Philip Desenfans, Zifeng Gong, D. Vanoost, Konstantinos Gryllias, J. Boydens, Herbert De Gersem, D. Pissoort
This work compares three nonlinear solution methods for the performance of an induction motor’s magnetic equivalent circuit model with magnetic saturation. The interrelation between magnetic flux density and permeability introduces nonlinearities in the differential system of equations. Three popular nonlinear solution methods are selected for comparison, namely (i) the Gauss–Seidel method, (ii) the Newton–Raphson method and (iii) the inverse Broyden’s method. While all three methods have been applied in this context before, no comparison study has been published to the authors’ best knowledge. The study finds that the inverse Broyden’s method is most performant in terms of the number of required iterations, the computation time per iteration and the resulting total computation time. However, for substantial saturation levels, the authors recommend a hybrid implementation of multiple solution methods to obtain robust and reliable convergence.
{"title":"Comparison of nonlinear solution methods for magnetic equivalent circuits of saturated induction motors","authors":"Philip Desenfans, Zifeng Gong, D. Vanoost, Konstantinos Gryllias, J. Boydens, Herbert De Gersem, D. Pissoort","doi":"10.3233/jae-230237","DOIUrl":"https://doi.org/10.3233/jae-230237","url":null,"abstract":"This work compares three nonlinear solution methods for the performance of an induction motor’s magnetic equivalent circuit model with magnetic saturation. The interrelation between magnetic flux density and permeability introduces nonlinearities in the differential system of equations. Three popular nonlinear solution methods are selected for comparison, namely (i) the Gauss–Seidel method, (ii) the Newton–Raphson method and (iii) the inverse Broyden’s method. While all three methods have been applied in this context before, no comparison study has been published to the authors’ best knowledge. The study finds that the inverse Broyden’s method is most performant in terms of the number of required iterations, the computation time per iteration and the resulting total computation time. However, for substantial saturation levels, the authors recommend a hybrid implementation of multiple solution methods to obtain robust and reliable convergence.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the ENDE 2023 special issue","authors":"T. Theodoulidis","doi":"10.3233/jae-249002","DOIUrl":"https://doi.org/10.3233/jae-249002","url":null,"abstract":"","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutual inductance is one of the main parameters required to determine the power link’s performance (output voltage, efficiency) in wireless power transfer. The coils are often misaligned angularly in these applications, which affects the mutual inductance and thus the performance. Hence, an accurate calculation of mutual inductance is necessary to decide the working region of the coil. This paper presents an analytical calculation of mutual inductance between two planar spiral coils under angular misalignment conditions. By solving the Neumann integral formula, mutual inductance is derived for constant current-carrying coils, and the final mutual inductance value is calculated numerically. The influence of angular misalignment of the coil, which can be due to nutation and spin angles, on mutual inductance is studied in detail. The mutual inductance of the spiral coil is calculated for different misalignment cases. The accuracy of the calculation results is verified by comparing it with conventional formulas (mainly the Liu, the Babic formula, and the Poletkin formula) and by simulation using the finite element method. The proposed method is a more generalized and simpler one that can be used to calculate the mutual inductance of any size of coils, either spiral or circular, with any lateral and angular misalignments. Finally, a couple of spiral coils are fabricated to validate it experimentally. The comparison of the simulation and experiment results with the calculation result shows its accuracy. Thus, the proposed method can be applied to compute mutual inductance in any angularly misaligned coupling coils for the optimization of the wireless power transfer and their design.
互感是决定无线功率传输中功率链路性能(输出电压、效率)的主要参数之一。在这些应用中,线圈通常会发生角度错位,从而影响互感,进而影响性能。因此,必须精确计算互感,以确定线圈的工作区域。本文介绍了在角度偏差条件下两个平面螺旋线圈之间互感的分析计算。通过求解诺依曼积分公式,得出了恒定载流线圈的互感,并通过数值计算得出了最终的互感值。详细研究了线圈角度偏差对互感的影响,这种偏差可能是由于转角和自旋角造成的。计算了不同错位情况下螺旋线圈的互感。通过与传统公式(主要是 Liu 公式、Babic 公式和 Poletkin 公式)的比较以及使用有限元法进行模拟,验证了计算结果的准确性。所提出的方法是一种更通用、更简单的方法,可用于计算任何尺寸的线圈的互感,无论是螺旋线圈还是圆形线圈,以及任何横向和角度偏差。最后,我们制作了几个螺旋线圈来进行实验验证。模拟和实验结果与计算结果的对比显示了其准确性。因此,所提出的方法可用于计算任何角度错位耦合线圈中的互感,以优化无线电力传输及其设计。
{"title":"Calculation of mutual inductance between arbitrarily positioned planar spiral coils for wireless power applications","authors":"Iftikhar Hussain, Dong-Kyun Woo","doi":"10.3233/jae-230060","DOIUrl":"https://doi.org/10.3233/jae-230060","url":null,"abstract":"Mutual inductance is one of the main parameters required to determine the power link’s performance (output voltage, efficiency) in wireless power transfer. The coils are often misaligned angularly in these applications, which affects the mutual inductance and thus the performance. Hence, an accurate calculation of mutual inductance is necessary to decide the working region of the coil. This paper presents an analytical calculation of mutual inductance between two planar spiral coils under angular misalignment conditions. By solving the Neumann integral formula, mutual inductance is derived for constant current-carrying coils, and the final mutual inductance value is calculated numerically. The influence of angular misalignment of the coil, which can be due to nutation and spin angles, on mutual inductance is studied in detail. The mutual inductance of the spiral coil is calculated for different misalignment cases. The accuracy of the calculation results is verified by comparing it with conventional formulas (mainly the Liu, the Babic formula, and the Poletkin formula) and by simulation using the finite element method. The proposed method is a more generalized and simpler one that can be used to calculate the mutual inductance of any size of coils, either spiral or circular, with any lateral and angular misalignments. Finally, a couple of spiral coils are fabricated to validate it experimentally. The comparison of the simulation and experiment results with the calculation result shows its accuracy. Thus, the proposed method can be applied to compute mutual inductance in any angularly misaligned coupling coils for the optimization of the wireless power transfer and their design.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a low-cost approach to determine the optimum Conductor Plate (CP) thickness without needs for mathematical models and large data volumes, which means that 0.6 times of the Standard Depth of Penetration (SDoP) can be directly selected as the optimum CP thickness without calculation. Firstly, the SDoP is introduced. Then, the influences of speed and conductivity on the optimum CP thickness are investigated. Finally, the relationship between the SDoP and the optimum CP thickness is found. The optimum CP thickness can be selected directly according to the relationship without mathematical models and large data volumes. It not only guarantees high braking force, but also reduces the weight of the LPMECBs as much as possible.
{"title":"A low-cost approach to determine the optimum conductor plate thickness of linear permanent magnet eddy current brakes","authors":"Panpan Yang, Jianwei Li, Leian Zhang, Zonggao Mu, Zixuan Li, Jianhong Wang","doi":"10.3233/jae-220292","DOIUrl":"https://doi.org/10.3233/jae-220292","url":null,"abstract":"This paper proposes a low-cost approach to determine the optimum Conductor Plate (CP) thickness without needs for mathematical models and large data volumes, which means that 0.6 times of the Standard Depth of Penetration (SDoP) can be directly selected as the optimum CP thickness without calculation. Firstly, the SDoP is introduced. Then, the influences of speed and conductivity on the optimum CP thickness are investigated. Finally, the relationship between the SDoP and the optimum CP thickness is found. The optimum CP thickness can be selected directly according to the relationship without mathematical models and large data volumes. It not only guarantees high braking force, but also reduces the weight of the LPMECBs as much as possible.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Electromagnetic Damping Generator (EDG) used for petroleum exploration is faced with the problem of high local temperature during its downhole work. To avoid the damage to its internal circuit caused by high temperature, the key EDG circuit is required to be heat-resistant based on the electromagnetic induction principle and the current heating effect. First of all, the working condition with the maximum heating power was figured out after studying the heating power characteristics of EDG. Then the multi-field coupling model of the temperature field, electromagnetic field and structure of the damper, as well as its iterative analytic model were established to identify the relationship between the temperature rise of the key location of the damper part and its working time in the downhole environment and the room-temperature experimental environment, which provided data support for EDG optimization design. Finally, a EDG prototype was developed, and the test bench was set up by replacing the load with resistors to verify the accuracy of the iterative analytical model. The results showed that the temperature value calculated by the model well fit the experimental value. Therefore, the downhole operation reliability of the EDG and the safety of corresponding bench tests are guaranteed, which has certain guiding significance for EDG optimization design and its experimental study.
{"title":"Research on the high temperature calibration of the electromagnetic damping generator applied to the rotary steerable system","authors":"Zequn Li, Desheng Li, Tong Zhao, Benzhen Guo","doi":"10.3233/jae-220309","DOIUrl":"https://doi.org/10.3233/jae-220309","url":null,"abstract":"The Electromagnetic Damping Generator (EDG) used for petroleum exploration is faced with the problem of high local temperature during its downhole work. To avoid the damage to its internal circuit caused by high temperature, the key EDG circuit is required to be heat-resistant based on the electromagnetic induction principle and the current heating effect. First of all, the working condition with the maximum heating power was figured out after studying the heating power characteristics of EDG. Then the multi-field coupling model of the temperature field, electromagnetic field and structure of the damper, as well as its iterative analytic model were established to identify the relationship between the temperature rise of the key location of the damper part and its working time in the downhole environment and the room-temperature experimental environment, which provided data support for EDG optimization design. Finally, a EDG prototype was developed, and the test bench was set up by replacing the load with resistors to verify the accuracy of the iterative analytical model. The results showed that the temperature value calculated by the model well fit the experimental value. Therefore, the downhole operation reliability of the EDG and the safety of corresponding bench tests are guaranteed, which has certain guiding significance for EDG optimization design and its experimental study.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The initial stage in aircraft lightning protection design and safety certification involves delineating the lightning attachment zone. The lightning leader’s development is inherently random, favoring the shortest path to the aircraft fuselage. In response, we employ the enclosing ball method to establish the lightning attachment zone. First, define the center point of the aircraft as the coordinate position for the sphere’s center, creating a sphere with a specified radius. The leader’s initial position is then selected from any point on the sphere. Second, by calculating distances between the leader’s position and various areas on the aircraft surface, we determine the shortest path. The corresponding aircraft surface area along this path is identified as the lightning attachment zone for the leader. Subsequently, choose a new leading position on the sphere and iterate through the calculation process until all sphere positions are considered. Finally, tally the occurrence frequencies for all calculated attachment areas, representing the attachment probability of each area based on its frequency of occurrence. This paper not only compares our method with the electrostatic field simulation method but also contrasts it with the probability distribution of lightning attachment points obtained from aircraft flight experiments. The comparison results are highly favorable, providing robust verification for the correctness of our approach.
{"title":"Numerical simulation of aircraft lightning attachment zone using the enclosing ball method","authors":"Linglong Ding, Yunfeng Zhang, Minmin Jiang","doi":"10.3233/jae-230026","DOIUrl":"https://doi.org/10.3233/jae-230026","url":null,"abstract":"The initial stage in aircraft lightning protection design and safety certification involves delineating the lightning attachment zone. The lightning leader’s development is inherently random, favoring the shortest path to the aircraft fuselage. In response, we employ the enclosing ball method to establish the lightning attachment zone. First, define the center point of the aircraft as the coordinate position for the sphere’s center, creating a sphere with a specified radius. The leader’s initial position is then selected from any point on the sphere. Second, by calculating distances between the leader’s position and various areas on the aircraft surface, we determine the shortest path. The corresponding aircraft surface area along this path is identified as the lightning attachment zone for the leader. Subsequently, choose a new leading position on the sphere and iterate through the calculation process until all sphere positions are considered. Finally, tally the occurrence frequencies for all calculated attachment areas, representing the attachment probability of each area based on its frequency of occurrence. This paper not only compares our method with the electrostatic field simulation method but also contrasts it with the probability distribution of lightning attachment points obtained from aircraft flight experiments. The comparison results are highly favorable, providing robust verification for the correctness of our approach.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toroidal transformers are designed using a circular core instead of the traditional laminated rectangular core, which reduces inductance losses and increases efficiency. The primary goal of this study is to understand the cooling mechanisms involved in electrical transformers, which are critical components in power systems. Steady electromagnetic, fluid flow and temperature equations are simultaneously solved (direct method) using the finite elements method FEM of a shielded toroidal transformer. The paper focuses on creating a direct-coupled model (DCM) to understand the processes involved in electrical transformers cooling, using Magneto-AeroDynamic (MAD) models. The nonlinear models developed will be implemented and validated in this parametric study for different inlet velocities and the number of outlet. Transformers generate heat during operation, and it’s important to control the temperature to prevent overheating and ensure reliable operation.
环形变压器在设计时使用了圆形铁芯,而不是传统的层叠矩形铁芯,从而减少了电感损耗,提高了效率。本研究的主要目标是了解电力变压器的冷却机制,因为变压器是电力系统中的关键部件。使用有限元方法 FEM 同时求解了屏蔽环形变压器的稳定电磁、流体流动和温度方程(直接法)。论文的重点是创建一个直接耦合模型(DCM),利用磁空气动力学(MAD)模型了解变压器冷却过程。所开发的非线性模型将在本参数研究中针对不同的入口速度和出口数量进行实施和验证。变压器在运行过程中会产生热量,因此控制温度以防止过热并确保可靠运行非常重要。
{"title":"Magneto-thermal and aerodynamic study of a toroidal transformer dimensioning","authors":"Farouk Boukhenoufa, Nabil Ikhlef, Lyes Aomar, Tarik Hacib","doi":"10.3233/jae-230243","DOIUrl":"https://doi.org/10.3233/jae-230243","url":null,"abstract":"Toroidal transformers are designed using a circular core instead of the traditional laminated rectangular core, which reduces inductance losses and increases efficiency. The primary goal of this study is to understand the cooling mechanisms involved in electrical transformers, which are critical components in power systems. Steady electromagnetic, fluid flow and temperature equations are simultaneously solved (direct method) using the finite elements method FEM of a shielded toroidal transformer. The paper focuses on creating a direct-coupled model (DCM) to understand the processes involved in electrical transformers cooling, using Magneto-AeroDynamic (MAD) models. The nonlinear models developed will be implemented and validated in this parametric study for different inlet velocities and the number of outlet. Transformers generate heat during operation, and it’s important to control the temperature to prevent overheating and ensure reliable operation.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Campos, C. Camerini, Daniel Mendes Fernandes, Vitor Manoel Silva, Rafael W.F. Santos, Gabriela Ribeiro Pereira
With the development of non-destructive inspection techniques, more and more challenging situations have arisen and the correct choice of operating parameters can be decisive for a good detection sensitivity. Based on that, an algorithm was developed to obtain the best combination of an eddy current sensor operation parameters. The results obtained demonstrate the improvement in the cracks detection in welded parts after optimization.
{"title":"Eddy currents operation parameters optimization","authors":"L. Campos, C. Camerini, Daniel Mendes Fernandes, Vitor Manoel Silva, Rafael W.F. Santos, Gabriela Ribeiro Pereira","doi":"10.3233/jae-230136","DOIUrl":"https://doi.org/10.3233/jae-230136","url":null,"abstract":"With the development of non-destructive inspection techniques, more and more challenging situations have arisen and the correct choice of operating parameters can be decisive for a good detection sensitivity. Based on that, an algorithm was developed to obtain the best combination of an eddy current sensor operation parameters. The results obtained demonstrate the improvement in the cracks detection in welded parts after optimization.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140092465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sean M. Muyskens, David R. Morris, Christopher J. Yakey, Robert C. Goldstein
Induction tube welding systems utilize an internal magnetic flux controller (impeder) to improve process efficiency. Work has previously been done showing that soft magnetic composite (SMC) materials may be suitable to improve these systems. A test stand was devised for the physical simulation of SMC impeder performance for use in induction tube welding systems. Tests were run to determine the loading and cooling conditions in which an impeder core made of SMCs could survive. Additionally, 2D thermal simulations were run to determine the cooling system thresholds given a particular magnetic loading of the core. The goal of these tests was to expand the design envelopes in which impeder cores made of SMCs could survive and validate their use in induction tube welding systems.
{"title":"Physical simulation and computational modelling for validation of soft magnetic composite impeder performance","authors":"Sean M. Muyskens, David R. Morris, Christopher J. Yakey, Robert C. Goldstein","doi":"10.3233/jae-230218","DOIUrl":"https://doi.org/10.3233/jae-230218","url":null,"abstract":"Induction tube welding systems utilize an internal magnetic flux controller (impeder) to improve process efficiency. Work has previously been done showing that soft magnetic composite (SMC) materials may be suitable to improve these systems. A test stand was devised for the physical simulation of SMC impeder performance for use in induction tube welding systems. Tests were run to determine the loading and cooling conditions in which an impeder core made of SMCs could survive. Additionally, 2D thermal simulations were run to determine the cooling system thresholds given a particular magnetic loading of the core. The goal of these tests was to expand the design envelopes in which impeder cores made of SMCs could survive and validate their use in induction tube welding systems.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140427364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compared with double-winding bearingless permanent magnet synchronous motor, single-winding bearingless permanent magnet synchronous motor (SBPMSM) has the advantages of low copper loss and low failure rate. However, if the slot-pole combination of SBPMSM is not reasonably selected, the winding coefficient will be reduced, and even many advantages of the single-winding structure will be offset. In this paper, a single-winding design method based on magnetomotive force (MMF) star diagram is proposed, which can ensure high winding coefficient. The design process of the proposed single winding structure is introduced. This method can match the appropriate number of stator slots according to the number of rotor poles, and the winding phase separation design can be realized by reversing the slot number transposition. The mathematical models of the suspension force and torque of the bearingless permanent magnet synchronous motor are derived considering the magnetic field harmonics, and the 6-slot/2-pole SBPMSM and 18-slot/8-pole SBPMSM are taken as examples to analyze the magnetic field. The finite element simulation models of 6-slot/2-pole SBPMSM and 18-slot/8-pole SBPMSM are built and analyzed. Through the analysis of electromagnetic torque, suspension force and air-gap magnetic field under different magnetic fields, the general rules of main torque fluctuation and suspension force fluctuation are summarized.
{"title":"Design and harmonic analysis of single winding bearingless PM synchronous motor with high winding coefficient","authors":"Huimin Wang, Peijun Guan, Jiacheng Xu, Liyan Guo","doi":"10.3233/jae-230045","DOIUrl":"https://doi.org/10.3233/jae-230045","url":null,"abstract":"Compared with double-winding bearingless permanent magnet synchronous motor, single-winding bearingless permanent magnet synchronous motor (SBPMSM) has the advantages of low copper loss and low failure rate. However, if the slot-pole combination of SBPMSM is not reasonably selected, the winding coefficient will be reduced, and even many advantages of the single-winding structure will be offset. In this paper, a single-winding design method based on magnetomotive force (MMF) star diagram is proposed, which can ensure high winding coefficient. The design process of the proposed single winding structure is introduced. This method can match the appropriate number of stator slots according to the number of rotor poles, and the winding phase separation design can be realized by reversing the slot number transposition. The mathematical models of the suspension force and torque of the bearingless permanent magnet synchronous motor are derived considering the magnetic field harmonics, and the 6-slot/2-pole SBPMSM and 18-slot/8-pole SBPMSM are taken as examples to analyze the magnetic field. The finite element simulation models of 6-slot/2-pole SBPMSM and 18-slot/8-pole SBPMSM are built and analyzed. Through the analysis of electromagnetic torque, suspension force and air-gap magnetic field under different magnetic fields, the general rules of main torque fluctuation and suspension force fluctuation are summarized.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140425439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}