首页 > 最新文献

IET Intelligent Transport Systems最新文献

英文 中文
Cooperative control of mixed vehicle platoon based on pinning consensus of heterogeneous multi-agent system 基于异构多智能体系统钉住共识的混合车辆排协同控制
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-30 DOI: 10.1049/itr2.12585
Wenju Du, Changxi Ma, Jiangang Zhang

This paper proposes a longitudinal controller for the mixed vehicle platoon in the presence of driver response time-delay and communication time-delay based on the pinning consensus of heterogeneous multi-agent system. Firstly, an adaptive pinning consensus control protocol and derive sufficient conditions for the heterogeneous non-linear multi-agent system are designed to achieve pinning consistency. Then, the heterogeneous characteristics of the vehicle are described based on the car-following model, then the mixed vehicle platoon system model is constructed and a mixed vehicle platoon controller based on heterogeneous multi-agent pinning consensus is proposed. Besides, the driver response time-delay and communication time-delay are introduced into the model, and a controller based on time-delay heterogeneous multi-agent pinning consensus is designed. Finally, the effectiveness of the proposed controller is verified by numerical simulations, and the effect of number of connected autonomous vehicle, different types of vehicle order, driver response time-delay, communication time-delay and the parameter of the controller on stability of mixed vehicle platoon is also quantitatively demonstrated.

针对存在驾驶员响应时延和通信时延的混合车辆队列,提出了一种基于异构多智能体系统钉住共识的纵向控制器。首先,设计了一种自适应钉钉一致性控制协议,推导了异构非线性多智能体系统实现钉钉一致性的充分条件;在此基础上,基于车辆跟随模型描述了车辆的异构特性,构建了混合车辆排系统模型,提出了基于异构多智能体钉住共识的混合车辆排控制器。此外,在模型中引入了驱动响应时延和通信时延,设计了基于时延异构多智能体钉住共识的控制器。最后,通过数值仿真验证了所提控制器的有效性,并定量论证了联网车辆数量、不同类型车辆顺序、驾驶员响应时延、通信时延以及控制器参数对混合车辆排稳定性的影响。
{"title":"Cooperative control of mixed vehicle platoon based on pinning consensus of heterogeneous multi-agent system","authors":"Wenju Du,&nbsp;Changxi Ma,&nbsp;Jiangang Zhang","doi":"10.1049/itr2.12585","DOIUrl":"https://doi.org/10.1049/itr2.12585","url":null,"abstract":"<p>This paper proposes a longitudinal controller for the mixed vehicle platoon in the presence of driver response time-delay and communication time-delay based on the pinning consensus of heterogeneous multi-agent system. Firstly, an adaptive pinning consensus control protocol and derive sufficient conditions for the heterogeneous non-linear multi-agent system are designed to achieve pinning consistency. Then, the heterogeneous characteristics of the vehicle are described based on the car-following model, then the mixed vehicle platoon system model is constructed and a mixed vehicle platoon controller based on heterogeneous multi-agent pinning consensus is proposed. Besides, the driver response time-delay and communication time-delay are introduced into the model, and a controller based on time-delay heterogeneous multi-agent pinning consensus is designed. Finally, the effectiveness of the proposed controller is verified by numerical simulations, and the effect of number of connected autonomous vehicle, different types of vehicle order, driver response time-delay, communication time-delay and the parameter of the controller on stability of mixed vehicle platoon is also quantitatively demonstrated.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2485-2501"},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12585","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing urban mobility in developing countries: A mobile RSU approach for sustainable transportation 推进发展中国家的城市机动性:可持续交通的移动RSU方法
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-29 DOI: 10.1049/itr2.12586
Justin Moskolaï Ngossaha, Léonce Thérèse Pidy Pidy, Thenuka Karunathilake, Anna Förster, Samuel Bowong

The rapid and uncontrolled urbanization of cities in developing countries has engendered a plethora of urban mobility issues, including traffic congestion, accidents, and air pollution. To address these challenges, contemporary urban mobility trends are incorporating innovative technologies and sustainable governance practices. This article investigates how urban managers can leverage the opportunities presented by cost-effective technologies and the management of urban data to enhance urban mobility in developing countries. Within this discourse, an RSU-based approach is proposed that employs motorbike taxis for inter-vehicular communication, given their status as the most widely used form of public transportation. This approach substantially diminishes investment costs and reinforces the sustainability of urban mobility. Through the implementation of this solution, a noteworthy reduction is anticipated in the emission of gases such as CO2, and NOx, known contributors to climate change and various respiratory diseases. To validate the efficacy of the proposed solution, four distinct scenarios are scrutinized in a case study centered on the city of Douala in Cameroon, utilizing tools such as OMNET++, SUMO, Veins, and INET. The proposed framework offers significant benefits in terms of environmental sustainability and operational efficiency. It enables a 10% reduction in CO2 emissions, a 15% reduction in NOx emissions, an 11% drop in fuel consumption, and a 15% reduction in waiting time in traffic jams. The envisaged solution aims to aid urban managers in their decision-making processes, specifically in advancing sustainable urban mobility. Through the adoption of this approach, cities in developing countries can mitigate challenges associated with urban mobility and enhance the overall well-being of their residents.

发展中国家城市的快速和不受控制的城市化产生了大量的城市流动性问题,包括交通拥堵、事故和空气污染。为了应对这些挑战,当代城市交通趋势正在结合创新技术和可持续治理实践。本文探讨了城市管理者如何利用高成本效益技术和城市数据管理带来的机会来提高发展中国家的城市流动性。在本文中,我们提出了一种基于rsu的方法,即使用摩托车出租车进行车辆间通信,因为它们是使用最广泛的公共交通形式。这种方法大大降低了投资成本,并加强了城市交通的可持续性。通过实施这一解决方案,预计二氧化碳和氮氧化物等已知导致气候变化和各种呼吸系统疾病的气体的排放将显著减少。为了验证所提出的解决方案的有效性,在以喀麦隆杜阿拉市为中心的案例研究中,利用omnet++、SUMO、vein和INET等工具,仔细审查了四种不同的场景。拟议的框架在环境可持续性和运营效率方面提供了显著的好处。它可以减少10%的二氧化碳排放量,减少15%的氮氧化物排放量,降低11%的燃油消耗,减少15%的交通拥堵等待时间。设想的解决方案旨在帮助城市管理者在决策过程中,特别是在推进可持续城市交通方面。通过采用这种方法,发展中国家的城市可以减轻与城市流动性相关的挑战,并提高居民的整体福祉。
{"title":"Advancing urban mobility in developing countries: A mobile RSU approach for sustainable transportation","authors":"Justin Moskolaï Ngossaha,&nbsp;Léonce Thérèse Pidy Pidy,&nbsp;Thenuka Karunathilake,&nbsp;Anna Förster,&nbsp;Samuel Bowong","doi":"10.1049/itr2.12586","DOIUrl":"https://doi.org/10.1049/itr2.12586","url":null,"abstract":"<p>The rapid and uncontrolled urbanization of cities in developing countries has engendered a plethora of urban mobility issues, including traffic congestion, accidents, and air pollution. To address these challenges, contemporary urban mobility trends are incorporating innovative technologies and sustainable governance practices. This article investigates how urban managers can leverage the opportunities presented by cost-effective technologies and the management of urban data to enhance urban mobility in developing countries. Within this discourse, an RSU-based approach is proposed that employs motorbike taxis for inter-vehicular communication, given their status as the most widely used form of public transportation. This approach substantially diminishes investment costs and reinforces the sustainability of urban mobility. Through the implementation of this solution, a noteworthy reduction is anticipated in the emission of gases such as CO2, and NOx, known contributors to climate change and various respiratory diseases. To validate the efficacy of the proposed solution, four distinct scenarios are scrutinized in a case study centered on the city of Douala in Cameroon, utilizing tools such as OMNET++, SUMO, Veins, and INET. The proposed framework offers significant benefits in terms of environmental sustainability and operational efficiency. It enables a 10% reduction in CO2 emissions, a 15% reduction in NOx emissions, an 11% drop in fuel consumption, and a 15% reduction in waiting time in traffic jams. The envisaged solution aims to aid urban managers in their decision-making processes, specifically in advancing sustainable urban mobility. Through the adoption of this approach, cities in developing countries can mitigate challenges associated with urban mobility and enhance the overall well-being of their residents.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2502-2519"},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12586","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing freight train delay prediction with simulation-assisted machine learning 利用仿真辅助机器学习加强货运列车延误预测
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-18 DOI: 10.1049/itr2.12573
Niloofar Minbashi, Jiaxi Zhao, C. Tyler Dick, Markus Bohlin

Boosting the rail freight modal share is an ambitious target in Europe and North America. Yards, where freight trains are arranged, can be crucial in realizing this target by reliable dispatching to the network. This paper predicts freight train departures by developing a simulation-assisted machine learning model with two concepts: general (adding all predictors at once) and step-wise (adding predictors as they become available in sub-yard operations) for hump yards with the conventional layout to provide a generalized model for European and North American contexts. The developed model is a decision tree algorithm, validated via 10-fold cross-validation. The model's performance on three data sets—a real-world European yard, a baseline simulation, and an ultimate randomness simulation for a comparable North American yard—shows a respective R2$R^2$ of 0.90, 0.87, and 0.70. Step-wise inclusion of the predictors results differently for the real-world and simulation data. The global feature importance highlights maximum planned length, departure weekday, the number of arriving trains, and minimum arrival deviation as key predictors for the real-world data. For the simulation data, the most significant predictors are departure yard predictors, the number of arriving trains, and the maximum hump duration. Additionally, utilization rates—except for the receiving yard—enhance the predictions.

在欧洲和北美,提高铁路货运模式的份额是一个雄心勃勃的目标。货运站是安排货运列车的地方,通过向网络可靠地调度,对于实现这一目标至关重要。本文通过开发一个模拟辅助机器学习模型来预测货运列车的始发,该模型具有两个概念:通用(一次添加所有预测因子)和逐步(在子场站操作中添加预测因子),用于具有传统布局的驼峰场站,为欧洲和北美环境提供通用模型。所开发的模型是一个决策树算法,通过10倍交叉验证验证。该模型在三个数据集上的表现——一个真实的欧洲船厂、一个基线模拟和一个可比较的北美船厂的最终随机模拟——显示出r2 $R^2$分别为0.90、0.87和0.70。对于真实世界和模拟数据,逐步包含预测因子的结果是不同的。全局特征重要性突出了最大计划长度、出发工作日、到达列车数量和最小到达偏差作为真实世界数据的关键预测因子。对于仿真数据,最重要的预测因子是发车场预测因子、到站列车数量和最大驼峰持续时间。此外,利用率(除了接收码)增强了预测。
{"title":"Enhancing freight train delay prediction with simulation-assisted machine learning","authors":"Niloofar Minbashi,&nbsp;Jiaxi Zhao,&nbsp;C. Tyler Dick,&nbsp;Markus Bohlin","doi":"10.1049/itr2.12573","DOIUrl":"https://doi.org/10.1049/itr2.12573","url":null,"abstract":"<p>Boosting the rail freight modal share is an ambitious target in Europe and North America. Yards, where freight trains are arranged, can be crucial in realizing this target by reliable dispatching to the network. This paper predicts freight train departures by developing a simulation-assisted machine learning model with two concepts: general (adding all predictors at once) and step-wise (adding predictors as they become available in sub-yard operations) for hump yards with the conventional layout to provide a generalized model for European and North American contexts. The developed model is a decision tree algorithm, validated via 10-fold cross-validation. The model's performance on three data sets—a real-world European yard, a baseline simulation, and an ultimate randomness simulation for a comparable North American yard—shows a respective <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$R^2$</annotation>\u0000 </semantics></math> of 0.90, 0.87, and 0.70. Step-wise inclusion of the predictors results differently for the real-world and simulation data. The global feature importance highlights maximum planned length, departure weekday, the number of arriving trains, and minimum arrival deviation as key predictors for the real-world data. For the simulation data, the most significant predictors are departure yard predictors, the number of arriving trains, and the maximum hump duration. Additionally, utilization rates—except for the receiving yard—enhance the predictions.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2359-2374"},"PeriodicalIF":2.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multispectral pedestrian detection based on feature complementation and enhancement 基于特征互补和增强的多光谱行人检测
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-17 DOI: 10.1049/itr2.12562
Linzhen Nie, Meihe Lu, Zhiwei He, Jiachen Hu, Zhishuai Yin

Multispectral pedestrian detection with visible light and infrared images is robust to changes in lighting conditions and therefore is of great importance to numerous applications that require all-day environmental perception. This paper proposes a novel method named FCE-RCNN, which integrates saliency detection as a sub-task and utilizes global information for enhanced feature representation. The approach enhances thermal inputs by incorporating gradients at the raw-data level before feature extraction. Utilizing a dual-stream backbone, a global semantic information extraction module is introduced that combines pooling with horizontal–vertical attention mechanisms, capturing high-quality global semantic information for lower-level feature enrichment and guidance. Additionally, the pedestrian locality enhancement module is designed to enhance spatial locality information of pedestrians through saliency detection. Furthermore, to alleviate the challenges posed by positional shifts between cross-spectral features, deformable convolution is innovatively employed. Experimental results on the KAIST dataset demonstrate that FCE-RCNN significantly improves nighttime detection, achieving a log-average miss rate of 6.92%, outperforming the new method ICAFusion by 0.93%. These results underscore the effectiveness of FCE-RCNN, and the method also maintains competitive inference speed, making it suitable for real-time applications.

利用可见光和红外图像进行多光谱行人检测对光照条件的变化具有很强的鲁棒性,因此对需要全天候环境感知的众多应用具有重要意义。本文提出了一种名为 FCE-RCNN 的新方法,它将显著性检测整合为一个子任务,并利用全局信息来增强特征表示。该方法通过在特征提取前将梯度纳入原始数据级别来增强热输入。利用双流骨干网,引入了全局语义信息提取模块,该模块结合了池化与水平-垂直注意机制,可捕获高质量的全局语义信息,用于低层次特征的丰富和引导。此外,还设计了行人位置增强模块,通过显著性检测增强行人的空间位置信息。此外,为了缓解交叉光谱特征之间的位置偏移所带来的挑战,还创新性地采用了可变形卷积技术。在 KAIST 数据集上的实验结果表明,FCE-RCNN 显著提高了夜间检测能力,其对数平均漏检率为 6.92%,比新方法 ICAFusion 高出 0.93%。这些结果凸显了 FCE-RCNN 的有效性,而且该方法的推理速度也很有竞争力,适合实时应用。
{"title":"Multispectral pedestrian detection based on feature complementation and enhancement","authors":"Linzhen Nie,&nbsp;Meihe Lu,&nbsp;Zhiwei He,&nbsp;Jiachen Hu,&nbsp;Zhishuai Yin","doi":"10.1049/itr2.12562","DOIUrl":"https://doi.org/10.1049/itr2.12562","url":null,"abstract":"<p>Multispectral pedestrian detection with visible light and infrared images is robust to changes in lighting conditions and therefore is of great importance to numerous applications that require all-day environmental perception. This paper proposes a novel method named FCE-RCNN, which integrates saliency detection as a sub-task and utilizes global information for enhanced feature representation. The approach enhances thermal inputs by incorporating gradients at the raw-data level before feature extraction. Utilizing a dual-stream backbone, a global semantic information extraction module is introduced that combines pooling with horizontal–vertical attention mechanisms, capturing high-quality global semantic information for lower-level feature enrichment and guidance. Additionally, the pedestrian locality enhancement module is designed to enhance spatial locality information of pedestrians through saliency detection. Furthermore, to alleviate the challenges posed by positional shifts between cross-spectral features, deformable convolution is innovatively employed. Experimental results on the KAIST dataset demonstrate that FCE-RCNN significantly improves nighttime detection, achieving a log-average miss rate of 6.92%, outperforming the new method ICAFusion by 0.93%. These results underscore the effectiveness of FCE-RCNN, and the method also maintains competitive inference speed, making it suitable for real-time applications.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 11","pages":"2166-2177"},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A spatiotemporal learning approach to safety-oriented individualized driving risk assessment in a vehicle-to-everything (V2X) environment 在 "车到万物"(V2X)环境中以安全为导向的个性化驾驶风险评估的时空学习方法
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-17 DOI: 10.1049/itr2.12584
Jing Li, Xuantong Wang, Tong Zhang

Advances in real-time basic safety message (BSM) data from sensor-equipped vehicles have created new opportunities for driving risk assessments. This paper presents a machine learning approach using BSM data to provide fine-grained risk assessments, focusing on safety-critical events (SCEs) related to driving profiles, vehicle states, and road conditions. This approach formulates a bi-level risk indicator: one level measures the observable frequency of SCEs, while the other estimates their likelihood. The coarse level calculates risk scores by classifying driving profiles as normal or risky based on SCE frequency. The fine level refines these scores by comparing normal and risky profiles using key features from a feature learning model. This combined system accounts for recent driving behaviours and road/weather conditions within a vehicle-to-everything (V2X) environment, addressing high data dimensionality and imbalance. A comprehensive case study using 1 year of data from pilot V2X infrastructure in Tampa, Florida, demonstrates the efficacy of this approach, showing practical applications of the SCE-based risk indicator and combinatorial feature learning while also highlighting the real-world utility of the assessment method in providing a detailed and actionable view of driving risk based on V2X information.

配备传感器的车辆实时基本安全信息(BSM)数据的进步为驾驶风险评估创造了新的机会。本文介绍了一种使用BSM数据提供细粒度风险评估的机器学习方法,重点关注与驾驶概况、车辆状态和路况相关的安全关键事件(sce)。这种方法制定了一个双层风险指标:一级衡量可观察到的sce频率,而另一级估计其可能性。粗级通过根据SCE频率将驾驶概况分类为正常或危险来计算风险分数。精细级别通过使用特征学习模型中的关键特征比较正常和风险概况来细化这些分数。该组合系统考虑了车辆对一切(V2X)环境中最近的驾驶行为和道路/天气条件,解决了高数据维度和不平衡问题。一项综合案例研究使用了佛罗里达州坦帕市V2X试点基础设施1年的数据,证明了该方法的有效性,展示了基于sce的风险指标和组合特征学习的实际应用,同时也强调了该评估方法在基于V2X信息提供详细且可操作的驾驶风险视图方面的实际实用性。
{"title":"A spatiotemporal learning approach to safety-oriented individualized driving risk assessment in a vehicle-to-everything (V2X) environment","authors":"Jing Li,&nbsp;Xuantong Wang,&nbsp;Tong Zhang","doi":"10.1049/itr2.12584","DOIUrl":"https://doi.org/10.1049/itr2.12584","url":null,"abstract":"<p>Advances in real-time basic safety message (BSM) data from sensor-equipped vehicles have created new opportunities for driving risk assessments. This paper presents a machine learning approach using BSM data to provide fine-grained risk assessments, focusing on safety-critical events (SCEs) related to driving profiles, vehicle states, and road conditions. This approach formulates a bi-level risk indicator: one level measures the observable frequency of SCEs, while the other estimates their likelihood. The coarse level calculates risk scores by classifying driving profiles as normal or risky based on SCE frequency. The fine level refines these scores by comparing normal and risky profiles using key features from a feature learning model. This combined system accounts for recent driving behaviours and road/weather conditions within a vehicle-to-everything (V2X) environment, addressing high data dimensionality and imbalance. A comprehensive case study using 1 year of data from pilot V2X infrastructure in Tampa, Florida, demonstrates the efficacy of this approach, showing practical applications of the SCE-based risk indicator and combinatorial feature learning while also highlighting the real-world utility of the assessment method in providing a detailed and actionable view of driving risk based on V2X information.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2459-2484"},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring changes in residents' daily activity patterns through sequence visualization analysis 通过序列可视化分析探索居民日常活动模式的变化
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-17 DOI: 10.1049/itr2.12511
Xiaoran Peng, Ruimin Hu, Xiaochen Wang, Nana Huang

The analysis of people's daily activities has played a crucial role in various applications, such as urban geography, activity prediction, and homogeneous population detection. However, limited studies have explored changes in the residents’ activity patterns in a particular region across various periods. To explore the changes, a methodological framework of sequence visualization analysis based on machine learning that extracts the activity patterns across various periods using sequence analysis, visualizes the activity patterns by calculating the frequency of different activities at time points and categorizes them through graphical similarity, and then compares the activity patterns in terms of activity and demographic characteristics is proposed. Empirical testing on the New York Metropolitan data of the National Household Travel Survey (NHTS) is conducted for 2001, 2009, and 2017. The findings reveal significant intra-similarities, inter-differences, and distinct changes in activity patterns across three periods for different social populations in the New York Metropolitan. From the perspective of information analysis, this work is anticipated to enhance the understanding of travel needs for diverse social populations in a particular region, thereby facilitating targeted policy adjustments for the departments concerned.

对人们日常活动的分析在城市地理、活动预测和同质人口检测等各种应用中发挥着至关重要的作用。然而,对特定地区居民活动模式在不同时期的变化进行探讨的研究却很有限。为了探索这些变化,本文提出了一种基于机器学习的序列可视化分析方法框架,该框架利用序列分析提取不同时期的活动模式,通过计算不同活动在时间点上的频率将活动模式可视化,并通过图形相似性对其进行分类,然后从活动和人口特征方面对活动模式进行比较。对 2001 年、2009 年和 2017 年全国家庭旅行调查(NHTS)的纽约大都市数据进行了实证检验。研究结果表明,纽约大都会不同社会人群在三个时期的活动模式存在明显的内相似性、间差异性和明显的变化。从信息分析的角度来看,这项工作有望加强对特定地区不同社会人群出行需求的了解,从而促进相关部门进行有针对性的政策调整。
{"title":"Exploring changes in residents' daily activity patterns through sequence visualization analysis","authors":"Xiaoran Peng,&nbsp;Ruimin Hu,&nbsp;Xiaochen Wang,&nbsp;Nana Huang","doi":"10.1049/itr2.12511","DOIUrl":"https://doi.org/10.1049/itr2.12511","url":null,"abstract":"<p>The analysis of people's daily activities has played a crucial role in various applications, such as urban geography, activity prediction, and homogeneous population detection. However, limited studies have explored changes in the residents’ activity patterns in a particular region across various periods. To explore the changes, a methodological framework of sequence visualization analysis based on machine learning that extracts the activity patterns across various periods using sequence analysis, visualizes the activity patterns by calculating the frequency of different activities at time points and categorizes them through graphical similarity, and then compares the activity patterns in terms of activity and demographic characteristics is proposed. Empirical testing on the New York Metropolitan data of the National Household Travel Survey (NHTS) is conducted for 2001, 2009, and 2017. The findings reveal significant intra-similarities, inter-differences, and distinct changes in activity patterns across three periods for different social populations in the New York Metropolitan. From the perspective of information analysis, this work is anticipated to enhance the understanding of travel needs for diverse social populations in a particular region, thereby facilitating targeted policy adjustments for the departments concerned.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 10","pages":"1879-1894"},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organizing planning knowledge for automated vehicles and intelligent transportation systems 组织自动化车辆和智能交通系统的规划知识
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-16 DOI: 10.1049/itr2.12583
David Yagüe-Cuevas, María Paz-Sesmero, Pablo Marín-Plaza, Araceli Sanchis

Intelligent Transportation Systems (ITS) are crucial for developing fully automated vehicles. While significant progress has been made with advanced driver assistance systems and automation technology, challenges remain, such as improving traffic information, enhancing planning and control systems, and developing better decision-making capabilities. Despite these hurdles, the potential benefits of ITS are so many that its challenges have attracted substantial industrial investment and research groups interested in the automated driving field. In this work, a methodology based on state space search for planning knowledge integration is proposed. The main goal of the proposal is to provide a planning system with the necessary information to perform properly any task related to lateral and longitudinal control, path following, trajectory generation, arbitration and behavior execution by localizing the vehicle with respect to a high-level road plan. To this end, this research compares cutting-edge methods for rapidly finding the K nearest neighbor in relatively high dimensional road plans constructed from the traffic information stored in a high definition map. During the experimentation phase, promising real-time results have been obtained for fast KNN algorithms, leading to a robust tree index-based methodology for decision making in self-driving vehicles combining path planning, trajectory tracking, trajectory creation, knowledge aggregation and precise vehicle control.

智能交通系统(ITS)对于开发全自动驾驶汽车至关重要。虽然先进的驾驶辅助系统和自动化技术已经取得了重大进展,但挑战依然存在,例如改善交通信息、加强规划和控制系统以及开发更好的决策能力。尽管存在这些障碍,但智能交通系统的潜在效益是如此之大,以至于它所面临的挑战吸引了大量的工业投资和对自动驾驶领域感兴趣的研究团体。在这项工作中,提出了一种基于状态空间搜索的规划知识集成方法。该建议的主要目标是为规划系统提供必要的信息,以便通过根据高级道路规划定位车辆,正确执行与横向和纵向控制、路径跟踪、轨迹生成、仲裁和行为执行有关的任何任务。为此,本研究比较了在相对高维的道路规划图中快速查找 K 最近邻的前沿方法,该规划图由存储在高清地图中的交通信息构建而成。在实验阶段,快速 KNN 算法取得了可喜的实时结果,从而为自动驾驶车辆的决策制定提供了一种基于树索引的稳健方法,该方法集路径规划、轨迹跟踪、轨迹创建、知识聚合和精确车辆控制于一体。
{"title":"Organizing planning knowledge for automated vehicles and intelligent transportation systems","authors":"David Yagüe-Cuevas,&nbsp;María Paz-Sesmero,&nbsp;Pablo Marín-Plaza,&nbsp;Araceli Sanchis","doi":"10.1049/itr2.12583","DOIUrl":"https://doi.org/10.1049/itr2.12583","url":null,"abstract":"<p>Intelligent Transportation Systems (ITS) are crucial for developing fully automated vehicles. While significant progress has been made with advanced driver assistance systems and automation technology, challenges remain, such as improving traffic information, enhancing planning and control systems, and developing better decision-making capabilities. Despite these hurdles, the potential benefits of ITS are so many that its challenges have attracted substantial industrial investment and research groups interested in the automated driving field. In this work, a methodology based on state space search for planning knowledge integration is proposed. The main goal of the proposal is to provide a planning system with the necessary information to perform properly any task related to lateral and longitudinal control, path following, trajectory generation, arbitration and behavior execution by localizing the vehicle with respect to a high-level road plan. To this end, this research compares cutting-edge methods for rapidly finding the K nearest neighbor in relatively high dimensional road plans constructed from the traffic information stored in a high definition map. During the experimentation phase, promising real-time results have been obtained for fast KNN algorithms, leading to a robust tree index-based methodology for decision making in self-driving vehicles combining path planning, trajectory tracking, trajectory creation, knowledge aggregation and precise vehicle control.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 S1","pages":"2977-2994"},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12583","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomaly detection and confidence interval-based replacement in decay state coefficient of ship power system 船舶电力系统衰减状态系数的异常检测与置信区间替换
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-14 DOI: 10.1049/itr2.12581
Xingshan Chang, Xinping Yan, Bohua Qiu, Muheng Wei, Jie Liu, Hanhua Zhu

The anomaly detection and predictive replacement of the degradation decay state coefficient (Desc) of ship power system (SPS) are crucial for ensuring their operational safety and maintenance efficiency. This study introduces the YC3Model, a model based on a dynamic triple sliding window mechanism, and Gaussian process regression) to address this challenge. It combines the temporal variation characteristics of the decay state coefficient's original data, first-order, and second-order differential data in both normal and abnormal trend intervals. The model calculates three local statistical measures within each sliding window and employs the Z-score method for anomaly detection. The combination of three sliding windows reduces false positives and negatives, enhancing the precision of anomaly detection. For detected anomalies, Gaussian process regression is used for prediction and replacement, providing confidence intervals to increase the reliability of the predicted values. Experimental results demonstrate that the YC3Model exhibits superior anomaly detection accuracy and adaptability in the degradation process of SPS, surpassing traditional methods across a range of evaluation metrics. This confirms the potential of YC3Model in health monitoring and predictive maintenance of SPS, offering reliable data input for the intelligent operation and maintenance (IO&M) of SPS.

船舶动力系统退化衰减状态系数(Desc)的异常检测和预测替换是保证船舶动力系统运行安全和维护效率的关键。本研究引入了yc3模型(一种基于动态三重滑动窗口机制和高斯过程回归的模型)来解决这一挑战。它结合了衰减态系数原始数据、一阶和二阶微分数据在正常和异常趋势区间内的时间变化特征。该模型在每个滑动窗口内计算三个局部统计测度,并采用Z-score方法进行异常检测。三个滑动窗的组合减少了误报和误报,提高了异常检测的精度。对于检测到的异常,使用高斯过程回归进行预测和替换,提供置信区间以提高预测值的可靠性。实验结果表明,yc3模型在SPS退化过程中具有优越的异常检测精度和适应性,在一系列评价指标上优于传统方法。这证实了yc3模型在SPS健康监测和预测性维护方面的潜力,为SPS智能运维(IO&;M)提供可靠的数据输入。
{"title":"Anomaly detection and confidence interval-based replacement in decay state coefficient of ship power system","authors":"Xingshan Chang,&nbsp;Xinping Yan,&nbsp;Bohua Qiu,&nbsp;Muheng Wei,&nbsp;Jie Liu,&nbsp;Hanhua Zhu","doi":"10.1049/itr2.12581","DOIUrl":"https://doi.org/10.1049/itr2.12581","url":null,"abstract":"<p>The anomaly detection and predictive replacement of the degradation decay state coefficient (<i>D</i><sub>esc</sub>) of ship power system (SPS) are crucial for ensuring their operational safety and maintenance efficiency. This study introduces the YC3Model, a model based on a dynamic triple sliding window mechanism, and Gaussian process regression) to address this challenge. It combines the temporal variation characteristics of the decay state coefficient's original data, first-order, and second-order differential data in both normal and abnormal trend intervals. The model calculates three local statistical measures within each sliding window and employs the Z-score method for anomaly detection. The combination of three sliding windows reduces false positives and negatives, enhancing the precision of anomaly detection. For detected anomalies, Gaussian process regression is used for prediction and replacement, providing confidence intervals to increase the reliability of the predicted values. Experimental results demonstrate that the YC3Model exhibits superior anomaly detection accuracy and adaptability in the degradation process of SPS, surpassing traditional methods across a range of evaluation metrics. This confirms the potential of YC3Model in health monitoring and predictive maintenance of SPS, offering reliable data input for the intelligent operation and maintenance (IO&amp;M) of SPS.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2409-2439"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12581","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic indoor mapping for AVP: Crowdsourcing mapping without prior maps AVP动态室内地图:没有预先地图的众包地图
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-14 DOI: 10.1049/itr2.12578
ZhiHong Jiang, Haobin Jiang, ShiDian Ma

High-definition maps are essential for autonomous vehicle navigation, but indoor parking lots remain poorly mapped due to high costs. To address this, a crowdsourcing model gathers data from consumer-grade sensors in mass-produced vehicles to create semantic maps. Indoor parking lots lack GNSS signals, and most of them do not have high-definition maps or navigation maps as references, making it difficult to ensure the accuracy of the final mapping results. Additionally, the semantic information of indoor parking lots is relatively limited, and the geometric features are overly similar, which significantly impacts the accuracy of point cloud registration. Therefore, this article proposes a crowdsourcing-based approach, where vehicles generate local semantic maps at the client end and upload them to the cloud. Leveraging the scene characteristics of indoor parking lots, the cloud optimizes and fits a large amount of crowdsourced data to obtain a high-precision base map without prior information. Enhanced ICP point cloud registration merges subsequent maps with the base. Additionally, parking space occupancy information is provided. This map can furnish the necessary information for Autonomous Valet Parking (AVP) tasks. Evaluation on the BEVIS dataset shows a root mean square error of 0.482446 m for vehicle localization on the cloud-based map.

高清地图是自动驾驶汽车导航的必要条件,但由于成本高昂,室内停车场的地图仍然很差。为了解决这个问题,一个众包模型从大规模生产的汽车上的消费级传感器收集数据,以创建语义地图。室内停车场缺乏GNSS信号,且大多没有高清地图或导航地图作为参考,难以保证最终测绘结果的准确性。此外,室内停车场的语义信息相对有限,几何特征过于相似,严重影响了点云配准的精度。因此,本文提出了一种基于众包的方法,即车辆在客户端生成本地语义地图,并将其上传到云端。云利用室内停车场的场景特点,对大量众包数据进行优化拟合,获得无需先验信息的高精度底图。增强的ICP点云配准将后续地图与基础地图合并。此外,还提供停车位占用信息。这张地图可以为自动代客泊车(AVP)任务提供必要的信息。对BEVIS数据集的评估表明,基于云的地图上车辆定位的均方根误差为0.482446 m。
{"title":"Dynamic indoor mapping for AVP: Crowdsourcing mapping without prior maps","authors":"ZhiHong Jiang,&nbsp;Haobin Jiang,&nbsp;ShiDian Ma","doi":"10.1049/itr2.12578","DOIUrl":"https://doi.org/10.1049/itr2.12578","url":null,"abstract":"<p>High-definition maps are essential for autonomous vehicle navigation, but indoor parking lots remain poorly mapped due to high costs. To address this, a crowdsourcing model gathers data from consumer-grade sensors in mass-produced vehicles to create semantic maps. Indoor parking lots lack GNSS signals, and most of them do not have high-definition maps or navigation maps as references, making it difficult to ensure the accuracy of the final mapping results. Additionally, the semantic information of indoor parking lots is relatively limited, and the geometric features are overly similar, which significantly impacts the accuracy of point cloud registration. Therefore, this article proposes a crowdsourcing-based approach, where vehicles generate local semantic maps at the client end and upload them to the cloud. Leveraging the scene characteristics of indoor parking lots, the cloud optimizes and fits a large amount of crowdsourced data to obtain a high-precision base map without prior information. Enhanced ICP point cloud registration merges subsequent maps with the base. Additionally, parking space occupancy information is provided. This map can furnish the necessary information for Autonomous Valet Parking (AVP) tasks. Evaluation on the BEVIS dataset shows a root mean square error of 0.482446 m for vehicle localization on the cloud-based map.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 12","pages":"2397-2408"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12578","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics 通过学习时空语义进行自监督血管轨迹分割
IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-14 DOI: 10.1049/itr2.12570
Rui Zhang, Haitao Ren, Zhipei Yu, Zhu Xiao, Kezhong Liu, Hongbo Jiang

The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.

对船舶轨迹(VT)的研究对海洋航线管理和资源开发具有重大意义。船舶轨迹分割是提取船舶运动基元的基础,可用于分析船舶操纵习惯和行为意图。然而,依赖于预定义行为模式的现有方法面临着高昂的标记成本,这阻碍了准确的模式识别。本文提出了一种自监督船只轨迹分割方法(SS-VTS),该方法根据船只固有的时空语义对船只轨迹进行分割。SS-VTS 自适应地将血管分成最佳大小的单元。然后,它利用自我监督学习从 VT 的多维特征序列中提取不同语义层次的分割点。最后,在分割点上执行时空距离融合模块,以确定变化点并获得具有多种语义的 VT 片段。在真实的自动识别系统数据集上进行的实验表明,与七种基准方法相比,SS-VTS 实现了最先进的分割结果。
{"title":"Self-supervised vessel trajectory segmentation via learning spatio-temporal semantics","authors":"Rui Zhang,&nbsp;Haitao Ren,&nbsp;Zhipei Yu,&nbsp;Zhu Xiao,&nbsp;Kezhong Liu,&nbsp;Hongbo Jiang","doi":"10.1049/itr2.12570","DOIUrl":"https://doi.org/10.1049/itr2.12570","url":null,"abstract":"<p>The study of vessel trajectories (VTs) holds significant benefits for marine route management and resource development. VT segmentation serves as a foundation for extracting vessel motion primitives and enables analysis of vessel manoeuvring habits and behavioural intentions. However, existing methods relying on predefined behaviour patterns face high labelling costs, which hinder accurate pattern recognition. This paper proposes a self-supervised vessel trajectory segmentation method (SS-VTS), which segments VTs based on their inherent spatio-temporal semantics. SS-VTS adaptively divides VTs into cells of optimal size. Then, it extracts split points on different semantic levels from the multi-dimensional feature sequence of the VTs using self-supervised learning. Finally, spatio-temporal distance fusion module is performed on split points to determine change points and obtain VT segments with multiple semantics. Experiments on a real automatic identification system datasets show that SS-VTS achieves state-of-the-art segmentation results compared to seven baseline methods.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 11","pages":"2242-2254"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IET Intelligent Transport Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1