In this article, a new p+ pocket stacked gate oxide junctionless tunnelling field effect transistor (junction less tunnelling field effect transistor (JLTFET)) which has metal strip in gate oxide layer is proposed for analogue/RF circuit applications. Due to the insertion of a p+ pocket in source/channel junction and the use of metal strip in oxide layer, the following properties of the proposed JLTFET are resulted. First, the tunnelling barrier width is reduced in the source/channel junction thereby, electrons easily tunnel from the source to the channel. Second, the hole concentration (empty state) in the channel is increased, leading to higher electron contribution in the tunnelling process. These improvements are useful in achieving high drain current and steep subthreshold swing. As a result, the maximum ON current of 4.4 × 10−5 A/μm and average subthreshold swing of 40 mV/decade are obtained from simulation results. Moreover, as compared to conventional JLTFET, the proposed JLTFET provides improvements in reliability and analogue/radio frequency (RF) performance.
{"title":"Improvements in reliability and radio frequency performance of junctionless tunnelling field effect transistor using p+ pocket and metal strip","authors":"Alireza Zirak","doi":"10.1049/cds2.12162","DOIUrl":"https://doi.org/10.1049/cds2.12162","url":null,"abstract":"<p>In this article, a new p<sup>+</sup> pocket stacked gate oxide junctionless tunnelling field effect transistor (junction less tunnelling field effect transistor (JLTFET)) which has metal strip in gate oxide layer is proposed for analogue/RF circuit applications. Due to the insertion of a p<sup>+</sup> pocket in source/channel junction and the use of metal strip in oxide layer, the following properties of the proposed JLTFET are resulted. First, the tunnelling barrier width is reduced in the source/channel junction thereby, electrons easily tunnel from the source to the channel. Second, the hole concentration (empty state) in the channel is increased, leading to higher electron contribution in the tunnelling process. These improvements are useful in achieving high drain current and steep subthreshold swing. As a result, the maximum ON current of 4.4 × 10<sup>−5</sup> A/μm and average subthreshold swing of 40 mV/decade are obtained from simulation results. Moreover, as compared to conventional JLTFET, the proposed JLTFET provides improvements in reliability and analogue/radio frequency (RF) performance.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"235-243"},"PeriodicalIF":1.3,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50122711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The limited and inconvenient functionality of conventional light switches is out of pace with current advancements in wireless sensors. A chipless RFID light switch (CLS) that is passive, battery-free and relocatable and maintains the convenience of having physical buttons for controlling lightbulbs or other electrical devices is introduced. These characteristics have been achieved by attaching single-pole-single-through toggle switches to the edges of radio frequency spiral resonators. The status of the switches activates or deactivates the resonators, allowing the CLS tag to passively communicate the status of the switches. A CLS tag with two ID resonators (used for tag identifications), and two measurement resonators [MRs] (connected with switches and used to communicate the status of the switches) was designed and fabricated using a 1-mm-thick FR4 substrate. Measurement results showed resonant frequencies at 1115 and 1220 MHz corresponding to the ID resonators and frequencies at 848 and 971 MHz corresponding to the MRs. Turning the switches OFF and ON successfully activated and deactivated the MRs.
{"title":"A chipless light switch for smart-homes","authors":"Abdullah S. Almansouri","doi":"10.1049/cds2.12163","DOIUrl":"https://doi.org/10.1049/cds2.12163","url":null,"abstract":"<p>The limited and inconvenient functionality of conventional light switches is out of pace with current advancements in wireless sensors. A chipless RFID light switch (CLS) that is passive, battery-free and relocatable and maintains the convenience of having physical buttons for controlling lightbulbs or other electrical devices is introduced. These characteristics have been achieved by attaching single-pole-single-through toggle switches to the edges of radio frequency spiral resonators. The status of the switches activates or deactivates the resonators, allowing the CLS tag to passively communicate the status of the switches. A CLS tag with two ID resonators (used for tag identifications), and two measurement resonators [MRs] (connected with switches and used to communicate the status of the switches) was designed and fabricated using a 1-mm-thick FR4 substrate. Measurement results showed resonant frequencies at 1115 and 1220 MHz corresponding to the ID resonators and frequencies at 848 and 971 MHz corresponding to the MRs. Turning the switches OFF and ON successfully activated and deactivated the MRs.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"244-249"},"PeriodicalIF":1.3,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50122712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retraction: [Xiaojian Wang, Xiaoye Sun, Zixuan Wang, Construction of visual evaluation system for building block night scene lighting based on multi-target recognition and data processing, IET Circuits, Devices & Systems 2023 (https://doi.org/10.1049/cds2.12154)].
The above article [1] from IET Circuits, Devices & Systems, published online on 22 February 2023 in the Wiley Online Library (https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cds2.12154) has been retracted by agreement between the editor-in-chief, Harry E. Ruda, the Institution of Engineering and Technology (the IET) and John Wiley and Sons Ltd. This article was published as part of a guest-edited special issue. Following an investigation, the IET and the journal have determined that the article was not reviewed in line with the journal's peer review standards, and there is evidence that the peer review process of the special issue underwent systematic manipulation. Accordingly, we cannot vouch for the integrity or reliability of the content. Therefore, we have taken the decision to retract the article. The authors have been informed of the decision to retract.
收回:[王晓建,孙晓烨,王子璇,基于多目标识别和数据处理的积木夜景照明视觉评价系统的构建,IET电路、器件与系统2023(https://doi.org/10.1049/cds2.12154)]来自IET Circuits,Devices&;系统,于2023年2月22日在威利在线图书馆在线出版(https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cds2.12154)经编辑Harry E.Ruda、工程与技术学会(IET)和John Wiley and Sons有限公司同意撤回。本文作为客座编辑特刊的一部分发表。经过调查,IET和该杂志确定该文章没有按照该杂志的同行评审标准进行评审,有证据表明该特刊的同行评审过程受到了系统的操纵。因此,我们不能保证内容的完整性或可靠性。因此,我们决定撤回这篇文章。提交人已被告知撤回的决定。
{"title":"Retracted","authors":"","doi":"10.1049/cds2.12164","DOIUrl":"https://doi.org/10.1049/cds2.12164","url":null,"abstract":"<p>Retraction: [Xiaojian Wang, Xiaoye Sun, Zixuan Wang, Construction of visual evaluation system for building block night scene lighting based on multi-target recognition and data processing, IET Circuits, Devices & Systems 2023 (https://doi.org/10.1049/cds2.12154)].</p><p>The above article [<span>1</span>] from IET Circuits, Devices & Systems, published online on 22 February 2023 in the Wiley Online Library (https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cds2.12154) has been retracted by agreement between the editor-in-chief, Harry E. Ruda, the Institution of Engineering and Technology (the IET) and John Wiley and Sons Ltd. This article was published as part of a guest-edited special issue. Following an investigation, the IET and the journal have determined that the article was not reviewed in line with the journal's peer review standards, and there is evidence that the peer review process of the special issue underwent systematic manipulation. Accordingly, we cannot vouch for the integrity or reliability of the content. Therefore, we have taken the decision to retract the article. The authors have been informed of the decision to retract.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"301"},"PeriodicalIF":1.3,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50120245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Satish Mulleti, Eliya Reznitskiy, Shlomi Savariego, Moshe Namer, Nimrod Glazer, Yonina C. Eldar
Key parameters of analog-to-digital converters (ADCs) are their sampling rate and dynamic range. Power consumption and cost of an ADC are directly proportional to the sampling rate; hence, it is desirable to keep it as low as possible. The dynamic range of an ADC also plays an important role, and ideally, it should be greater than the signal's; otherwise, the signal will be clipped. To avoid clipping, modulo folding can be used before sampling, followed by an unfolding algorithm to recover the true signal. Here, the authors present a modulo hardware prototype that can be used before sampling to avoid clipping. The authors’ modulo hardware operates prior to the sampling mechanism and can fold higher frequency signals compared to existing hardware. The authors present a detailed design of the hardware and also address key issues that arise during implementation. In terms of applications, the authors show the reconstruction of finite-rate-of-innovation signals, which are beyond the dynamic range of the ADC. The authors’ system operates at six times below the Nyquist rate of the signal and can accommodate eight times larger signals than the ADC's dynamic range.
{"title":"A hardware prototype of wideband high-dynamic range analog-to-digital converter","authors":"Satish Mulleti, Eliya Reznitskiy, Shlomi Savariego, Moshe Namer, Nimrod Glazer, Yonina C. Eldar","doi":"10.1049/cds2.12156","DOIUrl":"https://doi.org/10.1049/cds2.12156","url":null,"abstract":"<p>Key parameters of analog-to-digital converters (ADCs) are their sampling rate and dynamic range. Power consumption and cost of an ADC are directly proportional to the sampling rate; hence, it is desirable to keep it as low as possible. The dynamic range of an ADC also plays an important role, and ideally, it should be greater than the signal's; otherwise, the signal will be clipped. To avoid clipping, modulo folding can be used before sampling, followed by an unfolding algorithm to recover the true signal. Here, the authors present a modulo hardware prototype that can be used before sampling to avoid clipping. The authors’ modulo hardware operates prior to the sampling mechanism and can fold higher frequency signals compared to existing hardware. The authors present a detailed design of the hardware and also address key issues that arise during implementation. In terms of applications, the authors show the reconstruction of finite-rate-of-innovation signals, which are beyond the dynamic range of the ADC. The authors’ system operates at six times below the Nyquist rate of the signal and can accommodate eight times larger signals than the ADC's dynamic range.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"181-192"},"PeriodicalIF":1.3,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50144906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahan Rezaei, Abdolah Amirany, Mohammad Hossein Moaiyeri, Kian Jafari
Significant progress has been made in manufacturing emerging technologies in recent years. This progress implemented in-memory-computing and neural networks, one of today's hottest research topics. Over time, the need to process complex tasks has increased. This need causes the emergence of intelligent processors. A nonvolatile associative memory based on spintronic synapses utilising magnetic tunnel junction (MTJ) and carbon nanotube field-effect transistors (CNTFET)-based neurons is proposed. The proposed design uses the MTJ device because of its fascinating features, such as reliable reconfiguration and nonvolatility. At the same time, CNTFET has overcome conventional complementary metal-oxide-semiconductor shortcomings like the short channel effect, drain-induced barrier lowering, and poor hole mobility. The proposed design is simulated in the presence of process variations. The proposed design aims to increase the number of weights generated in the synapse for higher memory capacity and accuracy. The effect of different tunnel magnetoresistance (TMR) values (100%, 200%, and 300%) on the performance and accuracy of the proposed design has also been investigated. This investigation shows that the proposed design performs well even with a low TMR value, which is very important and remarkable from the fabrication point of view.
{"title":"A high-capacity and nonvolatile spintronic associative memory hardware accelerator","authors":"Mahan Rezaei, Abdolah Amirany, Mohammad Hossein Moaiyeri, Kian Jafari","doi":"10.1049/cds2.12160","DOIUrl":"https://doi.org/10.1049/cds2.12160","url":null,"abstract":"<p>Significant progress has been made in manufacturing emerging technologies in recent years. This progress implemented in-memory-computing and neural networks, one of today's hottest research topics. Over time, the need to process complex tasks has increased. This need causes the emergence of intelligent processors. A nonvolatile associative memory based on spintronic synapses utilising magnetic tunnel junction (MTJ) and carbon nanotube field-effect transistors (CNTFET)-based neurons is proposed. The proposed design uses the MTJ device because of its fascinating features, such as reliable reconfiguration and nonvolatility. At the same time, CNTFET has overcome conventional complementary metal-oxide-semiconductor shortcomings like the short channel effect, drain-induced barrier lowering, and poor hole mobility. The proposed design is simulated in the presence of process variations. The proposed design aims to increase the number of weights generated in the synapse for higher memory capacity and accuracy. The effect of different tunnel magnetoresistance (TMR) values (100%, 200%, and 300%) on the performance and accuracy of the proposed design has also been investigated. This investigation shows that the proposed design performs well even with a low TMR value, which is very important and remarkable from the fabrication point of view.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"205-212"},"PeriodicalIF":1.3,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50153076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A compact frequency reconfigurable beam switching antenna based on a single-layer frequency selective face (FSS) is proposed in this paper. The proposed antenna consists of a dual-band dipole antenna and a single-layer FSS with hexagonally arrangement. The omnidirectional radiation pattern of the dipole antenna designed as a radiation source and surrounded by the FSS can be converted into directional radiation pattern sweeping along the entire azimuthal plane at two single frequency of 2.4 or 5 GHz. The frequency selection is achieved by controlling the diode state of the FSS unit, and the beam switching is realised by a specific combination of electromagnetic wave reflection or transmission from the hexagonal FSS. The novelty lies in applying the hexagonal arrangement to a dual single-frequency single-layer FSS unit. This will not destroy the reflection or transmission characteristics of the FSS unit, but also contribute to reduce the antenna size and achieve a low cost. To validate the design, a prototype is fabricated and measured. The single-layer FSS antenna with a volume of 57 mm × 57 mm × 58.5 mm can be scanned in 12 steps along the azimuth plane at 2.4 and 5 GHz, respectively.
{"title":"A compact frequency reconfigurable beam switching antenna based on a single-layer FSS","authors":"Guang Li, Yangyang Ye, Fushun Zhang","doi":"10.1049/cds2.12157","DOIUrl":"https://doi.org/10.1049/cds2.12157","url":null,"abstract":"<p>A compact frequency reconfigurable beam switching antenna based on a single-layer frequency selective face (FSS) is proposed in this paper. The proposed antenna consists of a dual-band dipole antenna and a single-layer FSS with hexagonally arrangement. The omnidirectional radiation pattern of the dipole antenna designed as a radiation source and surrounded by the FSS can be converted into directional radiation pattern sweeping along the entire azimuthal plane at two single frequency of 2.4 or 5 GHz. The frequency selection is achieved by controlling the diode state of the FSS unit, and the beam switching is realised by a specific combination of electromagnetic wave reflection or transmission from the hexagonal FSS. The novelty lies in applying the hexagonal arrangement to a dual single-frequency single-layer FSS unit. This will not destroy the reflection or transmission characteristics of the FSS unit, but also contribute to reduce the antenna size and achieve a low cost. To validate the design, a prototype is fabricated and measured. The single-layer FSS antenna with a volume of 57 mm × 57 mm × 58.5 mm can be scanned in 12 steps along the azimuth plane at 2.4 and 5 GHz, respectively.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"193-198"},"PeriodicalIF":1.3,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50144497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The authors’ present a silicon-on-insulator (SOI) laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) with β-Ga2O3 , which is a large bandgap semiconductor (β-LDMOSFET), for increasing breakdown voltage (VBR) and power figure of merit. The fundamental purpose is to use a β-Ga2O3 semiconductor instead of silicon material due to its large breakdown field. The characteristics of β-LDMOSFET are analysed to those of standard LDMOSFET, such as VBR, ON-resistance (RON), power figure of merit (PFOM), and radio frequency (RF) performances. The effects of RF, such as gate-drain capacitance (CGD), gate-source capacitance (CGS), transit frequency (fT), and maximum frequency of oscillation (fMAX) have been investigated. The β-LDMOSFET structure outperforms performance in the VBR by increasing it to 500 versus 84.4 V in standard LDMOSFET design. The suggested β-LDMOSFET has RON ~ 2.3 mΩ.cm−2 and increased the PFOM (VBR2/RON) to 108.6 MW/cm2. All the simulations are done with TCAD and simulation models are calibrated with the experimental data.
{"title":"500 V breakdown voltage in β-Ga2O3 laterally diffused metal-oxide-semiconductor field-effect transistor with 108 MW/cm2 power figure of merit","authors":"Nesa Abedi Rik, Ali. A. Orouji, Dariush Madadi","doi":"10.1049/cds2.12158","DOIUrl":"https://doi.org/10.1049/cds2.12158","url":null,"abstract":"<p>The authors’ present a silicon-on-insulator (SOI) laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) with <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> , which is a large bandgap semiconductor (β-LDMOSFET), for increasing breakdown voltage (V<sub>BR</sub>) and power figure of merit. The fundamental purpose is to use a <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> semiconductor instead of silicon material due to its large breakdown field. The characteristics of <i>β</i>-LDMOSFET are analysed to those of standard LDMOSFET, such as V<sub>BR</sub>, ON-resistance (R<sub>ON</sub>), power figure of merit (PFOM), and radio frequency (RF) performances. The effects of RF, such as gate-drain capacitance (C<sub>GD</sub>), gate-source capacitance (C<sub>GS</sub>), transit frequency (<i>f</i><sub><i>T</i></sub>), and maximum frequency of oscillation (<i>f</i><sub>MAX</sub>) have been investigated. The <i>β</i>-LDMOSFET structure outperforms performance in the V<sub>BR</sub> by increasing it to 500 versus 84.4 V in standard LDMOSFET design. The suggested <i>β</i>-LDMOSFET has R<sub>ON</sub> ~ 2.3 mΩ.cm<sup>−2</sup> and increased the PFOM (V<sub>BR</sub><sup>2</sup>/R<sub>ON</sub>) to 108.6 MW/cm<sup>2</sup>. All the simulations are done with TCAD and simulation models are calibrated with the experimental data.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 4","pages":"199-204"},"PeriodicalIF":1.3,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50119060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research on LCC resonant converters has become increasingly popular since the application of the zero-voltage switching can improve the transmission ability and ensure the high efficiency of the power supplies. In this article, a novel quasi-definite frequency-based modulation control method to extend the excellent properties of LCC resonators to a wide range of powers is introduced. By adjusting the frequency and phase in a bidirectional manner in accordance with the design law, excellent output performance can be maintained over a wide power range, which is overcome by adjusting the switching frequency and phase separately in conventional modulation methods. In order to justify the effectiveness of the proposed modulation control method, a simulation and experimental platform of LCC resonators using the proposed modulation method was performed. Simulation and experimental results can effectively demonstrate the performance of the proposed modulation control method for a variety of input voltage and output power cases, and the efficiency of the LCC converters will be improved in higher power systems.
{"title":"Quasi-fixed frequency controlled phase modulation LCC resonant converter with a wide power range","authors":"Ying Feng, Dejun Kong","doi":"10.1049/cds2.12155","DOIUrl":"https://doi.org/10.1049/cds2.12155","url":null,"abstract":"<p>The research on LCC resonant converters has become increasingly popular since the application of the zero-voltage switching can improve the transmission ability and ensure the high efficiency of the power supplies. In this article, a novel quasi-definite frequency-based modulation control method to extend the excellent properties of LCC resonators to a wide range of powers is introduced. By adjusting the frequency and phase in a bidirectional manner in accordance with the design law, excellent output performance can be maintained over a wide power range, which is overcome by adjusting the switching frequency and phase separately in conventional modulation methods. In order to justify the effectiveness of the proposed modulation control method, a simulation and experimental platform of LCC resonators using the proposed modulation method was performed. Simulation and experimental results can effectively demonstrate the performance of the proposed modulation control method for a variety of input voltage and output power cases, and the efficiency of the LCC converters will be improved in higher power systems.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 3","pages":"160-173"},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50118974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid development of night tourism economy has made people's demand for night scene lighting in architectural blocks increasing, and the night scene lighting situation of urban architectural blocks has gradually received people's attention and attention. Achieving good night lighting visual effects of building blocks can not only meet the needs of residents for entertainment and consumption at night, but also beautify the image of blocks and promote the economic development of building blocks. However, due to the unreasonable planning and management of the night scene lighting design of architectural blocks in some areas, improper application of night scene lighting, and overly commercial night scene lighting effects, it affects people's normal night activity needs and has a negative impact on the long-term block economy of the region. Faced with this situation, the night lighting of architectural blocks and its problems is studied and photos are identified with high lighting visual effect evaluation using multi-target identification and data processing to construct a night lighting visual evaluation system for architectural blocks, and also an experimental study of the visual evaluation system is conducted. The results show that the overall visual suitability evaluation support rate of the respondents for the night scene lighting of architectural blocks is 95.64%, and the visual evaluation system proposed in this paper is reasonable and effective, which is conducive to promoting the improvement of the visual effect of night scene lighting in architectural blocks.
{"title":"Construction of visual evaluation system for building block night scene lighting based on multi-target recognition and data processing","authors":"Xiaojian Wang, Xiaoye Sun, Zixuan Wang","doi":"10.1049/cds2.12154","DOIUrl":"https://doi.org/10.1049/cds2.12154","url":null,"abstract":"<p>The rapid development of night tourism economy has made people's demand for night scene lighting in architectural blocks increasing, and the night scene lighting situation of urban architectural blocks has gradually received people's attention and attention. Achieving good night lighting visual effects of building blocks can not only meet the needs of residents for entertainment and consumption at night, but also beautify the image of blocks and promote the economic development of building blocks. However, due to the unreasonable planning and management of the night scene lighting design of architectural blocks in some areas, improper application of night scene lighting, and overly commercial night scene lighting effects, it affects people's normal night activity needs and has a negative impact on the long-term block economy of the region. Faced with this situation, the night lighting of architectural blocks and its problems is studied and photos are identified with high lighting visual effect evaluation using multi-target identification and data processing to construct a night lighting visual evaluation system for architectural blocks, and also an experimental study of the visual evaluation system is conducted. The results show that the overall visual suitability evaluation support rate of the respondents for the night scene lighting of architectural blocks is 95.64%, and the visual evaluation system proposed in this paper is reasonable and effective, which is conducive to promoting the improvement of the visual effect of night scene lighting in architectural blocks.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 3","pages":"149-159"},"PeriodicalIF":1.3,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12154","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50149389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The history of ternary adders goes back to more than 6 decades ago. Since then, a multitude of ternary full adders (TFAs) have been presented in the literature. This article conducts a review of TFAs so that one can be familiar with the utilised design methodologies and their prevalence. Moreover, despite numerous TFAs, almost none of them are in their simplest form. A large number of transistors could have been eliminated by considering a partial TFA instead of a complete one. According to our investigation, only 28.6% of the previous designs are partial TFAs. Also, they could have been simplified even further by assuming a partial TFA with an output carry voltage of 0 V or VDD. This way, in a single-VDD design, voltage division inside the Carry generator part would have been eliminated and less power dissipated. As far as we have searched, there are only three partial TFAs with this favourable condition in the literature. Additionally, most of the simulation setups in the previous articles are not realistic enough. Therefore, the simulation results reported in these papers are neither comparable nor entirely valid. Therefore, the authors got motivated to conduct a survey, elaborate on this issue, and enhance some of the previous designs. Among 84 papers, 10 different TFAs (from 11 papers) are selected, simplified, and simulated in this article. Simulation results by HSPICE and 32 nm carbon nanotube FET technology reveal that the simplified partial TFAs outperform their original versions in terms of delay, power, and transistor count.
{"title":"Comprehensive survey of ternary full adders: Statistics, corrections, and assessments","authors":"Sarina Nemati, Mostafa Haghi Kashani, Reza Faghih Mirzaee","doi":"10.1049/cds2.12152","DOIUrl":"https://doi.org/10.1049/cds2.12152","url":null,"abstract":"<p>The history of ternary adders goes back to more than 6 decades ago. Since then, a multitude of ternary full adders (TFAs) have been presented in the literature. This article conducts a review of TFAs so that one can be familiar with the utilised design methodologies and their prevalence. Moreover, despite numerous TFAs, almost none of them are in their simplest form. A large number of transistors could have been eliminated by considering a partial TFA instead of a complete one. According to our investigation, only 28.6% of the previous designs are partial TFAs. Also, they could have been simplified even further by assuming a partial TFA with an output carry voltage of 0 V or V<sub>DD</sub>. This way, in a single-V<sub>DD</sub> design, voltage division inside the Carry generator part would have been eliminated and less power dissipated. As far as we have searched, there are only three partial TFAs with this favourable condition in the literature. Additionally, most of the simulation setups in the previous articles are not realistic enough. Therefore, the simulation results reported in these papers are neither comparable nor entirely valid. Therefore, the authors got motivated to conduct a survey, elaborate on this issue, and enhance some of the previous designs. Among 84 papers, 10 different TFAs (from 11 papers) are selected, simplified, and simulated in this article. Simulation results by HSPICE and 32 nm carbon nanotube FET technology reveal that the simplified partial TFAs outperform their original versions in terms of delay, power, and transistor count.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"17 3","pages":"111-134"},"PeriodicalIF":1.3,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50132344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}