On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.
{"title":"A Hybrid Neural Network for the Traffic Flow Prediction on the Premise of Missing Data","authors":"Junxi Chen, Zhenlin Wei, Jiaxin Zhang","doi":"10.1049/itr2.70070","DOIUrl":"10.1049/itr2.70070","url":null,"abstract":"<p>On the basis of a generative adversarial network (GAN) and a convolutional neural network (CNN), this work proposes an ER-GAN-CNN to forecast the traffic flow in the presence of missing data by improving GAN. Due to the occurrence of emergencies and the fault of the relevant equipment, the equipment for passenger flow detection may lose some data, which would have negative impacts on passenger flow prediction. In order to cope with such situations, GAN is introduced to make up for the missing data in this paper. On the basis of complete data and CNN, inception blocks are built thereafter to further predict the passenger flow/traffic flow. The accuracy of the prediction of passenger flow is significantly improved with the help of the ER-GAN-CNN, which is able to provide more accurate and rapid traffic guidance for the drivers.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current moving block systems still depend on wayside interlocking systems and zone controllers, resulting in complex control flow and limited control efficiency. While recent train-centric solutions have simplified the system and enhanced line capacity, they still require explicit resource requests from the wayside infrastructure controller and necessitate storing all routes in onboard equipment. These limitations constrain system performance and maintainability. This study introduces an autonomous train control principle for fully train-centric route generation and track resource management, eliminating reliance on wayside controllers. The proposed system models track layouts as directed graphs and generates routes through route factorisation and composition, ensuring compliance with railway safety and operational requirements. By utilising train-to-train coordinate transformations, ATCS enables direct management of track resources between trains without intermediaries, significantly improving the system's performance. Furthermore, a novel braking model is introduced, optimising headway distances and improving track utilisation. The proposed principle is evaluated on an actual railway track layout in Korea, and the results demonstrate its feasibility, achieving shorter headways, improved track capacity, and enhanced system maintainability and flexibility when compared to conventional CBTC and train-centric CBTC systems.
{"title":"Autonomous Train Control System Principle: Fully Train-Centric Route Generation and Track Resource Management","authors":"Sehchan Oh, Kyungran Kang, Young-Jong Cho","doi":"10.1049/itr2.70072","DOIUrl":"10.1049/itr2.70072","url":null,"abstract":"<p>The current moving block systems still depend on wayside interlocking systems and zone controllers, resulting in complex control flow and limited control efficiency. While recent train-centric solutions have simplified the system and enhanced line capacity, they still require explicit resource requests from the wayside infrastructure controller and necessitate storing all routes in onboard equipment. These limitations constrain system performance and maintainability. This study introduces an autonomous train control principle for fully train-centric route generation and track resource management, eliminating reliance on wayside controllers. The proposed system models track layouts as directed graphs and generates routes through route factorisation and composition, ensuring compliance with railway safety and operational requirements. By utilising train-to-train coordinate transformations, ATCS enables direct management of track resources between trains without intermediaries, significantly improving the system's performance. Furthermore, a novel braking model is introduced, optimising headway distances and improving track utilisation. The proposed principle is evaluated on an actual railway track layout in Korea, and the results demonstrate its feasibility, achieving shorter headways, improved track capacity, and enhanced system maintainability and flexibility when compared to conventional CBTC and train-centric CBTC systems.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengyun Xu, Zhichao Wu, Sibin Cai, Yuqing Shi, Jie Fang
Traffic forecasting plays a pivotal role in the advancement of intelligent transportation systems, with significant implications for congestion alleviation and optimal route planning. Existing approaches typically focus on capturing the temporal dynamics of traffic states and the spatial dependencies across road networks to improve prediction accuracy. Nevertheless, two noteworthy limitations persist in these approaches: (1) A lack of consideration for the interaction between spatiotemporal features over varying time scales, which impedes the effective utilization of traffic state information for forecasting future conditions. (2) The inherent stochasticity and distributional imbalances in traffic flow, which introduce uncertainty and contribute to overfitting issues in deep learning models. To address these challenges, we propose a novel method, the heterogeneous-scale multi-graph convolution networks based on kernel density estimation (KDE-HSMGCN). This method integrates two core components: the frequency feature layer and the heterogeneous-scale spatiotemporal layers. The frequency feature layer employs a mapping network to learn and equalize traffic flow distributions, mitigating the effects of distribution imbalance and overfitting during model training. The heterogeneous-scale spatiotemporal layers utilize stacked spatiotemporal layers to capture traffic state information across varying time scales. Experimental evaluations on two diverse traffic datasets demonstrate the superior performance of KDE-HSMGCN in medium and long-term forecasting scenarios.
{"title":"Heterogeneous-Scale Multi-Graph Convolutional Network Based on Kernel Density Estimation for Traffic Prediction","authors":"Mengyun Xu, Zhichao Wu, Sibin Cai, Yuqing Shi, Jie Fang","doi":"10.1049/itr2.70042","DOIUrl":"10.1049/itr2.70042","url":null,"abstract":"<p>Traffic forecasting plays a pivotal role in the advancement of intelligent transportation systems, with significant implications for congestion alleviation and optimal route planning. Existing approaches typically focus on capturing the temporal dynamics of traffic states and the spatial dependencies across road networks to improve prediction accuracy. Nevertheless, two noteworthy limitations persist in these approaches: (1) A lack of consideration for the interaction between spatiotemporal features over varying time scales, which impedes the effective utilization of traffic state information for forecasting future conditions. (2) The inherent stochasticity and distributional imbalances in traffic flow, which introduce uncertainty and contribute to overfitting issues in deep learning models. To address these challenges, we propose a novel method, the heterogeneous-scale multi-graph convolution networks based on kernel density estimation (KDE-HSMGCN). This method integrates two core components: the frequency feature layer and the heterogeneous-scale spatiotemporal layers. The frequency feature layer employs a mapping network to learn and equalize traffic flow distributions, mitigating the effects of distribution imbalance and overfitting during model training. The heterogeneous-scale spatiotemporal layers utilize stacked spatiotemporal layers to capture traffic state information across varying time scales. Experimental evaluations on two diverse traffic datasets demonstrate the superior performance of KDE-HSMGCN in medium and long-term forecasting scenarios.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145128844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingqi Lv, Ming Liu, Yan Zhao, Jianling Lu, Meng Song, Tiantian Zhu, Tieming Chen
Urban traffic speed prediction with high precision is the unremitting pursuit of intelligent transportation systems. The fundamental challenges of traffic speed prediction lie in the accurate modelling of the complex temporal and spatial correlations of transportation systems. Among all the methods, the hybrid “GNN + RNN” models have achieved state-of-the-art results. However, these methods still cannot address the following two challenges. First, in addition to the topology of road networks, the traffic speed could be affected by a variety of other factors, such as road functionality and weather. Second, in addition to predicting traffic speed, it is necessary to diagnose the causes of the prediction results. In this paper, we propose a multi-graph attentive network (MGAN), to predict and diagnose urban traffic speed. We create GNN model by using multiple graphs to encode the factors affecting them from various aspects. And we design a hierarchical attention mechanism to organize and pinpoint the fine-grained effects of different affecting factors for diagnosing the prediction results. The experimental results demonstrate that MGAN achieves state-of-the-art prediction performance on two real-world datasets, outperforming the strongest baseline by at least