The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.
{"title":"High-speed tooth-coil permanent magnet synchronous machine for motorized spindle application","authors":"Zichong Zhu, Wenjie Ge, Jun Deng, Jianning Dong","doi":"10.3233/jae-230006","DOIUrl":"https://doi.org/10.3233/jae-230006","url":null,"abstract":"The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140992935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianyuan Chen, Zhigang Zhao, Lei Ming, Shi Zhang, Yajie Ge, Huai Wang
Accurate calculation of power losses has always been important for the design and optimization of magnetic components consisting of windings and magnetic cores, such as inductors and transformers. Focusing on windings, litz wire outperforms its counterparts in terms of eddy current losses, making it particularly suitable for high-frequency (HF) applications. The power loss calculation of litz wire is however challenging due to its complex structure of thin strands twisted in multiple levels. This article therefore aims to review various kinds of litz wire power loss calculation methods from analytical methods, numerical methods to coupling ones. In addition to, the principles and applications of each method, their inherent correlation and differences are also highlighted in this article. On this basis, a comprehensive review and comparison of different calculation methods of litz-wire power loss are provided. Finally, future challenges and directions are then summarized, whose ultimate goal is to calculate the power loss of litz wire accurately and efficiently.
{"title":"An overview of power loss calculation methods for high-frequency litz wires","authors":"Tianyuan Chen, Zhigang Zhao, Lei Ming, Shi Zhang, Yajie Ge, Huai Wang","doi":"10.3233/jae-230171","DOIUrl":"https://doi.org/10.3233/jae-230171","url":null,"abstract":"Accurate calculation of power losses has always been important for the design and optimization of magnetic components consisting of windings and magnetic cores, such as inductors and transformers. Focusing on windings, litz wire outperforms its counterparts in terms of eddy current losses, making it particularly suitable for high-frequency (HF) applications. The power loss calculation of litz wire is however challenging due to its complex structure of thin strands twisted in multiple levels. This article therefore aims to review various kinds of litz wire power loss calculation methods from analytical methods, numerical methods to coupling ones. In addition to, the principles and applications of each method, their inherent correlation and differences are also highlighted in this article. On this basis, a comprehensive review and comparison of different calculation methods of litz-wire power loss are provided. Finally, future challenges and directions are then summarized, whose ultimate goal is to calculate the power loss of litz wire accurately and efficiently.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140992365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
By designing stator teeth using grain-oriented sheets (GO) and other parts still with non-grain-oriented sheets (NGO), the electromagnetic performance of the interior permanent magnet synchronous machine (GO-IPMSM) can be improved greatly. As the stator core of the designed GO-IPMSM is a hybrid core that is composed of two different silicon sheets, both the electromagnetic and mechanical performances are affected by the stator joint shape between GO and NGO sheets. Meanwhile, with the adoption of GO, the torque ripple of GO-IPMSM is increased though the average torque is increased as well. For reducing the torque ripple, optimizing the rotor barrier shape is an effective way. In this paper, the piecewise linear interpolation method is employed for establishing the stator joint shape between GO and NGO sheets, and the polynomial method is proposed to establish the rotor barrier shape. Through the analysis, it can be seen that the stator joint shape plays a strong role in affecting the mechanical performance of the GO-IPMSM, while the effect on the electromagnetic performance is weak. The genetic algorithm is used to optimize the rotor barrier shape for achieving high average torque and low torque ripple. Lastly, a quick and accurate efficiency map calculation method based on the Kriging model is proposed for GO-IPMSM with less finite element method (FEM) samples are required.
通过使用晶粒取向硅片(GO)设计定子齿,其他部分仍使用非晶粒取向硅片(NGO),可以大大提高内部永磁同步电机(GO-IPMSM)的电磁性能。由于所设计的 GO-IPMSM 定子铁芯是由两种不同硅片组成的混合铁芯,其电磁性能和机械性能都会受到 GO 和 NGO 片定子连接形状的影响。同时,采用 GO 后,GO-IPMSM 的平均转矩虽然增加了,但转矩纹波却增大了。要降低转矩纹波,优化转子屏障形状是一种有效的方法。本文采用分片线性插值法确定 GO 和 NGO 片之间的定子连接形状,并提出多项式法确定转子屏障形状。通过分析可以看出,定子接头形状对 GO-IPMSM 的机械性能影响较大,而对电磁性能的影响较小。遗传算法用于优化转子屏障形状,以实现高平均转矩和低转矩纹波。最后,针对 GO-IPMSM 提出了一种基于克里金模型的快速、准确的效率图计算方法,且所需的有限元法(FEM)样本较少。
{"title":"Design and shape optimization of interior permanent magnet synchronous machine based on hybrid cores","authors":"Shiwei Zhang, Xiaorui Huang, Rongmei Liu, Chengcheng Liu, Shaopeng Wang, Youhua Wang","doi":"10.3233/jae-220240","DOIUrl":"https://doi.org/10.3233/jae-220240","url":null,"abstract":"By designing stator teeth using grain-oriented sheets (GO) and other parts still with non-grain-oriented sheets (NGO), the electromagnetic performance of the interior permanent magnet synchronous machine (GO-IPMSM) can be improved greatly. As the stator core of the designed GO-IPMSM is a hybrid core that is composed of two different silicon sheets, both the electromagnetic and mechanical performances are affected by the stator joint shape between GO and NGO sheets. Meanwhile, with the adoption of GO, the torque ripple of GO-IPMSM is increased though the average torque is increased as well. For reducing the torque ripple, optimizing the rotor barrier shape is an effective way. In this paper, the piecewise linear interpolation method is employed for establishing the stator joint shape between GO and NGO sheets, and the polynomial method is proposed to establish the rotor barrier shape. Through the analysis, it can be seen that the stator joint shape plays a strong role in affecting the mechanical performance of the GO-IPMSM, while the effect on the electromagnetic performance is weak. The genetic algorithm is used to optimize the rotor barrier shape for achieving high average torque and low torque ripple. Lastly, a quick and accurate efficiency map calculation method based on the Kriging model is proposed for GO-IPMSM with less finite element method (FEM) samples are required.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this paper is to present the fundamentals of an original method of shaft alignment for rotating machines based on the principle of wireless power transfer (WPT) process. WPT alignment of shafts in rotating machinery is simple and more accurate than existing methods (conventional mechanical methods or Laser-optical method) and can result in reduced power consumption and minimized mean time between failures. Shaft alignment is an important factor in the proper functioning and longevity of machinery. Proper shaft alignment ensures that the rotating shafts of a machine are in a straight line and rotate on the same axis. This contributes to reducing the wear and tear on the bearings and other components of the machine, leading to improved reliability and longer service life. A high precision WPT alignment system has been designed with the primary coil placed in the driver machine, as an electrical motor, and the secondary coil placed in the driven machine, as a pump. The calculation of the magnetic interactions between both coils (primary and secondary coils), in particular the mutual inductance and coupling coefficient, perfectly explains deviations in the shaft (angular misalignment and parallel offset) and aligns entirely with measurement results, with a difference of approximately 4%. This new alignment method with magnetic interactions has proven effective in designing and implementing actual shaft alignment. WPT alignment offers precise shaft alignment tools for proper alignment of shafts and reduces troubleshooting issues.
{"title":"Shaft alignment for rotary machines using wireless power transfer process: Foundations and design approach","authors":"Lyes Aomar, Nabil Ikhelef, Ahmed Taibi","doi":"10.3233/jae-230235","DOIUrl":"https://doi.org/10.3233/jae-230235","url":null,"abstract":"The aim of this paper is to present the fundamentals of an original method of shaft alignment for rotating machines based on the principle of wireless power transfer (WPT) process. WPT alignment of shafts in rotating machinery is simple and more accurate than existing methods (conventional mechanical methods or Laser-optical method) and can result in reduced power consumption and minimized mean time between failures. Shaft alignment is an important factor in the proper functioning and longevity of machinery. Proper shaft alignment ensures that the rotating shafts of a machine are in a straight line and rotate on the same axis. This contributes to reducing the wear and tear on the bearings and other components of the machine, leading to improved reliability and longer service life. A high precision WPT alignment system has been designed with the primary coil placed in the driver machine, as an electrical motor, and the secondary coil placed in the driven machine, as a pump. The calculation of the magnetic interactions between both coils (primary and secondary coils), in particular the mutual inductance and coupling coefficient, perfectly explains deviations in the shaft (angular misalignment and parallel offset) and aligns entirely with measurement results, with a difference of approximately 4%. This new alignment method with magnetic interactions has proven effective in designing and implementing actual shaft alignment. WPT alignment offers precise shaft alignment tools for proper alignment of shafts and reduces troubleshooting issues.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141129326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.
{"title":"An optimization-aided approach to parametrize scalable models of induction machines in speed variable drives","authors":"Florian Pauli, Martin Hafner, Kay Hameyer","doi":"10.3233/jae-230216","DOIUrl":"https://doi.org/10.3233/jae-230216","url":null,"abstract":"The accurate and time-saving prediction of essential machine variables (output power, torque, and efficiency) is crucial for manufacturers offering a wide power range of induction machines. Many motor variants are typically produced by axially scaling and rewinding the machine. Rescaling proceduresof electromagnetic models of induction machines are in everyday use and well known. However, while a high accuracy can be achieved by rescaling in theory, more significant deviations between simulated and measured output parameters of the realized scaled device occur in praxis. These deviations can mainly be attributed to the faulty separation of effects in the distinct machine components, such as the rotor, stator, and bearings. This paper introduces an optimization-aided modeling approach based on the induction machine’s simple equivalent circuit representation. The method is validated by measurement data obtained from many induction machines with various axial lengths and winding configurations.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liquid hydrogen turbopumps are used in large high-performance rockets. Stable high-speed rotation is required for rocket turbopumps. The damping mechanism of the pump must suppress vibration not only in the radial direction but also in the axial direction. However, conventional damping elements using oil or rubber cannot be used due to the cryogenic temperature of liquid hydrogen. Therefore, the application of eddy current dampers to liquid hydrogen turbopumps is focused on in this paper. Although various structures of eddy current dampers have been developed, the multi-degree-of-freedom damping characteristics of dual Halbach array type eddy current dampers for liquid hydrogen turbopumps have not yet been investigated. The variation of damping characteristics with temperature has also not yet been verified. In this paper, we propose a novel dual Halbach array type eddy current damper for liquid hydrogen turbopumps. The proposed damper can generate high damping force and can be operated maintenance-free at the cryogenic temperature. The analysis results show that the damping characteristics strongly depend on temperature and that the amplitude reduction effect is greater at low temperatures. It was also found that the proposed damper has a higher damping force density than conventional dampers.
{"title":"Multiple-degree-of-freedom damping characteristics evaluation of dual halbach array eddy current damper for turbopump in cryogenic environment","authors":"Akira Heya, Tsuyoshi Inoue","doi":"10.3233/jae-230258","DOIUrl":"https://doi.org/10.3233/jae-230258","url":null,"abstract":"Liquid hydrogen turbopumps are used in large high-performance rockets. Stable high-speed rotation is required for rocket turbopumps. The damping mechanism of the pump must suppress vibration not only in the radial direction but also in the axial direction. However, conventional damping elements using oil or rubber cannot be used due to the cryogenic temperature of liquid hydrogen. Therefore, the application of eddy current dampers to liquid hydrogen turbopumps is focused on in this paper. Although various structures of eddy current dampers have been developed, the multi-degree-of-freedom damping characteristics of dual Halbach array type eddy current dampers for liquid hydrogen turbopumps have not yet been investigated. The variation of damping characteristics with temperature has also not yet been verified. In this paper, we propose a novel dual Halbach array type eddy current damper for liquid hydrogen turbopumps. The proposed damper can generate high damping force and can be operated maintenance-free at the cryogenic temperature. The analysis results show that the damping characteristics strongly depend on temperature and that the amplitude reduction effect is greater at low temperatures. It was also found that the proposed damper has a higher damping force density than conventional dampers.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article discusses the impact of reactive power load on additional power losses in a high-power transformer operating at a VAr static compensation station. The presence of an almost pure capacitive load on the secondary side together with the thyristor switches is the cause of high-frequency components in the phase currents. The additional effect of electrical resonance between the transformer inductance and the load capacitance is also taken into account. The analysis is achieved using a three-dimensional finite element approach.
文章讨论了在 VAr 静态补偿站运行的大功率变压器中,无功负荷对额外功率损耗的影响。二次侧几乎纯电容性负载和晶闸管开关的存在是相电流中高频成分的原因。变压器电感和负载电容之间的电气共振所产生的额外影响也被考虑在内。分析采用了三维有限元方法。
{"title":"Additional eddy current losses in transformer working at static VAr compensation station","authors":"Pawel Witczak, Piotr Osinski","doi":"10.3233/jae-230202","DOIUrl":"https://doi.org/10.3233/jae-230202","url":null,"abstract":"The article discusses the impact of reactive power load on additional power losses in a high-power transformer operating at a VAr static compensation station. The presence of an almost pure capacitive load on the secondary side together with the thyristor switches is the cause of high-frequency components in the phase currents. The additional effect of electrical resonance between the transformer inductance and the load capacitance is also taken into account. The analysis is achieved using a three-dimensional finite element approach.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a parametric study of linear induction motor for design purpose. The chosen mathematical model uses a 2D formulation with magnetic vector potential A. The implementation of the model is carried out with the finite element method on the free platform Gmsh-GetDP. Circuit model iscoupled to FE model so that constant voltage supply mode can be considered. This work aims to highlight the effect of the pole pair number on the characteristics and the performances of the linear induction machine through two numerical models associated to an analytical one. Furthermore, the study shows the effect of the pole pair number on the phase imbalance and the spatial harmonic spectrum of the machine. Reducing this imbalance and higher order harmonics presence will increase machine performances.
本文介绍了用于设计目的的线性感应电机参数研究。所选的数学模型采用磁矢量势 A 的二维公式。电路模型与有限元模型耦合,因此可以考虑恒压供电模式。这项工作旨在通过与分析模型相关联的两个数值模型,强调极对数对线性感应机特性和性能的影响。此外,研究还显示了极对数对相位不平衡和机器空间谐波频谱的影响。减少这种不平衡和高阶谐波的存在将提高机器的性能。
{"title":"Analysis of pole pair number impact on single-sided linear induction machine performances","authors":"Aissa Bensehila, Athmane Bouzidi, Noureddine Takorabet, Baptiste Ristagno","doi":"10.3233/jae-230244","DOIUrl":"https://doi.org/10.3233/jae-230244","url":null,"abstract":"This paper presents a parametric study of linear induction motor for design purpose. The chosen mathematical model uses a 2D formulation with magnetic vector potential A. The implementation of the model is carried out with the finite element method on the free platform Gmsh-GetDP. Circuit model iscoupled to FE model so that constant voltage supply mode can be considered. This work aims to highlight the effect of the pole pair number on the characteristics and the performances of the linear induction machine through two numerical models associated to an analytical one. Furthermore, the study shows the effect of the pole pair number on the phase imbalance and the spatial harmonic spectrum of the machine. Reducing this imbalance and higher order harmonics presence will increase machine performances.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work aims to provide a unique analytical model designed for calculating the magnetic field of a surface-mounted permanent magnet Vernier motor (SPMVM). The model is created utilizing the separation variable method to solve Laplace or Poisson equations of the vector magnetic potential in a quasi-Cartesian coordinate system subdomain model. The theoretical justifications for the final analytical equations of electromagnetic torque, no-load back-EMF, stator inductance, and magnetic flux density distribution are given in detail. Then the solution of the equation is expressed in the form of a hyperbolic function. Furthermore, the improved analytical method in the study is generic and can be applied to estimating the parameters of machines with different design concepts. Finally, FEM is employed as the reference for comparison between other models. Compared to the original subdomain model, the calculation results of the improved analytical model are more time-efficient and closer to those of FEM. In addition, the improved analytical method can reduce the dimension of the coefficient matrix and improve the calculation speed. The SPMVM prototype is then built to demonstrate the validity and feasibility of the improved subdomain method and serves as a guide for future SPMVM development.
{"title":"An improved subdomain modeling technique for surface-mounted permanent magnet Vernier motor","authors":"Guangqing Bao, Yong Chang, Anan Zhang","doi":"10.3233/jae-230062","DOIUrl":"https://doi.org/10.3233/jae-230062","url":null,"abstract":"This work aims to provide a unique analytical model designed for calculating the magnetic field of a surface-mounted permanent magnet Vernier motor (SPMVM). The model is created utilizing the separation variable method to solve Laplace or Poisson equations of the vector magnetic potential in a quasi-Cartesian coordinate system subdomain model. The theoretical justifications for the final analytical equations of electromagnetic torque, no-load back-EMF, stator inductance, and magnetic flux density distribution are given in detail. Then the solution of the equation is expressed in the form of a hyperbolic function. Furthermore, the improved analytical method in the study is generic and can be applied to estimating the parameters of machines with different design concepts. Finally, FEM is employed as the reference for comparison between other models. Compared to the original subdomain model, the calculation results of the improved analytical model are more time-efficient and closer to those of FEM. In addition, the improved analytical method can reduce the dimension of the coefficient matrix and improve the calculation speed. The SPMVM prototype is then built to demonstrate the validity and feasibility of the improved subdomain method and serves as a guide for future SPMVM development.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140701985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prosthetic implants, such as knee or hip prostheses, have significantly improved the wellbeing of citizens with articulation problems. However, there are still significant challenges in these procedures, being recurring infections one of the most challenging. In this context, hyperthermia has been studied as an effective alternative to antibiotics for biofilm eradication. Among the different heating alternatives, induction heating arises as the idoneous for this application due to its contactless nature and the metallic alloys used in prosthesis. This paper details the design of a portable induction heating system for implanted prosthesis disinfection.
{"title":"A portable induction heating system for implanted prosthesis disinfection","authors":"Ignacio Álvarez-Gariburo, Enrique Cordero García-Galán, Marina Medel Plaza, Enrique Gómez Barrena, Jaime Esteban, H. Sarnago, Jesús Acero, J. Burdío, Óscar Lucía","doi":"10.3233/jae-230123","DOIUrl":"https://doi.org/10.3233/jae-230123","url":null,"abstract":"Prosthetic implants, such as knee or hip prostheses, have significantly improved the wellbeing of citizens with articulation problems. However, there are still significant challenges in these procedures, being recurring infections one of the most challenging. In this context, hyperthermia has been studied as an effective alternative to antibiotics for biofilm eradication. Among the different heating alternatives, induction heating arises as the idoneous for this application due to its contactless nature and the metallic alloys used in prosthesis. This paper details the design of a portable induction heating system for implanted prosthesis disinfection.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}