Ana Carolina Pereira Soares Brandão, Ana Beatriz Dantas Fonseca, Iane de Araujo Soares, C. J. Pacheco, Daniel Mendes Fernandes, C. B. Eckstein, Laudemiro Nogueira Junior, Luiz Henrique de Almeida, Gabriela Ribeiro Pereira
HP austenitic stainless steel undergoes microstructural aging due to prolonged exposure to oxidizing and corrosive atmospheres in steam reforming furnaces. The derived aging states are classified by its service temperature and microstructural markers and monitoring it is important to residual life assessment. In this regard it was used a portable Eddy Current inspection system with the aid of machine learning classification tools, characterizing aging states in HP steel in real-time. The classification profile of a 12-meter tube was acquired, validated through Field Metallurgical Replication. The developed Eddy Current inspection system successfully differentiates three regions, revealing a progression of aging states.
{"title":"Eddy current non-destructive testing for inspection of reformer tubes applying machine learning","authors":"Ana Carolina Pereira Soares Brandão, Ana Beatriz Dantas Fonseca, Iane de Araujo Soares, C. J. Pacheco, Daniel Mendes Fernandes, C. B. Eckstein, Laudemiro Nogueira Junior, Luiz Henrique de Almeida, Gabriela Ribeiro Pereira","doi":"10.3233/jae-230139","DOIUrl":"https://doi.org/10.3233/jae-230139","url":null,"abstract":"HP austenitic stainless steel undergoes microstructural aging due to prolonged exposure to oxidizing and corrosive atmospheres in steam reforming furnaces. The derived aging states are classified by its service temperature and microstructural markers and monitoring it is important to residual life assessment. In this regard it was used a portable Eddy Current inspection system with the aid of machine learning classification tools, characterizing aging states in HP steel in real-time. The classification profile of a 12-meter tube was acquired, validated through Field Metallurgical Replication. The developed Eddy Current inspection system successfully differentiates three regions, revealing a progression of aging states.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140437166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a novel composite control scheme for the vehicle-guideway coupling systems is proposed, consisting of FTDOs and a FTC, aiming to address the challenges of unknown disturbances and vibration suppression. Specifically, this method adopts a single magnet-track coupling model and introduces a finite-time disturbance observer (FTDO) that utilizes only measured electromagnet-side signals to estimate unmeasurable states and unknown disturbances. Based on the estimated information provided by the FTDO, a finite-time control (FTC) scheme is developed, which simultaneously handles the problems of disturbance compensation and finite-time tracking control. Additionally, the finite-time stability of the levitation system is analyzed and proven. Finally, simulation and experimental results are given to demonstrate the feasibility and superiority of the proposed control approach.
{"title":"Finite-time disturbance observer-based levitation control for vehicle-guideway coupling systems","authors":"Qiao Ren, Jimin Zhang, Hechao Zhou","doi":"10.3233/jae-230040","DOIUrl":"https://doi.org/10.3233/jae-230040","url":null,"abstract":"In this study, a novel composite control scheme for the vehicle-guideway coupling systems is proposed, consisting of FTDOs and a FTC, aiming to address the challenges of unknown disturbances and vibration suppression. Specifically, this method adopts a single magnet-track coupling model and introduces a finite-time disturbance observer (FTDO) that utilizes only measured electromagnet-side signals to estimate unmeasurable states and unknown disturbances. Based on the estimated information provided by the FTDO, a finite-time control (FTC) scheme is developed, which simultaneously handles the problems of disturbance compensation and finite-time tracking control. Additionally, the finite-time stability of the levitation system is analyzed and proven. Finally, simulation and experimental results are given to demonstrate the feasibility and superiority of the proposed control approach.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.
本文介绍了新型高温超导转极机的优化设计。其主要结构特点是采用双定子铁芯,将同步机极靴与极体分开,作为机器转子单独旋转,使超导线圈在静止状态下工作。内部定子铁芯、静止磁栅和转子铁芯共同构成了机器的励磁系统。励磁线圈绕组采用矩形截面,在高温超导线圈之间战略性地放置了磁通分流器。这种配置旨在调节背景磁场,特别是减少垂直磁场分量。这种缓解措施最大限度地减少了环境磁场对超导线圈电流承载能力的影响,确保为其运行提供优化的磁场环境。通过整合这些修改,增强型高温超导设备的技术和经济参数得到了显著改善。设计的优化以及三维电磁场的详细计算是利用商业软件 Ansys EM 模块实现的。
{"title":"Design and simulation of a superconducting machine excitation system taking into account the three-dimensional magnetic leakage","authors":"Chen Chen, Wenfeng Zhang","doi":"10.3233/jae-230085","DOIUrl":"https://doi.org/10.3233/jae-230085","url":null,"abstract":"The optimized design of a new high-temperature superconducting rotating pole machine is presented. Its main structural feature is the use of a double stator core which separates the synchronous machine pole shoe from the pole body to rotate separately as the machine rotor, allowing the superconducting coil to operate in a stationary state. The inner stator core, the stationary dewar and the rotor core together form the excitation system of the machine. The excitation coil windings adopt a rectangular cross-section, with flux divertor strategically placed between the high-temperature superconducting coils. This configuration aims to modulate the background magnetic field, specifically reducing the perpendicular magnetic field component. This mitigation minimizes the impact of ambient magnetic fields on the superconducting coil’s current carrying capacity, ensuring an optimized magnetic field environment for its operation. Through the integration of these modifications, the technical and economic parameters of the enhanced high-temperature superconducting machine have been significantly improved. The optimization of design, coupled with detailed calculations of the 3D electromagnetic field, was achieved utilizing the commercial software Ansys EM module.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Giangolini, Giovanni Betti Beneventi, Andrea Babini
Measure of temperature dynamics in induction sealing processes is of paramount importance for the validation of physics-based models. In this work, commonly used commercial tools for temperature measurements, such as thermocouples, pyrometers and thermal cameras, are benchmarked for the characterization of the temperature dynamics occurring in multilayer aluminum foil-based packaging material undergoing relatively fast (i.e., ×100 ms) induction heating transients.
{"title":"Assessment of thermographic tools for the validation of physics-based models of an induction sealing process","authors":"Matteo Giangolini, Giovanni Betti Beneventi, Andrea Babini","doi":"10.3233/jae-230177","DOIUrl":"https://doi.org/10.3233/jae-230177","url":null,"abstract":"Measure of temperature dynamics in induction sealing processes is of paramount importance for the validation of physics-based models. In this work, commonly used commercial tools for temperature measurements, such as thermocouples, pyrometers and thermal cameras, are benchmarked for the characterization of the temperature dynamics occurring in multilayer aluminum foil-based packaging material undergoing relatively fast (i.e., ×100 ms) induction heating transients.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-destructive thermographic testing of damaged composite laminates modeled from the homogenization of fiber-reinforced polymers is a challenge, both because of its underlying complexity and because of the difficulties encountered in the quantification of uncertainties related to the identification and characterization of defects. To provide a rigorous framework that accepts data from different modalities and allows data fusion as well, a Bayesian neural network (BNN) [I. Kononenko, Biological Cybernetics 61(5) (1989), 361–370] with two input streams is proposed, with a focus on local inter-layer delaminations identification and characterization.
{"title":"Identification and characterization of damaged fiber-reinforced laminates in a Bayesian framework","authors":"Valentin Noël, Thomas Rodet, Dominique Lesselier","doi":"10.3233/jae-230140","DOIUrl":"https://doi.org/10.3233/jae-230140","url":null,"abstract":"Non-destructive thermographic testing of damaged composite laminates modeled from the homogenization of fiber-reinforced polymers is a challenge, both because of its underlying complexity and because of the difficulties encountered in the quantification of uncertainties related to the identification and characterization of defects. To provide a rigorous framework that accepts data from different modalities and allows data fusion as well, a Bayesian neural network (BNN) [I. Kononenko, Biological Cybernetics 61(5) (1989), 361–370] with two input streams is proposed, with a focus on local inter-layer delaminations identification and characterization.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A crack propagation trial was performed on a Q235 steel M(T) sample to investigate the modifications in magnetic memory signals throughout the crack propagation procedure of ferromagnetic substances. Various detection lines were employed to gather and scrutinize magnetic memory signals under two-stage fatigue loading. The interrelation between the gradient value Kmax, the peak-to-peak value SP−Py, the stress intensity factor Ka, the extension of the sample 𝜀, crack length a, and the cyclic N was established. The findings indicate that the Hp(y) curves present a varied peak at the crack tip and in the notch, whereas the Hp(x) curve is linear. The magnetic signals display similar changes during two-stage fatigue loading, but the post-break state deviates. The fatigue process’s SP−Py shows three phases of fluctuation, escalation, and decline. Throughout the period of fatigue crack growth, Kmax and 𝜀 rise exponentially, Ka ascends linearly, and a shows linear changes. The characteristics of magnetic memory signals can measure harm after varying service periods and offer robust foundations for remanufacturing.
{"title":"Magnetic memory testing towards fatigue crack propagation of Q235 steel for remanufacturing","authors":"Jianhua Ye, Ze Guo, Shoujin Zeng, Mingsan Xu","doi":"10.3233/jae-230050","DOIUrl":"https://doi.org/10.3233/jae-230050","url":null,"abstract":"A crack propagation trial was performed on a Q235 steel M(T) sample to investigate the modifications in magnetic memory signals throughout the crack propagation procedure of ferromagnetic substances. Various detection lines were employed to gather and scrutinize magnetic memory signals under two-stage fatigue loading. The interrelation between the gradient value Kmax, the peak-to-peak value SP−Py, the stress intensity factor Ka, the extension of the sample 𝜀, crack length a, and the cyclic N was established. The findings indicate that the Hp(y) curves present a varied peak at the crack tip and in the notch, whereas the Hp(x) curve is linear. The magnetic signals display similar changes during two-stage fatigue loading, but the post-break state deviates. The fatigue process’s SP−Py shows three phases of fluctuation, escalation, and decline. Throughout the period of fatigue crack growth, Kmax and 𝜀 rise exponentially, Ka ascends linearly, and a shows linear changes. The characteristics of magnetic memory signals can measure harm after varying service periods and offer robust foundations for remanufacturing.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139755176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aiming at the shortcomings of the traditional permanent magnet governor air gap speed regulation, a sleeve-type electromagnetic hybrid governor is proposed by controlling the current instead of adjusting the air gap, the structural characteristics and working principle of the speed regulation modelare introduced, and the electromagnetic torque mathematical expression is derived based on the equivalent magnetic circuit method, and the key parameters affecting the transmission performance of the governor are obtained, and the simulation model of the sleeve electromagnetic hybrid governor is established by using the finite element analysis method to analyze the electromagnetic field change law in the governor under the transient field. The change curve of air gap magnetic inductance intensity under different currents was obtained, and the influence of speed difference under different currents on the output torque was revealed, and finally, an experimental platform was built for testing, and the maximum error of torque simulation and the test was obtained by analyzing the results to verify the accuracy of the simulation method, on this basis, two structural schemes were proposed to improve the amplitude of the torque regulation of the governor by the current, under the structure of scheme 1, the adjustment amplitude of the torque increased from 35% of the original structure to 96%, and the improvement effect was ideal. Its laws and conclusions can provide a reference for the further design and optimization of sleeve electromagnetic hybrid governor.
{"title":"Research on transmission characteristics of sleeve type electromagnetic hybrid governor","authors":"Gang Cheng, Donghua Song","doi":"10.3233/jae-230064","DOIUrl":"https://doi.org/10.3233/jae-230064","url":null,"abstract":"Aiming at the shortcomings of the traditional permanent magnet governor air gap speed regulation, a sleeve-type electromagnetic hybrid governor is proposed by controlling the current instead of adjusting the air gap, the structural characteristics and working principle of the speed regulation modelare introduced, and the electromagnetic torque mathematical expression is derived based on the equivalent magnetic circuit method, and the key parameters affecting the transmission performance of the governor are obtained, and the simulation model of the sleeve electromagnetic hybrid governor is established by using the finite element analysis method to analyze the electromagnetic field change law in the governor under the transient field. The change curve of air gap magnetic inductance intensity under different currents was obtained, and the influence of speed difference under different currents on the output torque was revealed, and finally, an experimental platform was built for testing, and the maximum error of torque simulation and the test was obtained by analyzing the results to verify the accuracy of the simulation method, on this basis, two structural schemes were proposed to improve the amplitude of the torque regulation of the governor by the current, under the structure of scheme 1, the adjustment amplitude of the torque increased from 35% of the original structure to 96%, and the improvement effect was ideal. Its laws and conclusions can provide a reference for the further design and optimization of sleeve electromagnetic hybrid governor.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139755254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero
The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.
{"title":"Study of magnetic nonlinearities in materials with low Curie temperature applied to domestic induction heating","authors":"A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero","doi":"10.3233/jae-230166","DOIUrl":"https://doi.org/10.3233/jae-230166","url":null,"abstract":"The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139799073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To study the influence of the magnitude of the excitation current on the radial electromagnetic force wave of the tangential magnetizing parallel structure hybrid excitation synchronous motor (TMPS-HESM) under different working conditions. Firstly, the basic structure of the motor and the rotor magnetic circuit model is introduced. Secondly, considering the influence of excitation current, the Maxwell stress tensor method is used to analyze the radial electromagnetic force wave of the motor and the source, frequency and order of the radial electromagnetic force wave that has a great influence on the electromagnetic vibration of the motor are qualitatively obtained. Then, the three-dimensional finite element method is used to calculate the variation law of the radial electromagnetic force wave when different excitation currents are applied under no-load and load conditions, revealing that the DC excitation will increase the amplitude of the radial electromagnetic force wave of a specific order. Meanwhile, the influence of load torque variation on the radial electromagnetic force wave is discussed, and it is found that the (2f, 8) and (6f, 24) order electromagnetic force waves are greatly affected by the armature reaction. The work provides a theoretical basis for further suppressing the electromagnetic vibration of this type of hybrid excitation motor.
{"title":"The effect of excitation current on radial electromagnetic force wave of tangential magnetizing parallel structure hybrid excitation synchronous motor","authors":"Wendong Zhang, Liang Pang, Huoda Hu, Haihong Qin, Chaohui Zhao","doi":"10.3233/jae-230016","DOIUrl":"https://doi.org/10.3233/jae-230016","url":null,"abstract":"To study the influence of the magnitude of the excitation current on the radial electromagnetic force wave of the tangential magnetizing parallel structure hybrid excitation synchronous motor (TMPS-HESM) under different working conditions. Firstly, the basic structure of the motor and the rotor magnetic circuit model is introduced. Secondly, considering the influence of excitation current, the Maxwell stress tensor method is used to analyze the radial electromagnetic force wave of the motor and the source, frequency and order of the radial electromagnetic force wave that has a great influence on the electromagnetic vibration of the motor are qualitatively obtained. Then, the three-dimensional finite element method is used to calculate the variation law of the radial electromagnetic force wave when different excitation currents are applied under no-load and load conditions, revealing that the DC excitation will increase the amplitude of the radial electromagnetic force wave of a specific order. Meanwhile, the influence of load torque variation on the radial electromagnetic force wave is discussed, and it is found that the (2f, 8) and (6f, 24) order electromagnetic force waves are greatly affected by the armature reaction. The work provides a theoretical basis for further suppressing the electromagnetic vibration of this type of hybrid excitation motor.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139860256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero
The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.
{"title":"Study of magnetic nonlinearities in materials with low Curie temperature applied to domestic induction heating","authors":"A. Pascual, J. Acero, Alexis A. Narvaez, C. Carretero","doi":"10.3233/jae-230166","DOIUrl":"https://doi.org/10.3233/jae-230166","url":null,"abstract":"The analysis of the magnetic properties of alloys with low Curie temperature used in domestic induction heating is presented. These alloys allow the development of cookware with additional benefits with respect to regular cookware oriented to improve temperature control and the user’s safety. Firstly, an experimental method to characterize the magnetic permeability with respect to the magnetic field strength and temperature in the material is presented. Secondly, a finite element simulation method is proposed which, considering the previous characterization, allows the calculation of the electrical equivalent of an inductor-load system as a function of temperature and magnetic field. This method makes possible the application of finite element simulation in the frequency domain with nonlinear materials, which is of interest for the design of electronics associated with domestic applications of induction heating. Simulation results are experimentally verified with various ferromagnetic alloys with low Curie temperature at different power, temperature, and operating frequency ranges.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139858933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}