ship propulsion machinery, propellers and the highly dynamic environment which is the sea is a complex yet highly relevant subject. During a storm, for example, waves and ship motions may cause the propeller to draw air, or ventilate, resulting in rapid changes in propeller thrust and load torque. These fluctuations propagate through the propulsion system, potentially causing excessive loads on propulsion machinery, while also reducing the ship's manoeuvrability. A profound understanding of these complex interactions still lacks. One result of this knowledge gap is the limited acceptance of new technologies for ship propulsion, especially those technologies known to have limited transient capabilities. In this paper, hardware in the loop (HIL) is proposed as a solution to this knowledge gap. Paying specific attention to propeller ventilation, HIL is used to identify new aspects of interaction between engine and propeller, thus demonstrating the added value of HIL for ventilation studies.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"199 - 211"},"PeriodicalIF":2.6,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47132623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-28DOI: 10.1080/20464177.2022.2137905
N. Tomić-Petrović, Zoran Radmilovic, R. Rajković
The Danube navigation is geographically limited and subject to the effects of environmental change. On the other hand, the Danube commercial navigation is the point source of pollution with emissions of the Danube vessels and harbours, directly polluting the environment. The focus of this paper is the annual evaluation and calculation of air polluting emissions from fossil fuel consumption from the following types of the Danube fleet: push boats, pull boats, freight motor vessels and cruise passenger ships. Emissions from the Danube transport vessels are estimated by EMEP/EEA (European Monitoring and Evaluation Programme/European Environment Agency) air pollutant emission inventory guidebook within Serbian-Croatian, Serbian and Serbian-Romanian sections of the Danube fairway on an average level. Emissions costs for all types of the Danube fleet (euro per vessel-kilometre) are estimated by the Practical guideline for realistic transport pricing depending on the population density close to the waterway: rural or urban area.
{"title":"Environmental status of the Danube commercial navigation: Serbia and the Danube border countries","authors":"N. Tomić-Petrović, Zoran Radmilovic, R. Rajković","doi":"10.1080/20464177.2022.2137905","DOIUrl":"https://doi.org/10.1080/20464177.2022.2137905","url":null,"abstract":"The Danube navigation is geographically limited and subject to the effects of environmental change. On the other hand, the Danube commercial navigation is the point source of pollution with emissions of the Danube vessels and harbours, directly polluting the environment. The focus of this paper is the annual evaluation and calculation of air polluting emissions from fossil fuel consumption from the following types of the Danube fleet: push boats, pull boats, freight motor vessels and cruise passenger ships. Emissions from the Danube transport vessels are estimated by EMEP/EEA (European Monitoring and Evaluation Programme/European Environment Agency) air pollutant emission inventory guidebook within Serbian-Croatian, Serbian and Serbian-Romanian sections of the Danube fairway on an average level. Emissions costs for all types of the Danube fleet (euro per vessel-kilometre) are estimated by the Practical guideline for realistic transport pricing depending on the population density close to the waterway: rural or urban area.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"123 - 130"},"PeriodicalIF":2.6,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49439900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-26DOI: 10.1080/20464177.2022.2127402
S. Woo, H. Raza, Wonmo Kang, Sang-Bom Choe, M. Im, K. Lim, J. Nam, Hongsuk Kim
A solid-SCR (selective catalytic reduction) system using ammonium carbamate (AC) was designed to improve NOx emission reduction efficiency and compensate for the shortcoming of the UWS (urea water solution)-SCR system applied to marine diesel engines. The solid-SCR system was installed on the exhaust line of a 1.1 MW engine for electric power generation in a ship, and its performance of emissions reduction was compared with the existing UWS-SCR system. The NOx emitted from the engine was 9.2 g/kWh, and it is reduced to 1.94 g/kWh when using the UWS-SCR system. Using the solid-SCR system significantly lowered NOx emissions to 0.3 g/kWh, which was 15% of the UWS-SCR system. In addition, the solid-SCR system showed fewer ammonia slip characteristics than the UWS-SCR system. In the solid-SCR system, gaseous ammonia was directly supplied in the exhaust line, and it mixed well with the exhaust gas and reacted well with NOx in the SCR catalyst. An endurance test of the solid-SCR system was conducted for 210 h during actual ship operation. The NOx reducing efficiency was maintained at higher than 90% for 210 h. The AC consumption rate was 1.7–4.3 kg/h for the endurance test.
{"title":"An ammonia supplying system using ammonium salt to reduce the NOx emissions of a 1.1 MW marine engine","authors":"S. Woo, H. Raza, Wonmo Kang, Sang-Bom Choe, M. Im, K. Lim, J. Nam, Hongsuk Kim","doi":"10.1080/20464177.2022.2127402","DOIUrl":"https://doi.org/10.1080/20464177.2022.2127402","url":null,"abstract":"A solid-SCR (selective catalytic reduction) system using ammonium carbamate (AC) was designed to improve NOx emission reduction efficiency and compensate for the shortcoming of the UWS (urea water solution)-SCR system applied to marine diesel engines. The solid-SCR system was installed on the exhaust line of a 1.1 MW engine for electric power generation in a ship, and its performance of emissions reduction was compared with the existing UWS-SCR system. The NOx emitted from the engine was 9.2 g/kWh, and it is reduced to 1.94 g/kWh when using the UWS-SCR system. Using the solid-SCR system significantly lowered NOx emissions to 0.3 g/kWh, which was 15% of the UWS-SCR system. In addition, the solid-SCR system showed fewer ammonia slip characteristics than the UWS-SCR system. In the solid-SCR system, gaseous ammonia was directly supplied in the exhaust line, and it mixed well with the exhaust gas and reacted well with NOx in the SCR catalyst. An endurance test of the solid-SCR system was conducted for 210 h during actual ship operation. The NOx reducing efficiency was maintained at higher than 90% for 210 h. The AC consumption rate was 1.7–4.3 kg/h for the endurance test.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"45 - 54"},"PeriodicalIF":2.6,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46243698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-13DOI: 10.1080/20464177.2022.2120448
G. Lakhekar, L. Waghmare
A robust self-organising fuzzy sliding mode control law steers autonomous underwater vehicles (AUVs) to track a predefined planar path at a constant speed without temporal specifications. An intelligent methodology has been adopted for path-following control to handle varying parametric uncertainties in vehicle dynamics and also conquers stringent preliminary condition constraints in several path-following control strategies illustrated in the literature. Robust controller design builds on a fusion of sliding mode control theory and fuzzy logic technique with an adaptation mechanism to tune boundary layer width and hitting gain. This novel strategy proposes two distinct tuning procedures: the first method commonly uses absolute error and their derivative as fuzzy input variables in a two-dimensional fuzzy logic rule structure. Herein, skew symmetry property is utilised in rule base structure to derive a single input fuzzy variable based on the signed distance technique, drastically reducing two-dimensional fuzzy logic rules. Since the second method provides substantial reductions in rule inferences through the use of the fuzzy rule's mirror image and the Lyapunov approach for tuning purposes, the resulting guidance control law yields fast convergence of the path-following error trajectory towards zero along with the elimination of chattering problem. Simulation results illustrate the effectiveness and robustness of the proposed control law to achieve favourable tracking performance with a high accuracy.
{"title":"Robust self-organising fuzzy sliding mode-based path-following control for autonomous underwater vehicles","authors":"G. Lakhekar, L. Waghmare","doi":"10.1080/20464177.2022.2120448","DOIUrl":"https://doi.org/10.1080/20464177.2022.2120448","url":null,"abstract":"A robust self-organising fuzzy sliding mode control law steers autonomous underwater vehicles (AUVs) to track a predefined planar path at a constant speed without temporal specifications. An intelligent methodology has been adopted for path-following control to handle varying parametric uncertainties in vehicle dynamics and also conquers stringent preliminary condition constraints in several path-following control strategies illustrated in the literature. Robust controller design builds on a fusion of sliding mode control theory and fuzzy logic technique with an adaptation mechanism to tune boundary layer width and hitting gain. This novel strategy proposes two distinct tuning procedures: the first method commonly uses absolute error and their derivative as fuzzy input variables in a two-dimensional fuzzy logic rule structure. Herein, skew symmetry property is utilised in rule base structure to derive a single input fuzzy variable based on the signed distance technique, drastically reducing two-dimensional fuzzy logic rules. Since the second method provides substantial reductions in rule inferences through the use of the fuzzy rule's mirror image and the Lyapunov approach for tuning purposes, the resulting guidance control law yields fast convergence of the path-following error trajectory towards zero along with the elimination of chattering problem. Simulation results illustrate the effectiveness and robustness of the proposed control law to achieve favourable tracking performance with a high accuracy.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"131 - 152"},"PeriodicalIF":2.6,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46802839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-12DOI: 10.1080/20464177.2022.2120171
Stian Skjong, E. Pedersen
ABSTRACT In this work, we discuss and demonstrate how multi-engine marine power plants with weak power grids efficiently can be set up and simulated in a distributed co-simulation framework. To facilitate configuration switching such as starting and stopping, connecting and disconnecting arbitrary gensets online, the generator models are modelled as hybrid causality component models. This implementation enables seamless and energy conservative model switching. Also, the proposed simulator framework is scalable such that the number of gensets in the power plant can be set by a single parameter, which automatically scales the power management system and the tailored simulator master algorithm accordingly. To control the number of active gensets being connected to the power grid while running the simulation, a simple mixed integer linear programming formulation is proposed. A simulation case study including a marine power plant configuration with four equal-sized gensets is conducted in the end to demonstrate the features of the proposed simulator framework, which also can be applied to, e.g. a small wind farm, or an isolated number of islands with interconnected power generators.
{"title":"A distributed object-oriented simulator framework for marine power plants with weak power grids","authors":"Stian Skjong, E. Pedersen","doi":"10.1080/20464177.2022.2120171","DOIUrl":"https://doi.org/10.1080/20464177.2022.2120171","url":null,"abstract":"ABSTRACT In this work, we discuss and demonstrate how multi-engine marine power plants with weak power grids efficiently can be set up and simulated in a distributed co-simulation framework. To facilitate configuration switching such as starting and stopping, connecting and disconnecting arbitrary gensets online, the generator models are modelled as hybrid causality component models. This implementation enables seamless and energy conservative model switching. Also, the proposed simulator framework is scalable such that the number of gensets in the power plant can be set by a single parameter, which automatically scales the power management system and the tailored simulator master algorithm accordingly. To control the number of active gensets being connected to the power grid while running the simulation, a simple mixed integer linear programming formulation is proposed. A simulation case study including a marine power plant configuration with four equal-sized gensets is conducted in the end to demonstrate the features of the proposed simulator framework, which also can be applied to, e.g. a small wind farm, or an isolated number of islands with interconnected power generators.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"176 - 188"},"PeriodicalIF":2.6,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47618489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-11DOI: 10.1080/20464177.2022.2106623
M. Tadros, M. Ventura, C. Guedes Soares
A propeller optimization procedure is developed by coupling a propeller design tool with a nonlinear optimizer. An optimized propeller contributes toward maritime decarbonization and the mitigation of exhaust emissions from ships. The main objective of this optimization procedure is to select two ducted controllable pitch propellers from the Kaplan 19A series at the service speed for a roll-on/roll-off passenger ship sailing in calm water as a case study. The selected ship is operated by two four-stroke marine diesel engines, each connected to a controllable pitch propeller via a gearbox and a propeller shaft. The propeller selection is performed at the engine operating point with minimum fuel consumption instead of considering only the maximum propeller efficiency. The propeller diameter, pitch, expanded area ratio and rotation speed are optimized as well as the gearbox ratio taking into account the limitations of noise and cavitation criteria. The calculated results from each simulation are compared with the typical procedure used in ship design, which is the selection of the propeller at maximum efficiency. The results show that optimizing the propeller in terms of fuel consumption can reduce the amount of fuel consumed by up to 5.2% rather than only considering the propeller efficiency.
{"title":"Optimization procedures for a twin controllable pitch propeller of a ROPAX ship at minimum fuel consumption","authors":"M. Tadros, M. Ventura, C. Guedes Soares","doi":"10.1080/20464177.2022.2106623","DOIUrl":"https://doi.org/10.1080/20464177.2022.2106623","url":null,"abstract":"A propeller optimization procedure is developed by coupling a propeller design tool with a nonlinear optimizer. An optimized propeller contributes toward maritime decarbonization and the mitigation of exhaust emissions from ships. The main objective of this optimization procedure is to select two ducted controllable pitch propellers from the Kaplan 19A series at the service speed for a roll-on/roll-off passenger ship sailing in calm water as a case study. The selected ship is operated by two four-stroke marine diesel engines, each connected to a controllable pitch propeller via a gearbox and a propeller shaft. The propeller selection is performed at the engine operating point with minimum fuel consumption instead of considering only the maximum propeller efficiency. The propeller diameter, pitch, expanded area ratio and rotation speed are optimized as well as the gearbox ratio taking into account the limitations of noise and cavitation criteria. The calculated results from each simulation are compared with the typical procedure used in ship design, which is the selection of the propeller at maximum efficiency. The results show that optimizing the propeller in terms of fuel consumption can reduce the amount of fuel consumed by up to 5.2% rather than only considering the propeller efficiency.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"167 - 175"},"PeriodicalIF":2.6,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47143871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-03DOI: 10.1080/20464177.2022.2094655
M. A. Budiyanto, Fadhil Azharrisman, Achmad Fatchur Utama
This study analysed cooling performance in the fish holds of 30 gross tonnage fishing vessels to optimise the temperature distribution through the cargo volume in the fish hold. A field survey determined the calculation parameters and the fish hold's geometric design. The fluid flow characteristics and product cooling times were determined using a computational fluid dynamic simulation and a performance coefficient of the refrigeration cycles. The simulation result shows that the fastest cooling time occurs when the velocity inlet is 8 m/s at 100% cargo loads. The estimated cooling time until the product load reaches a temperature of −5°C is 2 hours 15 minutes. The required power consumption of the compressor is 3.22 kW and of the condenser is 16.29 kW. The refrigeration system performance coefficient is 4.06. These performance results indicate that the designed fish hold is effective in fish cooling.
{"title":"Cooling performance of modular fish hold for 30 gross-tonnage fishing vessel","authors":"M. A. Budiyanto, Fadhil Azharrisman, Achmad Fatchur Utama","doi":"10.1080/20464177.2022.2094655","DOIUrl":"https://doi.org/10.1080/20464177.2022.2094655","url":null,"abstract":"This study analysed cooling performance in the fish holds of 30 gross tonnage fishing vessels to optimise the temperature distribution through the cargo volume in the fish hold. A field survey determined the calculation parameters and the fish hold's geometric design. The fluid flow characteristics and product cooling times were determined using a computational fluid dynamic simulation and a performance coefficient of the refrigeration cycles. The simulation result shows that the fastest cooling time occurs when the velocity inlet is 8 m/s at 100% cargo loads. The estimated cooling time until the product load reaches a temperature of −5°C is 2 hours 15 minutes. The required power consumption of the compressor is 3.22 kW and of the condenser is 16.29 kW. The refrigeration system performance coefficient is 4.06. These performance results indicate that the designed fish hold is effective in fish cooling.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"38 - 44"},"PeriodicalIF":2.6,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48673635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-13DOI: 10.1080/20464177.2022.2087272
I. Animah, P. Adjei, Eli Kofi Djamesi
The shipping industry has set out to reduce CO2 emissions by 50% by 2050 compared to 2008, as op. cit. in the note by the International Maritime Organisation to the UNFCCC Talanoa Dialogue. In order to achieve this target, ship owners and operators are to consider replacing the conventional diesel generators and gas turbines with renewable energy and other cleaner power producing systems. In this paper, a techno-economic feasibility evaluation model for integrating hybrid renewable energy systems (HRES) into the power architecture of existing ships for greener and sustainable shipping is presented. For HRES to qualify as technically and economically feasible, a decision is made based on a ‘techno-economic measure’ which is estimated by combining space availability, load served and economic performance. The proposed model is applied to a patrol boat sailing along the Eastern Coast of Ghana with three different proposed HRES. The results from the applied case shows that the most technical and economically feasible HRES for the patrol boat that meets the key performance indicators and offers low GHG emission is a hybrid solar PV, wind turbine and diesel generator system. The results further shows that the proposed model is capable of assisting ship owners to integrate affordable and cleaner energy into the power architecture of ships.
{"title":"Techno-economic feasibility assessment model for integrating hybrid renewable energy systems into power systems of existing ships: A case study of a patrol boat","authors":"I. Animah, P. Adjei, Eli Kofi Djamesi","doi":"10.1080/20464177.2022.2087272","DOIUrl":"https://doi.org/10.1080/20464177.2022.2087272","url":null,"abstract":"The shipping industry has set out to reduce CO2 emissions by 50% by 2050 compared to 2008, as op. cit. in the note by the International Maritime Organisation to the UNFCCC Talanoa Dialogue. In order to achieve this target, ship owners and operators are to consider replacing the conventional diesel generators and gas turbines with renewable energy and other cleaner power producing systems. In this paper, a techno-economic feasibility evaluation model for integrating hybrid renewable energy systems (HRES) into the power architecture of existing ships for greener and sustainable shipping is presented. For HRES to qualify as technically and economically feasible, a decision is made based on a ‘techno-economic measure’ which is estimated by combining space availability, load served and economic performance. The proposed model is applied to a patrol boat sailing along the Eastern Coast of Ghana with three different proposed HRES. The results from the applied case shows that the most technical and economically feasible HRES for the patrol boat that meets the key performance indicators and offers low GHG emission is a hybrid solar PV, wind turbine and diesel generator system. The results further shows that the proposed model is capable of assisting ship owners to integrate affordable and cleaner energy into the power architecture of ships.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"22 - 37"},"PeriodicalIF":2.6,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60008174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}